

Latika Bhatt, K. K. Dube

ON *CR*-SUBMANIFOLD OF NEARLY
AND CLOSELY PARA COSYMPLECTIC MANIFOLDS

1. Introduction

CR-submanifold of an almost contact metric manifold have been studied by ([7], [8]). Para cosymplectic manifold have been studied by [2]. The purpose of the present paper is to study the *CR*-submanifold of nearly and closely para cosymplectic manifolds.

Section 2 is preliminary in which we recall some definitions. Section 3 is devoted to basic results. In section 4 integrability, autoparallelness and nearly autoparallelness of the distribution $D^1 \oplus \{U\}$ on submanifold are studied. Integrability of distributions D^0 , $D^0 \oplus \{U\}$ are also studied in this section. In section 5 totally umbilical and totally geodesic submanifolds are studied. Section 6 is devoted to the study of para contact umbilical and totally para contact geodesic submanifolds.

2. Preliminaries

Let \bar{V} be an almost para contact metric manifold [3] with structure tensors (F, U, u, g) , where F is a $(1, 1)$ tensor field, a vector field U , a 1-form u associated with U and a metric tensor g satisfying the following relations:

$$(1) \quad F^2 = I - u \otimes U, \quad u(U) = 1, \quad F(U) = 0, \quad u \circ F = 0,$$

$$(2) \quad g(FX, FY) = g(X, Y) - u(X)u(Y),$$

$$(3) \quad g(X, FY) = g(FX, Y), \quad g(X, U) = u(X), \quad \forall X, Y \in T\bar{V}.$$

An almost para contact metric manifold is called a para cosymplectic manifold [2] if

$$(4) \quad (\bar{\nabla}_X F)Y = 0.$$

An almost para contact metric manifold is called nearly para cosymplec-

tic if F is a killing, that is,

$$(5) \quad (\bar{\nabla}_X F)Y + (\bar{\nabla}_Y F)X = 0,$$

where $\bar{\nabla}$ is the operator of covariant differentiation with respect to g . On nearly para cosymplectic manifold, U is a killing vector field. That is,

$$(6) \quad g(\bar{\nabla}_X U, Y) + g(\bar{\nabla}_Y U, X) = 0, \forall X, Y \in T\bar{V}.$$

An almost para contact metric manifold is called closely para cosymplectic if F is a killing and u is a closed. On closely para cosymplectic manifold we have

$$(7) \quad \bar{\nabla}_U F = 0, \bar{\nabla}U = 0, \bar{\nabla}u = 0.$$

Let V be a submanifold of a Riemannian manifold \bar{V} with a Riemannian metric g . Then Gauss and Wiengarten formulae are given respectively by

$$(8) \quad \bar{\nabla}_X Y = \nabla_X Y + h(X, Y), X, Y \in TV,$$

$$(9) \quad \bar{\nabla}_X N = -A_N X + \nabla_X^\perp N, N \in T^\perp V,$$

where $\bar{\nabla}$, ∇ and ∇^\perp are Riemannian, induced Riemannian and induced normal connections in \bar{V} , V and the normal bundle $T^\perp V$ of V respectively and h is the second fundamental form related to A by

$$(10) \quad g(h(X, Y), N) = g(A_N X, Y).$$

F is a $(1, 1)$ tensor field on V , for $X \in TV$ and $N \in T^\perp V$ we have [5]

$$(11) \quad (\bar{\nabla}_X F)Y$$

$$= ((\nabla_X P)Y - A_{QY}Y - th(X, Y)) + ((\nabla_X Q)Y + h(X, PY) - fh(X, Y)),$$

$$(12) \quad (\bar{\nabla}_X F)N$$

$$= ((\nabla_X t)N - A_{FN}Y - PA_N X) + ((\nabla_X f)N + h(X, tN) + h(X, fN)),$$

where,

$$(13) \quad FX \equiv PX + QX, PX \in TV, QX \in T^\perp V,$$

$$(14) \quad FN \equiv tN + fN, tN \in TV, fN \in T^\perp V,$$

where PX and tN are tangential parts, while QX and fN are normal parts of FX and FN respectively

