

Andrzej Miernowski, Witold Mozgawa

GEOMETRY OF t -PROJECTIVE STRUCTURES

Abstract. The main purpose of this paper is to define and study t -projective structure on even dimensional manifold M as a certain reduction of the second order frame bundle over M . This t -structure reveals some similarities to the projective structures of Kobayashi-Nagano [KN1] but it is a completely different one. The structure group is the isotropy group of the tangent bundle of the projective space. With the t -structure we associate in a natural way the so called normal Cartan connection and we investigate its properties. We show that t -structures are closely related the almost tangent structures on M . Finally, we consider the natural cross sections and we derive the coefficients of the normal connection of a t -projective structure.

0. Introduction

Grassmannians of higher order appeared for the first time in a paper [Sz2] in the context of the Cartan method of moving frames. Recently, A. Szybiak has given in [Sz3] an explicit formula for the infinitesimal action of the second order jet group in dimension n on the standard fiber of the bundle of second order grassmannians on an n -dimensional manifold.

In the present paper we introduce an another notion of a grassmannian of higher order in the case of a projective space which is in the natural way a homogeneous space. It is well-known that many interesting geometric structures can be obtained as structures locally modeled on homogeneous spaces. Interesting general approach to the Cartan geometries is developed in the book by R. W. Sharpe [Sh]. From the other hand T. Morimoto in his important paper [Mor] suggested the general universal procedure based on the theory of filtered manifolds and gave the general criterion to construct a Cartan connection associated with a geometric structure. However, we don't apply here his general method but we present a concrete example which is a good geometrical case in which we can construct a normal Cartan

1991 *Mathematics Subject Classification*: 53C10, 53C15.

Key words and phrases: Cartan connection, frame bundle of second order, projective space, almost tangent structure.

connection by direct calculations without relying on a rather big machinery. The detailed analysis of our particular case leads to deeper geometric results concerning the almost tangent structures. Other important geometric structures investigated with the use of Cartan connections can be found in [KN1], [Og], [Mi1], [Mi2], [Dh], [Moz2], [Ta], [Och], [Ya].

For the additional informations concerning the considered subject see [AG1], [AG2], [AG3], [Go], [Moz1], [Sz3], [MM], [Ru].

For the basic notions and notations in the jet theory see the book by I. Kolař, P. Michor, J. Slovák [KMS].

1. The projective space of first order

Let $T_1^2(\mathbb{R}^{n+1}) = \text{Reg}_0^2(\mathbb{R}^1, \mathbb{R}^{n+1})_0$, where $\text{Reg}_0^2(\mathbb{R}^1, \mathbb{R}^{n+1})_0$ denotes the set of all regular jets of second order of mappings $\mathbb{R}^1 \rightarrow \mathbb{R}^{n+1}$ of the source and target at 0. The manifold $T_1^2(\mathbb{R}^{n+1})$ is called a Stiefel manifold of 1-frames of second order on \mathbb{R}^{n+1} at 0. Note that the Stiefel manifold of 1-frames of first order is an ordinary Stiefel manifold (cf. [Sz2]).

Let $G = \{(a, b) : a, b \in \mathbb{R}, a \neq 0\}$ be a group with the following multiplication rule

$$(a, b) \cdot (c, d) = (ac, ad + bc).$$

The action of the group G on $T_1^2(\mathbb{R}^{n+1})$ is given by

$$(\tilde{x}, \tilde{y}) \cdot (a, b) = (a\tilde{x}, a\tilde{y} + b\tilde{x}),$$

where (\tilde{x}, \tilde{y}) are the coordinates of the jet $j_0^2 f \in T_1^2(\mathbb{R}^{n+1})$. We then set $P_1^n = T_1^2(\mathbb{R}^{n+1})/G$ and call this space the projective space of first order.

