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GEOMETRY OF ¢-PROJECTIVE STRUCTURES

Abstract. The main purpose of this paper is to define and study t-projective struc-
ture on even dimensional manifold M as a certain reduction of the second order frame
bundle over M. This t-structure reveals some similarities to the projective structures of
Kobayashi-Nagano [KN1] but it is a completely different one. The structure group is the
isotropy group of the tangent bundle of the projective space. With the t-structure we
associate in a natural way the so called normal Cartan connection and we investigate its
properties. We show that t-structures are closely related the almost tangent structures on
M. Finally, we consider the natural cross sections and we derive the coeflicients of the
normal connection of a t-projective structure.

0. Introduction

Grassmannians of higher order appeared for the first time in a paper [Sz2]
in the context of the Cartan method of moving frames. Recently, A. Szybiak
has given in [Sz3] an explicit formula for the infinitesimal action of the second
order jet group in dimension n on the standard fiber of the bundle of second
order grassmannians on an n-dimensional manifold.

In the present paper we introduce an another notion of a grassmannian
of higher order in the case of a projective space which is in the natural
way a homogeneous space. It is well-known that many interesting geometric
structures can be obtained as structures locally modeled on homogeneous
spaces. Interesting general approach to the Cartan geometries is developed
in the book by R. W. Sharpe [Sh]. From the other hand T. Morimoto in
his important paper [Mor| suggested the general universal procedure based
on the theory of filtered manifolds and gave the general criterion to con-
struct a Cartan connection associated with a geometric structure. However,
we don’t apply here his general method but we present a concrete example
which is a good geometrical case in which we can construct a normal Cartan
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connection by direct calculations without relying on a rather big machinery.
The detailed analysis of our particular case leads to deeper geometric re-
sults concerning the almost tangent structures. Other important geometric
structures investigated with the use of Cartan connections can be found in
[KN1], [Og], [Mil], [Mi2], [Dh], [Moz2], [Ta}, [Och], [Ya.

For the additional informations concerning the considered subject see
[AG1], [AG2], [AG3], [Go], [Moz1], [Sz3], [MM], [Ru].

For the basic notions and notations in the jet theory see the book by 1.
Kolaf, P. Michor, J. Slovdk [KMS].

1. The projective space of first order
Let T2(R™*1) = Reg3(R!,R**!)y, where Regi(R!, R**1)y denotes the
set of all regular jets of second order of mappings R! — R"*! of the
source and target at 0. The manifold T2(R"*1) is called a Stiefel manifold
of 1-frames of second order on R"*! at 0. Note that the Stiefel manifold of
1-frames of first order is an ordinary Stiefel manifold (cf. [Sz2]).
Let G = {(a,b) : a,b € R,a # 0} be a group with the following multipli-
cation rule
(a,b) - (¢,d) = (ac,ad + bc).
The action of the group G on T#(R™*!) is given by
(:iy g) ) ((l, b) = (aia ay + bj)’
where (Z,7) are the coordinates of the jet j2f € T%(R"*!). We then set
P! = T2(R"*1)/G and call this space the projective space of first order.
On the other hand we consider a matrix group

G={(4,B): AcGL(n+1),B e M(n+1)},

where M (n + 1) denotes the set of all (n + 1) x (n + 1) real matrices and a
multiplication is defined as follows

(4,B) - (C,D) = (AC, BC + AD).

The group G is isomorphic to the subgroup of the group GL(2n + 2) of
matrices of the form

A B

[0 Al

where det A # 0. The group G acts on T#(R"*!) by the formula
It is easy to see that this action factorises to the action on P.