$$(15) \quad (\nabla_X P)Y \equiv \nabla_X PY - P\nabla_X Y,$$

$$(16) \quad (\nabla_X Q)Y \equiv \nabla_X^\perp QY - Q\nabla_X Y,$$

$$(17) \quad (\nabla_X t)N \equiv \nabla_X tN - t\nabla_X^\perp N,$$

$$(18) \quad (\nabla_X f)N \equiv \nabla_X^\perp fN - f\nabla_X^\perp N.$$

The submanifolds V is said to be totally geodesic in \bar{V} if $h = 0$ and totally umbilical in \bar{V} if

$$h(X, Y) = g(X, Y)K.$$

For a distribution D on V , V is said to be D -totally geodesic if $h(X, Y) = 0$, $\forall X, Y \in D$. V is said to be D -totally umbilical if we have $h(X, Y) = h(X, Y)K$, where K is a normal vector field $\forall X, Y \in D$. V is said to be (D, E) -mixed totally geodesic if $h(X, Y) = 0$, $\forall X \in D$ and $Y \in E$.

Let D and E be two distributions defined on a manifold V . D is said to be E -parallel if we have $\nabla_X Y \in D$, $\forall X \in E$ and $Y \in D$. If D is D -parallel then it is called autoparallel. D is said to be X -parallel if we have $\nabla_X Y \in D$, $\forall X \in TV$ and $Y \in D$. D is said to be parallel if $\forall X \in TV$ and $Y \in D$, $\nabla_X Y \in D$.

If a distribution D on V is autoparallel then it is integrable, and by Gauss formula D is totally geodesic in V . If D is parallel then the orthogonal complementary distribution D^\perp is also parallel.

A submanifold V of an almost para contact metric manifold \bar{V} with $U \in TV$ is called a CR -submanifold of \bar{V} if for each $x \in V$, $T_x V = D_x^1 \oplus D_x^0 \oplus \{U\}_x$, where,

$$D_x^1 = \text{Ker}(Q|_{\{U\}^\perp})_x = \{X_x \in \{U\}_{x^\perp} : \|X_x\| = \|PX_x\|\} = T_x V \cap F(T_x V),$$

$$D_x^0 = \text{Ker}(Q|_{\{U\}^\perp})_x = \{X_x \in \{U\}_{x^\perp} : \|X_x\| = \|QX_x\|\} = T_x V \cap F(T_x^\perp V).$$

The condition $T_x V = D_x^1 \oplus D_x^0 \oplus \{U\}_x$ implies that $P^3 - P = 0$ [6] on V and hence $\text{Dim}(D_x^1) = \text{Rank}(P_x)$ is independent of $x \in V$ and so is that D_x^0 .

Now we have $TV = D^1 \oplus D^0 \oplus \{U\}$. These distributions are also differentiable. We have $T^\perp V = \bar{D}^1 \oplus \bar{D}^0$, where $\bar{D}^1 = \text{Ker}(t) = T^\perp V \cap F(T^\perp V)$, $\bar{D}^0 = \text{Ker}(f) = T^\perp V \cap F(TV)$, $QD^0 = \bar{D}^0$ and $t\bar{D}^0 = D^0$.

A CR -submanifold of an almost para contact manifold reduces to invariant submanifold [1, 8] (resp. anti-invariant submanifold [1, 8]) if $D^0 = \{0\}$ (resp. $D^1 = \{0\}$).