On the other hand we consider a matrix group

$$\mathbb{G} = \{(A, B) : A \in \text{GL}(n+1), B \in M(n+1)\},$$

where $M(n+1)$ denotes the set of all $(n+1) \times (n+1)$ real matrices and a multiplication is defined as follows

$$(A, B) \cdot (C, D) = (AC, BC + AD).$$

The group \mathbb{G} is isomorphic to the subgroup of the group $\text{GL}(2n+2)$ of matrices of the form

$$\begin{bmatrix} A & B \\ 0 & A \end{bmatrix},$$

where $\det A \neq 0$. The group \mathbb{G} acts on $T_1^2(\mathbb{R}^{n+1})$ by the formula

$$(A, B) \cdot (\tilde{x}, \tilde{y}) = (A\tilde{x}, A\tilde{y} + B\tilde{x}).$$

It is easy to see that this action factorises to the action on P_1^n .

Let's introduce the inhomogeneous coordinates on P_1^n . Let $(\tilde{x}, \tilde{y}) \in T_1^2(\mathbb{R}^{n+1})$ and $(\tilde{x}, \tilde{y}) = (\tilde{x}^\alpha, \tilde{y}^\alpha)$, where $\alpha, \beta = 0, \dots, n$. If $\tilde{x}^0 \neq 0$ then we

set $a = \frac{1}{\tilde{x}^0}$, $b = -\frac{\tilde{y}^0}{(\tilde{x}^0)^2}$ and we get

$$(\tilde{x}, \tilde{y}) = (\tilde{x}^\alpha, \tilde{y}^\alpha) = \left(1, \frac{\tilde{x}^i}{\tilde{x}^0}, 0, \frac{\tilde{x}^0 \tilde{y}^i - \tilde{y}^0 \tilde{x}^i}{(\tilde{x}^0)^2} \right),$$

where $i = 1, \dots, n$. We call $x^i = \frac{\tilde{x}^i}{\tilde{x}^0}$, $y^i = \frac{\tilde{x}^0 \tilde{y}^i - \tilde{y}^0 \tilde{x}^i}{(\tilde{x}^0)^2}$ the inhomogeneous coordinate system of P_1^n . Note that the elements (A, B) and $(aA, bA + aB)$, $a \neq 0$ in \mathbb{G} induces the same transformation of P_1^n . Identifying such elements we get a group \mathfrak{P}_1^n . Now, we can define the inhomogeneous coordinates in \mathfrak{P}_1^n . If $A_0^0 \neq 0$ then

$$(A, B) = (A_\beta^\alpha, B_\beta^\alpha) = \left(\begin{bmatrix} 1 & \frac{A_0^0}{A_0^i} \\ \frac{A_0^i}{A_0^0} & \frac{A_0^i}{A_0^0} \end{bmatrix}, \begin{bmatrix} 0 & \frac{A_0^0 B_j^0 - B_0^0 A_j^0}{(A_0^0)^2} \\ \frac{A_0^0 B_0^i - B_0^0 A_0^i}{(A_0^0)^2} & \frac{A_0^0 B_j^i - B_0^0 A_j^i}{(A_0^0)^2} \end{bmatrix} \right).$$

We set

$$\begin{aligned} a_i &= \frac{A_i^0}{A_0^0}, a^i = \frac{A_0^i}{A_0^0}, a_j^i = \frac{A_j^i}{A_0^0}, \\ b_i &= \frac{A_0^0 B_i^0 - B_0^0 A_i^0}{(A_0^0)^2}, b^i = \frac{A_0^0 B_0^i - B_0^0 A_0^i}{(A_0^0)^2}, b_j^i = \frac{A_0^0 B_j^i - B_0^0 A_j^i}{(A_0^0)^2}. \end{aligned}$$

We call the above the inhomogeneous coordinate system in the neighborhood of the identity of \mathfrak{P}_1^n defined by $A_0^0 \neq 0$. The induced action of \mathfrak{P}_1^n on P_1^n in terms of the introduced inhomogeneous coordinate system is given by the following formulas

$$\left(\left(\begin{bmatrix} 1 & a_i \\ a^i & a_j^i \end{bmatrix}, \begin{bmatrix} 0 & b_i \\ b^i & b_j^i \end{bmatrix} \right), (x^i, y^i) \right) \mapsto \left(\frac{a^i + a_j^i x^j}{1 + a_j x^j}, \frac{b^i + b_j^i x^j + a_j^i y^j - a_j a^i y^j + (a_j b_k^i - a_k^i b_j) x^j x^k + (a_k a_j^i - a_j a_k^i) x^k y^j}{(1 + a_j x^j)^2} \right).$$