Let’s introduce the inhomogeneous coordinates on P{'. Let (Z,§) €
T2(R**!) and (%,9) = (2%,7%), where o, 8 = 0,...n. If 2° # 0 then we
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~0

set a = &,b= ——@%F and we get
Ii:i ‘,ing _ yO:L.z
~a y « ~a la =0’ 0) — 7=on2 |
@) =@ = (1.5 @t
where i = 1,...,n. We call ¢ = i:;, yi = % I P°F the inhomogeneous
coordinate system of Pl. Note that the elements (A, B) and (a4, bA + aB),
a # 0in G induces the same transformation of P{*. Identifying such elements

we get a group LL. Now, we can define the inhomogeneous coordinates in
PBr. If A # 0 then

wo-usey- (|1 B, 0 R
A B) = (A%, B%) = . 9 . ) o )
’ BB A? Al ’ 0npi_ RO 4t A0pBi_BO 4l
g sm
We set

AO . Ai ) Ai'

a; = —g,a’ O,a; = —7,

A Ao Ap
oo AEO =BT QD3 5Oy B - B,

(43)2 (AD)2 (AD)2

We call the above the inhomogeneous coordinate system in the neighborhood
of the identity of B} defined by A # 0. The induced action of B} on PP in
terms of the introduced inhomogeneous coordinate system is given by the
following formulas

1 a 0 b (2, ) at + ajmj
a’l ’I,. ) bl bl. H T ’y 1 + G,JIJ ?

bt + b’:z:-’ +a’ y’ —aja'y? + (a;b} — alb;)zizk + (akaJ — ajal)zky’
(1+a;z7)? ‘

2. The Maurer-Cartan equations
We are going to derive the structure equations of G. The identity of G
is given by (I,0) and
(A,B)™' = (A71,-A71BA™Y).
If we set
(@,7) = (4,B)7" (d4,dB)
then
w=A"'dA, f=A"1dB - A"1BA'dA.

From the above formula we get
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LEMMA 2.1. (the structure equations of G). If (©,7) = (wg,ﬁg), a,f =
0,...,n then

(2.1) dog = —wy, Awg
(2.2) dng = —wg Nijg — 7, Nag.
We shall find the structure equations of P7. Let w*,w, wj, 7%, n%,7; be

the left invariant 1-forms on ‘BT such that

W' = da?, w; = daj., w; = da;,
n' = db’, n; = db;, n; = db;

at the identity. From the definition of the inhomogeneous coordinates in PB7
we have at the identity

W' =dat = dAS, w; = da§ = dA; - 6;dA8, wj =da; = dA?,
' = db' = dBj, n; = db} = dB} — 6:dB), n; = db; = db).
Hence we have

THEOREM 2.1. The Maurer-Cartan equations of T are

dw' = —w} A W',

dw; = —w' Awj —wz/\w;--i-(%wt/\wt,
_ t

dw; = —wy A wj,

(2.3) . . .
dn' = w' Ay +0' Aw,
dn;.—_-—wi/\nj—ni/\wj+6§77t/\wt—wZAn§—nz/\w;-,
dn; =—77t/\w;—wt/\n;.

3. Cartan t-projective connections

Let M be a manifold, dim M = 2n. We consider a principal fiber bundle
P over M with a structure group H - the isotropy group of (0,...,0) with
the a Cartan connection w with values in the Lie algebra p} of ‘BT. With
respect to the natural basis in the Lie algebra p7 the form w is given by the
set of 1-forms

_ i i PR ,
W= (w awj7w]7n 777_7')7]]) :

Such connection will be called a Cartan t-projective connection. The
structure equations of the Cartan t-projective connection w are given by
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b = —wi At O,
dw;- = —w' Awj — W} /\w; +6;~wt AWt +Q§,
(3.1) dw; = —w; A w§~ +Q;,
' dn' =Wt Ani + 1t Awp + HY,
dn; = ~w' An; —n' Awj +8m Aw' — W} /\17; -—ni/\w; + H;,
dnj = —me Al —we Amj + Hj.

For the sake of simplicity we shall take these equations as a defini-
tion of the 2-forms Qi,Qj.,Qj,H ‘,H;,H;. Each element A of the Lie al-
gebra h of H induces on P a vector field A*. With each element (£,7v) =
(€L,...,6" 4, ...,7") € R*™ we can associate a unique vector field D(¢,~)
on P with the following properties:

W'(DEM) =€, wi(D(E)=0, wi(DE)=0,
n'(D(E,7) =", D7) =0, n;(D(En))=0.
By a lengthy but straightforward calculations we obtain
LEMMA 3.1.
[A*, D(&,7)] = D(AE, Ay + BE) — (a + a€l,0,va + Eb+ bEI + avI,0).
With this preparation we are now in the position to state
THEOREM 3.2.