3. Some results

Let V be a submanifold of a nearly para cosymplectic manifold, tangent to U . By virtue of equation (5) and equation (11) we have

$$(19) \quad ((\nabla_X P)Y + (\nabla_Y P)X - A_{QY}X - A_{QX}Y - 2th(X, Y)) \\ + ((\nabla_X Q)Y + (\nabla_Y Q)X + h(X, PY) + h(PX, Y) - 2fh(X, Y)) = 0.$$

PROPOSITION 3.1. *Let V be a submanifold of a nearly para cosymplectic manifold. If $U \in TV$ then $\forall X, Y \in TV$ we have*

$$(20) \quad (\nabla_X P)Y + (\nabla_Y P)X - A_{QY}X - A_{QX}Y - 2th(X, Y) = 0,$$

$$(21) \quad (\nabla_X Q)Y + (\nabla_Y Q)X + h(X, PY) + h(PX, Y) - 2fh(X, Y) = 0.$$

Proof. Equating tangential and normal parts of equation (19), we get the desired results

PROPOSITION 3.2. *Let V be a submanifold of a nearly para cosymplectic manifold. If $U \in TV$ then $\forall X, Y \in TV$ we have*

$$(22) \quad \bar{\nabla}_X FY + \bar{\nabla}_Y FX - F[X, Y]$$

$$= 2((\nabla_X P)Y - A_{QY}Y - th(X, Y)) + 2((\nabla_X Q)Y + h(X, PY) - fh(X, Y)).$$

The proof is obvious and hence omitted.

THEOREM 3.3. *Let V be a submanifold of a nearly para cosymplectic manifold. If $U \in TV$ then $\forall X, Y \in TV$ we get*

$$(23) \quad P[X, Y] = -\nabla_X PY - \nabla_Y PX + A_{QY}X + A_{QX}Y + 2P\nabla_X Y + 2th(X, Y),$$

$$(24) \quad Q[X, Y] = -\nabla_X^\perp QY - \nabla_Y^\perp QX - h(X, PY) - h(PX, Y)$$

$$+ 2Q\nabla_X Y + 2fh(X, Y).$$

Proof. By virtue of equation (11) and (22) we get

$$\begin{aligned} & (\nabla_X PY - P\nabla_X Y - \nabla_Y PX + P\nabla_Y X - A_{QY}X + A_{QX}Y - 2\nabla_X PY + 2P\nabla_X Y \\ & \quad + 2A_{QY}X + 2th(X, Y)) + (\nabla_X^\perp QY - Q\nabla_X Y - \nabla_Y^\perp QX - Q\nabla_Y X \\ & \quad + h(X, PY) - h(PX, Y) - 2\nabla_X^\perp QY + 2Q\nabla_X Y - 2h(X, PY) + 2fh(X, Y)) = 0. \end{aligned}$$

Now equating tangential and normal parts of the above equation we get equation (23) and (24).

PROPOSITION 3.4. *Let V be a submanifold of a nearly para cosymplectic manifold. Then (P, U, u, g) is a nearly para cosymplectic structure on the distribution $D^1 \oplus \{U\}$ if $th(X, Y) = 0 \forall X, Y \in D^1 \oplus \{U\}$.*

Proof. Using $D^1 \oplus \{U\} = \text{Ker}(Q)$ and $P^2 + tQ = I - u \otimes U$ we obtain $P^2 = I - u \otimes U$ on $D^1 \oplus \{U\}$. We also get $PU = 0$, $u(U) = 1$, $uoP = 0$. Using $D^1 \oplus \{U\} = \text{Ker}(Q)$ and $th(X, Y) = 0$ in equation (20) we have $(\nabla_X P)Y + (\nabla_Y P)X = 0$, $\forall X, Y \in D^1 \oplus \{U\}$.

This proves our assertion.

THEOREM 3.5. *Let V be a CR-submanifold of a nearly para cosymplectic manifold. We have*

(a) *if $D^0 \oplus \{U\}$ is autoparallel then*

$$A_{QY}X + A_{QX}Y + 2th(X, Y) = 0, \forall X, Y \in D^0 \oplus \{U\},$$

(b) *if $D^1 \oplus \{U\}$ is autoparallel then*

$$h(X, PY) + h(PX, Y) = 2fh(X, Y), \forall X, Y \in D^1 \oplus \{U\}.$$

Proof. Using equation (20) and autoparallelness of $D^0 \oplus \{U\}$ we get (a) and using equation (21) and autoparallelness of $D^1 \oplus \{U\}$ we get (b). This completes the proof.