2. The Maurer-Cartan equations

We are going to derive the structure equations of \mathbb{G} . The identity of \mathbb{G} is given by $(I, 0)$ and

$$(A, B)^{-1} = (A^{-1}, -A^{-1} B A^{-1}).$$

If we set

$$(\bar{\omega}, \bar{\eta}) = (A, B)^{-1} (dA, dB)$$

then

$$\bar{\omega} = A^{-1} dA, \quad \bar{\eta} = A^{-1} dB - A^{-1} B A^{-1} dA.$$

From the above formula we get

LEMMA 2.1. (the structure equations of \mathbb{G}). If $(\bar{\omega}, \bar{\eta}) = (\bar{\omega}_\beta^\alpha, \bar{\eta}_\beta^\alpha)$, $\alpha, \beta = 0, \dots, n$ then

$$(2.1) \quad d\bar{\omega}_\beta^\alpha = -\bar{\omega}_\mu^\alpha \wedge \bar{\omega}_\beta^\mu$$

$$(2.2) \quad d\bar{\eta}_\beta^\alpha = -\bar{\omega}_\mu^\alpha \wedge \bar{\eta}_\beta^\mu - \bar{\eta}_\mu^\alpha \wedge \bar{\omega}_\beta^\mu.$$

We shall find the structure equations of \mathfrak{P}_1^n . Let $\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j$ be the left invariant 1-forms on \mathfrak{P}_1^n such that

$$\begin{aligned} \omega^i &= da^i, & \omega_j^i &= da_j^i, & \omega_j &= da_j, \\ \eta^i &= db^i, & \eta_j^i &= db_j^i, & \eta_j &= db_j \end{aligned}$$

at the identity. From the definition of the inhomogeneous coordinates in \mathfrak{P}_1^n we have at the identity

$$\begin{aligned} \omega^i &= da^i = dA_0^i, & \omega_j^i &= da_j^i = dA_j^i - \delta_j^i dA_0^0, & \omega_j &= da_j = dA_j^0, \\ \eta^i &= db^i = dB_0^i, & \eta_j^i &= db_j^i = dB_j^i - \delta_j^i dB_0^0, & \eta_j &= db_j = dB_j^0. \end{aligned}$$

Hence we have

THEOREM 2.1. *The Maurer-Cartan equations of \mathfrak{P}_1^n are*

$$\begin{aligned} (2.3) \quad d\omega^i &= -\omega_t^i \wedge \omega^t, \\ d\omega_j^i &= -\omega^i \wedge \omega_j - \omega_t^i \wedge \omega_j^t + \delta_j^i \omega_t \wedge \omega^t, \\ d\omega_j &= -\omega_t \wedge \omega_j^t, \\ d\eta^i &= \omega^t \wedge \eta_t^i + \eta^t \wedge \omega_t^i, \\ d\eta_j^i &= -\omega^i \wedge \eta_j - \eta^i \wedge \omega_j + \delta_j^i \eta_t \wedge \omega^t - \omega_t^i \wedge \eta_j^t - \eta_t^i \wedge \omega_j^t, \\ d\eta_j &= -\eta_t \wedge \omega_j^t - \omega_t \wedge \eta_j^t. \end{aligned}$$

3. Cartan t-projective connections

Let M be a manifold, $\dim M = 2n$. We consider a principal fiber bundle P over M with a structure group H - the isotropy group of $(0, \dots, 0)$ with the a Cartan connection ω with values in the Lie algebra \mathfrak{p}_1^n of \mathfrak{P}_1^n . With respect to the natural basis in the Lie algebra \mathfrak{p}_1^n the form ω is given by the set of 1-forms

$$\omega = (\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j).$$

Such connection will be called a Cartan t-projective connection. The structure equations of the Cartan t-projective connection ω are given by

$$\begin{aligned}
d\omega^i &= -\omega_t^i \wedge \omega^t + \Omega^i, \\
d\omega_j^i &= -\omega^i \wedge \omega_j - \omega_t^i \wedge \omega_j^t + \delta_j^i \omega_t \wedge \omega^t + \Omega_j^i, \\
d\omega_j &= -\omega_t \wedge \omega_j^t + \Omega_j, \\
(3.1) \quad d\eta^i &= \omega^t \wedge \eta_t^i + \eta^t \wedge \omega_t^i + H^i, \\
d\eta_j^i &= -\omega^i \wedge \eta_j - \eta^i \wedge \omega_j + \delta_j^i \eta_t \wedge \omega^t - \omega_t^i \wedge \eta_j^t - \eta_t^i \wedge \omega_j^t + H_j^i, \\
d\eta_j &= -\eta_t \wedge \omega_j^t - \omega_t \wedge \eta_j^t + H_j.
\end{aligned}$$