A 1_. 1.,
Q= KL wF AW+ -é-L}clwk At 4+ ZMin* At

2 2
P S T TR T (PR
1 1 1

Q; = 5 jklwk Awt + Eme" Ant+ §Mjkl77k A’
1
2

I I P A B S
W Aw +§ij,w Am +'2‘Bjkl"7 An

(3.2) 1 L.
H = —2—N,Z,wk Ao+ §G}c,w’° At +

Hj = s N;

Bin* Aq'

1 1 1
H; = ENjklwk Aw + Eijlwk At + 5Bjkl77k A

We shall consider the situation whether we can find a Cartan connection
in P when the forms w*,w}, n*,n; are given a priori.

THEOREM 3.3. Suppose that on P are given the forms w',w;,n',n; with
values in the Lie algebra pT of ‘PT satisfying the following conditions:
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(1) for each A€ h, A= (A%, a5, B}, b;)
w'(A*) = 0,wi(A*) = A%, n(A*) = 0,n}(A*) = B;
(2) R;(‘t‘)iaw;"’nia.n;') = ada—l(wi,“);,ni,’?;) forae H
(3) f w(X) =n*(X)=0,i=1,...,n then X is tangent to a fibre
(4) dw® = —w§ Awl, dpt = —n} Aw? —wj- Al

Then there exists a unique Cartan connection (w?, wj,wj,ni, 17;-,7]]-) such that

Zkaz = O»ZK;u = OaZL::kl = O,ZLj'u =0
Z = OaZN;il = O,ZG::M = O,ZGiu =0.

Proof. The following Cartan-Laptev lemma plays an essential role in our
proof.

LEMMA 3.2. (cf. [Szl]). Suppose that we have a system of p-forms ©,, v =

1,...n and a system of n linearly independent I-forms o¥. If the identity

Yy Ao¥ =0 holds then there exists a system of forms Z,, such that we have
thy = Ep'y Na¥,

E,y being of degree p — 1 and being symmetric.

Differentiating the formulas (4) and using the Cartan-Laptev lemma we
obtain that the forms Q; and H; do not involve the terms of the form
n* A n*. We shall study the relationship between two Cartan connections
w = (W, Wk wy, ', m5, 1), @ = (W, Wk, @5, 1, 7%, 77;). We can write

wj —w; = Ajkwk - Bjknk
Ny —1Nj = Cjkwk + Djk’nk.
Reasoning similarly as in [KN1] and {Og] we get the theorem. m

Applying the exterior differentiation to the structure equations we obtain
THEOREM 3.4. Let P be a principal fibre bundle over M with the group H as
a structure group. If (wi,w;-,wj, ni,n;, n;) is a Cartan connection satisfying
the conditions of Theorem 3.2 then

(1) B ALt=0

(2) wi A Qi =0

B) W AH +7t A =0

(4) ’I’]i/\Qi-l-wi/\Hi =0.

If Qi =0, H; =0 and dim M > 6 then Q; = H; = 0.
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4. t-projective structures

We consider now the isotropy group H of the point (0,...,0). Then
a' = b* = 0 and an element

1 a; 0 b
@) (o &)-Lo &))<
0 a} 0 ]
acts on P} as a fractional transformation
(42) (=y) e
aie?  bial + aly? + (a;b) — aibr)aiz® + (aral — aja})zFy
1+a;z7’ (1 + a;z9)° '
Let f: R?®» — R2",

f(z,9) = (fi(z,v), f(=.9)),
i =1+ n, be a smooth mapping such that f(0) = 0. We put

fi 8f’ _of L _or
=350 fi=550, fi=35

Then the second order jet of f has the following coordinates

(0), ... etc

i 1 1 o1 gt i 1 1 7 1
( JrIGrd gk Jik 5E7 Jjkr Ik f]l_c) .
We associate to each element (4.1) of H the second order jet of the fractional
transformation (4.2). We get a mapping

i 1 i i
(a'na bhb_-,) (a' O,b], Qj, —Q;0r — Giaj,

0,0, —bja.,c — bia; — a}bk — akb;, —ajal — aka;-, 0).
Let P2(M) denotes the bundle of the second order frames over M,
dim M = 2n with the structure group G%,. We then have

THEOREM 4.1. For each element a € H let f be the fractional transformation
(4.2). Then a mapping a — j2f is an isomorphism of H onto its image in
G2, which shall be also denoted by H.