THEOREM 3.6. *Let V be a submanifold of a nearly para cosymplectic manifold with $U \in TV$. If V is invariant then V is nearly para cosymplectic manifold. Moreover*

$$(25) \quad h(X, PY) + h(PX, Y) - 2fh(X, Y) = 0, \forall X, Y \in TV.$$

Proof. From $D^1 \oplus \{U\} = \text{Ker}(Q)$ and equation (21) we get equation (25).

4. Integrability conditions

LEMMA 4.1. *Let V be a CR-submanifold of a nearly para cosymplectic manifold, $\forall X, Y \in D^1 \oplus \{U\}$ we get*

$$(26) \quad Q[X, Y] = -h(X, PY) - h(PX, Y) + 2Q\nabla_X Y + 2fh(X, Y)$$

or equivalently

$$(27) \quad -h(X, PX) + Q\nabla_X X + fh(X, X) = 0.$$

Proof. Using $D^1 \oplus \{U\} = \text{Ker}(Q)$ and equation (24) we get equation (26) and using $X = Y$ in equation (26) we get the required result.

THEOREM 4.2. *The distribution $D^1 \oplus \{U\}$ on a CR-submanifold of a nearly para cosymplectic manifold is integrable if and only if*

$$(28) \quad h(X, PY) + h(PX, Y) = 2(Q\nabla_X Y + fh(X, Y)).$$

Proof. From $D^1 \oplus \{U\} = \text{Ker}(Q)$ and using equation (26) we get the result.

DEFINITION 4.3. Let V be a Riemannian manifold with a Riemannian connection ∇ . A distribution D on V is said to be nearly autoparallel if $\forall X, Y \in D$ we have $(\nabla_X Y + \nabla_Y X) \in D$ or equivalently $\nabla_X X \in D$.

We have

Parallel \Rightarrow Autoparallel \Rightarrow Nearly autoparallel,

Parallel \Rightarrow Integrable,

Autoparallel \Rightarrow Integrable, and

Nearly autoparallel + Integrable \Rightarrow Autoparallel.

THEOREM 4.4. *Let V be a CR-submanifold of a nearly para cosymplectic manifold. Then the following statements:*

(I) *the distribution $D^1 \oplus \{U\}$ is autoparallel,*

(II) $h(X, PY) + h(PX, Y) = 2fh(X, Y), X, Y \in D^1 \oplus \{U\}$,

(III) $h(X, PX) = fh(X, X), X \in D^1 \oplus \{U\}$,

(IV) *the distribution $D^1 \oplus \{U\}$ is nearly autoparallel, are related by*

$(I) \Rightarrow (II) \Leftrightarrow (III) \Rightarrow (IV)$. In particular if $D^1 \oplus \{U\}$ is integrable then the above four statements are equivalent.

Proof. (I) \Rightarrow (II) follows from Theorem (3.5)(b). Putting $X = Y$ in (II) we get (II) \Leftrightarrow (III). From (27) we get (III) \Rightarrow (IV). This completes the proof of the theorem.

THEOREM 4.5. *Let V be a CR-submanifold of a nearly para cosymplectic manifold, such that V is $D^1 \oplus \{U\}$ —totally umbilical, then*

(I) *the distribution $D^1 \oplus \{U\}$ is nearly autoparallel.*

Consequently, the following two statements becomes equivalent:

(II) *the distribution $D^1 \oplus \{U\}$ is integrable,*

(III) *the distribution $D^1 \oplus \{U\}$ is autoparallel.*

Proof. From proposition (5.2), V is $D^1 \oplus \{U\}$ —totally geodesic that is $h = 0$. Thus from (27) we get $\nabla_X X = 0$ the statement (I) holds. Hence from definition (4.3) we get (II) \Leftrightarrow (III).

COROLLARY 4.6. *In a totally umbilical CR-submanifold of a nearly para cosymplectic manifold, $D^1 \oplus \{U\}$ is autoparallel.*

Proof. Using Theorem (4.5) we get the result.