For the sake of simplicity we shall take these equations as a definition of the 2-forms $\Omega^i, \Omega_j^i, \Omega_j, H^i, H_j^i, H_j$. Each element \tilde{A} of the Lie algebra h of H induces on P a vector field A^* . With each element $(\xi, \gamma) = (\xi^1, \dots, \xi^n, \gamma^1, \dots, \gamma^n) \in \mathbb{R}^{2n}$ we can associate a unique vector field $D(\xi, \gamma)$ on P with the following properties:

$$\begin{aligned}
\omega^i(D(\xi, \gamma)) &= \xi^i, & \omega_j^i(D(\xi, \gamma)) &= 0, & \omega_j(D(\xi, \gamma)) &= 0, \\
\eta^i(D(\xi, \gamma)) &= \gamma^i, & \eta_j^i(D(\xi, \gamma)) &= 0, & \eta_j(D(\xi, \gamma)) &= 0.
\end{aligned}$$

By a lengthy but straightforward calculations we obtain

LEMMA 3.1.

$$[A^*, D(\xi, \gamma)] = D(A\xi, A\gamma + B\xi) - (\xi a + a\xi I, 0, \gamma a + \xi b + b\xi I + a\gamma I, 0).$$

With this preparation we are now in the position to state

THEOREM 3.2.

$$\begin{aligned}
\Omega^i &= \frac{1}{2} K_{kl}^i \omega^k \wedge \omega^l + \frac{1}{2} L_{kl}^i \omega^k \wedge \eta^l + \frac{1}{2} M_{kl}^i \eta^k \wedge \eta^l \\
\Omega_j^i &= \frac{1}{2} K_{jkl}^i \omega^k \wedge \omega^l + \frac{1}{2} L_{jkl}^i \omega^k \wedge \eta^l + \frac{1}{2} M_{jkl}^i \eta^k \wedge \eta^l \\
\Omega_j &= \frac{1}{2} K_{jkl} \omega^k \wedge \omega^l + \frac{1}{2} L_{jkl} \omega^k \wedge \eta^l + \frac{1}{2} M_{jkl} \eta^k \wedge \eta^l \\
(3.2) \quad H^i &= \frac{1}{2} N_{kl}^i \omega^k \wedge \omega^l + \frac{1}{2} G_{kl}^i \omega^k \wedge \eta^l + \frac{1}{2} B_{kl}^i \eta^k \wedge \eta^l \\
H_j^i &= \frac{1}{2} N_{jkl}^i \omega^k \wedge \omega^l + \frac{1}{2} G_{jkl}^i \omega^k \wedge \eta^l + \frac{1}{2} B_{jkl}^i \eta^k \wedge \eta^l \\
H_j &= \frac{1}{2} N_{jkl} \omega^k \wedge \omega^l + \frac{1}{2} G_{jkl} \omega^k \wedge \eta^l + \frac{1}{2} B_{jkl} \eta^k \wedge \eta^l.
\end{aligned}$$

We shall consider the situation whether we can find a Cartan connection in P when the forms $\omega^i, \omega_j^i, \eta^i, \eta_j^i$ are given a priori.

THEOREM 3.3. Suppose that on P are given the forms $\omega^i, \omega_j^i, \eta^i, \eta_j^i$ with values in the Lie algebra \mathfrak{p}_1^n of \mathfrak{P}_1^n satisfying the following conditions:

(1) for each $\tilde{A} \in h$, $\tilde{A} = (A_j^i, a_j, B_j^i, b_j)$

$$\omega^i(A^*) = 0, \omega_j^i(A^*) = A_j^i, \eta(A^*) = 0, \eta_j^i(A^*) = B_j^i$$

(2) $R_a^*(\omega^i, \omega_j^i, \eta^i, \eta_j^i) = ad_{a^{-1}}(\omega^i, \omega_j^i, \eta^i, \eta_j^i)$ for $a \in H$

(3) if $\omega^i(X) = \eta^i(X) = 0$, $i = 1, \dots, n$ then X is tangent to a fibre

(4) $d\omega^i = -\omega_j^i \wedge \omega^j$, $d\eta^i = -\eta_j^i \wedge \omega^j - \omega_j^i \wedge \eta^j$.