DEFINITION 4.1. A subbundle P of P?(M) with the structure group H will
be called a t-projective structure on M.

Consider the canonical form T = (T, T3),a,8=1,2,...,2n 0n L2(M).
Let
J

= (@, ¢), Tg= hj=1...,n, i=i+n, j=j+n.
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If we restrict the canonical form T to the subbundle with the structure group

H we obtain _
e % ]
% 9
We shall prove

THEOREM 4.2. For each t-projective structure on M there is a unique t-
projective connection w = (w’,w},wj,n’,n;-,nj) such that

(4.3) wt =9, 17i = 19i, w; = 19;-, 1]; = 19;-
and
(4.4) dw' = ——w; AW, dnt = —17} Aw? — w; AP

(45) Y Qi=0, Y Hi=0, Y Kiy=0, ) Nj=0.

Proof. Since

k= (2) " dag — (25) lag,da”
then d¥. cannot involve the terms of the form w* A %! and #* A 5'. This
means that L, = M}, = 0. Using the local expression of ¥} we show that
Gl = Bjyy = 0. Let j3 f corresponds to a € H under the isomorphism of

J
Theorem 4.1. It easy to see that ad (a™!) and ad (j2f~!) coincide. Then

from Theorem 3.2 we get the theorem. m

DEFINITION 4.2. The unique t-projective connection for P given by the
above theorem we call the normal t-projective connection.

5. Linear connections and t-projective connections
Let us consider the isotropy group

n=([5 315 e]) ==

(via the isomorphism from theorem 4.1) and let

Gy = {[g 2] . A€ GL(n),B € M(n)}

N {([g 91] ’ [8 8]) ‘AEGL(n)’BGM(n)} C H.

Let P be a t-projective structure on M. The natural projection of P?(M)
onto P(M) restricted to P gives a subbundle P; C P(M). In this way we
obtain a Gi-structure on M which is known as an almost tangent structure
[CG). Then there exists a (1, 1)-tensor F such that F2 = 0. From now on we
suppose that this structure is integrable ([CG]). It follows that there exists
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an atlas with respect to which the components of F' are constant functions.
A linear connection V in L'(M) is adapted to Gy-structure iff VF = 0. Let
¢ be the transition function of P;. Then

(5.1) Ff(pngggog, o, B,y=1,...,2n.
Differentiating (5.1) we obtain
Flos = F5ols

The functions {¢3,¢g,} fulfill the cocycle condition. Then there exists a
bundle PZ(M) determined by these functions.

THEOREM 5.1.

(1) The cross sections M — PZ(M)/G; are in one-to-one correspon-
dence with the connections adapted to almost tangent structure F.

(2) The cross sections M — P2(M)/H are in one-to-one correspondence
with the t-projective structures of M.

Proof. Let (2% u§,uj,) be the coordinates of PZ(M). On PE(M)/G;1 we
introduce the coordinates (2, z§,) given by

¥ =z

-1 -1
28y =ug, (ug) (uh) .

Then the cross section I' : M — P3(M)/G, is given locally by a set of
functions

zg, = —I'5,, where I'z, =TIJ5.
It easy to see that I'j, behave under the change of coordinate system as the

coefficients of a linear connection. Obviously we have VF = 0.
The second assertion is evident. m

Composing T" with a projection P4(M)/G, — Pi(M)/H we get a t-
projective structure (integrable).

DEFINITION 5.1. A linear connection I' adapted to an integrable almost
tangent structure is said to belong to t-projective structure P if T induces
P in the manner described above. We say that two such connections are
t-projectively related if they belong to the same t-projective structure.

From the action of H on P2(M) it follows that connections T, T are
t-projectively related if
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B i i i
Sk = Do — O5ak — 6a5,
N i

[% =0=T%,

T T

i =0=Tl,

% =Tl + 65by + 65b; — 6lar ~ dLaj,

f‘;k = I"z—.k - 6;ak — 6iaj,

[, =0=T%.

LetT': M — PZ(M)/G; be an adapted linear connection. Then we have

a reduction of L?(M) to subbundle with a structure group G;. This gives
an isomorphism v : P; — P2(M).