LEMMA 4.7. *Let V be a CR-submanifold of a nearly para cosymplectic manifold. Then*

$$(29) \quad 3(A_{QX}Y - A_{QY}X) = P[X, Y], X, Y \in D^0 \oplus \{U\}.$$

Proof. Let $X, Y \in D^0 \oplus \{U\}$ and $Z \in TV$. we have from equation (8) and (9)

$$\begin{aligned} A_{FX}Z + \nabla_Z^\perp FX &= \bar{\nabla}_Z FX = (\bar{\nabla}_Z F)X + F\bar{\nabla}_Z X \\ &= -(\bar{\nabla}_X F)Z + F\nabla_Z X + Fh(Z, X) \end{aligned}$$

so that,

$$Fh(Z, X) = -A_{FX}Z + \nabla_Z^\perp FX - F\nabla_Z X + (\bar{\nabla}_X F)Z,$$

and hence

$$\begin{aligned} g(Fh(Z, X), Y) &= -g(A_{FX}Z, Y) + g((\bar{\nabla}_X F)Z, Y) \\ &= g(A_{FX}Y, Z) + g((\bar{\nabla}_X F)Y, Z). \end{aligned}$$

Now we have

$$g(Fh(Z, X), Y) = g(h(Z, X), FY) = g(A_{FY}X, Z).$$

Thus from the above two equations, we have

$$(30) \quad g(A_{FY}X, Z) = g(A_{FX}Y, Z) + g((\bar{\nabla}_X F)Y, Z).$$

Now for $X, Y \in D^0 \oplus \{U\}$, we have

$$\bar{\nabla}_X FY - \bar{\nabla}_Y FX = A_{FX}Y - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX$$

and $\bar{\nabla}_X FY - \bar{\nabla}_Y FX = (\bar{\nabla}_X F)Y - (\bar{\nabla}_Y F)X + F[X, Y]$ from above two equations, we have

$$(\bar{\nabla}_X F)Y - (\bar{\nabla}_Y F)X = A_{FX}Y - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX - F[X, Y].$$

Using equation (5) and above equation, we get

$$(\bar{\nabla}_X F)Y = \frac{1}{2}(A_{FX}Y - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX - F[X, Y]).$$

From this and equation (30) we get the required result.

THEOREM 4.8. *Let V be a CR-submanifold of a nearly para cosymplectic manifold. Then the distribution $D^0 \oplus \{U\}$ is integrable if and only if*

$$A_{QX}Y - A_{QY}X = 0, \quad \forall X, Y \in D^0 \oplus \{U\}.$$

Proof. From $D^0 \oplus \{U\} = \text{Ker}(P)$ and equation (29), we get the result.

THEOREM 4.9. *Let V be a CR-submanifold of a nearly para cosymplectic manifold. Then the distribution D^0 is integrable if and only if*

$$A_{QX}Y - A_{QY}X = 0, \quad \forall X, Y \in D^0.$$

Proof. By definition of D^0 and equation (29), we get the result.

THEOREM 4.10. *Let V be a CR-submanifold of a para cosymplectic manifold. Then the distributions D^0 and $D^0 \oplus \{U\}$ are integrable.*

Proof. The result follows from Theorem (4.8) and Theorem (4.9).

5. Totally umbilical and totally geodesic submanifolds

LEMMA 5.1. *Let V be a submanifold of a closely para cosymplectic manifold, tangent to U . Then the integral curve of U in V is geodesic in V , and U is an asymptotic direction.*

Proof. Since in a closely para cosymplectic manifold we have $\bar{\nabla}U = 0$. Now in view of equation (8), we get $h(U, U) = 0$. This completes the proof.

PROPOSITION 5.2. *Let D be a distribution on a submanifold V of a closely para cosymplectic manifold such that $U \in TV$. If V is D -totally umbilical then V is D -totally geodesic.*

Proof. For D -totally umbilical we have

$$h(X, Y) = g(X, Y)K, \quad \forall X, Y \in D.$$

A direction U at a point of V is an asymptotic direction if normal vector field $K = 0$, which implies that $h(X, Y) = 0$, which shows that V is D -totally geodesic.

PROPOSITION 5.3. *Every totally umbilical submanifold of a closely para cosymplectic manifold, tangent to U , is totally geodesic.*

P r o o f. The proof follows from proposition (5.2).

6. Totally para contact umbilical and totally para contact geodesic submanifolds

Let V be a submanifold of an almost para contact metric manifolds, tangent to U . In this case $TV = \{U\} \oplus \{U\}^\perp$, where $\{U\}$ is the distribution spanned by $\{U\}$ and $\{U\}^\perp$ is the complementary orthogonal distribution of $\{U\}$ in V .

DEFINITION 6.1. A submanifold V of an almost para contact metric manifold, tangent to U , is called

- (1) totally para contact umbilical if it is $\{U\}^\perp$ -totally umbilical, and
- (2) totally para contact geodesic if it is $\{U\}^\perp$ -totally geodesic.

The condition of totally para contact umbilical and totally para contact geodesic are respectively

$$(31) \quad h(F^2X, F^2Y) = g(F^2X, F^2Y)K, X, Y \in TV,$$

$$(32) \quad h(F^2X, F^2Y) = 0, X, Y \in TV,$$

where K is normal vector field. Using (1) in (31) and (32), the following respectively.

$$(33) \quad h(X, Y) = g(FX, FY)K + u(X)h(Y, U) + u(Y)h(X, U),$$

$$(34) \quad h(X, Y) = u(X)h(Y, U) + u(Y)h(X, U).$$

THEOREM 6.2. *If V is a totally para contact umbilical CR-submanifold of a closely para cosymplectic manifold, then V is (D^1, D^0) -mixed totally geodesic.*

P r o o f. Now we have $h(X, Y) = g(X, Y)K$, for $X, Y \in \{U\}^\perp$ $h(U, U) = g(U, U)K$ $0 = g(U, U)K$, by using Gauss equation $\Rightarrow K = 0$. Therefore V is (D^1, D^0) -mixed totally geodesic. This completes our assertions.

THEOREM 6.3. *Let V be a totally para contact umbilical submanifold of a closely para cosymplectic manifold, then either $D^0 = \{0\}$ or $\text{Dim}(D^0) = 1$ or the normal vector field K is orthogonal to FD^0 .*

P r o o f. If $\text{Dim}(D^0) > 1$, for each $H \in D^0 \exists X \in D^0$ such that $g(X, H) = 0$ and $\|X\| = 0$, then

$$\begin{aligned} g(K, FH) &= g(h(X, X), FH) = g(A_{FH}X, X) \\ &= g(A_{FX}H, X) = g(h(X, H), FX) = 0. \end{aligned}$$

This gives desired result.

References

- [1] A. Bejancu, *Geometry of CR-submanifolds*, D. Redial Publ .Co., 1986.
- [2] V. C. Gupta, C. S. Prasad, *Almost para r-contact manifold*, Demonstratio Math. 19 4(1986) 931–945.
- [3] S. N. Pandey and Savita Verma, *On para Sasakian manifold*, Indian J. Pure Appl. Math. 30(1) (1999) 15–22.
- [4] B. B. Sinha, *An Introduction to Modern Differential Geometry*, Kalyani Publishers, New Delhi, 1982.
- [5] M. M. Tripathi and K. D. Singh, *Almost semiinvariant submanifold of an ϵ -framed metric manifold*, Demonstratio Math. 29, (1996) 413–426.
- [6] M. D. Upadhyay and K. K. Dube, *On adifferentiable manifold with $f(3, -1)$ structure of rank (I), (II)* Kyungpook Math. J., 18, (1978) 289–298.
- [7] K. Yano and M. Kon, *CR-submanifold of Kaehlerian and Sasakian Manifold*, Birkhauser, Boston, 1983.
- [8] K. Yano and M. Kon, *On contact CR-submanifold*, J. Korean Math. Soc., 26, (1989) 231–262.

DEPARTMENT OF MATHEMATICS
STATISTICS AND COMPUTERS SCIENCE
CBSH, G.B. PANT UNIV. OF AG. AND TECH.
PANTNAGAR - 263145, UTTARANCHAL, INDIA

Received March 28, 2001.