THEOREM 5.2. Let ' be an adapted linear connection and v : P — P2(M)
the above isomorphism. Let (T, T§') be the canonical form on PL(M). Then
v*(T*) is a canonical form on Py and v*(T§) is an adapted connection to
an almost tangent structure.

The forms Q%, H? given by (3.1) define a certain tensor on M depending
only on the t-projective structure P. This tensor is called the t-projective
Weyl tensor.

6. Natural frames and coefficients of t-projective connections

Let P be a t-projective structure on M and U be a coordinate neigh-
borhood in M with a local coordinate system (z!,...,z™,y%,...,y"). let
o : U — P be a cross section and let U x H =~ Py be the isomorphism
induced by o. Let (a%, a;, b}, b;) be the local coordinate system in H. Then

we may take (zi,yi,aj-,ai,b;,bi) as a local coordinate system in Py. Let

(wi,wj-,wj, nt, n;, 7;) be the normal t-projective connection in P. Let us put
Pt = 0" (w') = Midz”,
Y = 0*(w}) = Myda",
P; = 0*(w;) = Oy;dx* + My, dy*,
¢' = o™ (n') = Ejdz® + Ejdy",
¢; = o*(n}) = Ej,da”,
¢; = o*(n;) = Exjdz" + Ex;dy".
Then after the tedious but simple calculations we have

w' =(a}) 7",

k

i __ i i i\—1k 1 1
CUJ —aJ +w aj+(ak) 'l/)l a«j +6jakw s

(6.1)
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wj =a; — a,kw;c + ajakwk + 1/)ka§,
' =(a;)"¢? - (a i)“lbswp
nj =(a}) "M °b; + (ad) TMpbf + (a5) THdPas — (ag) Tib5(af) T a+
+ (ap) T 9E; — (af)” lbs(ak)‘liﬁsz-—as( a;) 7§78~
(6.2) = bs(ap) T 9PE} + as(ap) THBE(aR) TS + arlal) "My (ai) OG-
= ay(ag) 71" (a}) "M (aB) U] + 65,
i = — ay(al) T P%b; + ] — ar(al) TIYSHY — as(a)) T gPa,—
bs(a p) 1¢pa1+as( ) lbf(ak)—ll/)kaj‘*'d’zb;_%(ap) 1¢}z,b;_
— by(ap) TMEbT + as(ap) TUBR(af) T PLE; + ar(ag) TMyoh—
— ay(al) " P ar(ar) 710} — ar(ay) T MYobe(al) TI0S+
at(af) " Y ar(ap) T bh(ad) TI0F + B;.

i i , .
where (aj, oy, BJ-, B;) is the canonical form on H.

THEOREM 6.1. Let P be a t-projective structure on M and (w',w J,wj,ni,
nj,n]) the normal t-projective connection. Let U be a coordinate neighbor-

hood in M with local coordinate system (z*,y'). Then there exists a unique
local cross section o : U — P such that

o*(w') =dz’, o*(n') = dy’,
Yot =0, Yot)=0.
If we set for such a o
0*(w§) = }'cjd:ck, o*(w;) = Mg dz® + My ;dy*,
a*(n;.) = E};jdzk, 0*(n;) = Exjdz"® + Eg;dy*
then
ij = Hék, O = Mok, e =0, Ziy =S, Mok = Ege.

Proof. Let & be a cross section such that 6*(w?) = dzt, 6*(7') = dy*. In
terms of the local coordinate system (u*,ug,u3,) in P the cross section &
is given by

u® = (z',1"),
ug = 6;,
uﬂ‘v Fﬂ‘w

where Ff,‘,y is a function of z*,y*. We take o as the cross section given by
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a* = (z',y"),

g = 05,
Ugy = —15y,
where
i . 1 .
G =T — oy 15; mé;crjza
I, =0,
#*=0
(6.3) i i 1 o 1
Iy =T — —+—15j i n—_ﬁlskrﬁ,
, ‘ 1
= =0.
It easy to see that thls cross section is a unique one with the desired prop-
erties.
The remaining assertions follows easily from the facts that Q' = 0,

H=0Y2=0YH =0 u
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