Then there exists a unique Cartan connection $(\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j)$ such that

$$\sum_i K_{ikl}^i = 0, \sum_i K_{jil}^i = 0, \sum_i L_{ikl}^i = 0, \sum_i L_{jil}^i = 0$$

$$\sum_i N_{ikl}^i = 0, \sum_i N_{jil}^i = 0, \sum_i G_{ikl}^i = 0, \sum_i G_{jil}^i = 0.$$

Proof. The following Cartan–Laptev lemma plays an essential role in our proof.

LEMMA 3.2. (cf. [Sz1]). *Suppose that we have a system of p -forms ψ_ν , $\nu = 1, \dots, n$ and a system of n linearly independent 1-forms σ^ν . If the identity $\psi_\nu \wedge \sigma^\nu = 0$ holds then there exists a system of forms $\Xi_{\mu\gamma}$ such that we have*

$$\psi_\nu = \Xi_{\mu\gamma} \wedge \sigma^\nu,$$

$\Xi_{\mu\gamma}$ being of degree $p - 1$ and being symmetric.

Differentiating the formulas (4) and using the Cartan–Laptev lemma we obtain that the forms Ω_j^i and H_j^i do not involve the terms of the form $\eta^i \wedge \eta^k$. We shall study the relationship between two Cartan connections $\omega = (\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j)$, $\bar{\omega} = (\omega^i, \omega_j^i, \bar{\omega}_j, \eta^i, \eta_j^i, \bar{\eta}_j)$. We can write

$$\omega_j - \bar{\omega}_j = A_{jk}\omega^k - B_{jk}\eta^k$$

$$\eta_j - \bar{\eta}_j = C_{jk}\omega^k + D_{jk}\eta^k.$$

Reasoning similarly as in [KN1] and [Og] we get the theorem. ■

Applying the exterior differentiation to the structure equations we obtain

THEOREM 3.4. *Let P be a principal fibre bundle over M with the group H as a structure group. If $(\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j)$ is a Cartan connection satisfying the conditions of Theorem 3.2 then*

(1) $\Omega_t^i \wedge \omega^t = 0$

(2) $\omega^i \wedge \Omega_i = 0$

(3) $\omega^t \wedge H_t^i + \eta^t \wedge \Omega_t^i = 0$

(4) $\eta^i \wedge \Omega_i + \omega^i \wedge H_i = 0$.

If $\Omega_j^i = 0$, $H_j^i = 0$ and $\dim M \geq 6$ then $\Omega_j = H_j = 0$.

4. t-projective structures

We consider now the isotropy group H of the point $(0, \dots, 0)$. Then $a^i = b^i = 0$ and an element

$$(4.1) \quad \left(\begin{bmatrix} 1 & a_i \\ 0 & a_j^i \end{bmatrix}, \begin{bmatrix} 0 & b_i \\ 0 & b_j^i \end{bmatrix} \right) \in H$$

acts on P_n^1 as a fractional transformation

$$(4.2) \quad (x^i, y^i) \mapsto \left(\frac{a_j^i x^j}{1 + a_j x^j}, \frac{b_j^i x^j + a_j^i y^j + (a_j b_k^i - a_k^i b_j) x^j x^k + (a_k a_k^i - a_j a_k^i) x^k y^j}{(1 + a_j x^j)^2} \right).$$

Let $f : \mathbb{R}^{2n} \rightarrow \mathbb{R}^{2n}$,

$$f(x, y) = (f^i(x, y), f^{\bar{i}}(x, y)),$$

$\bar{i} = i + n$, be a smooth mapping such that $f(0) = 0$. We put

$$f_j^i = \frac{\partial f^i}{\partial x^j}(0), \quad f_j^{\bar{i}} = \frac{\partial f^{\bar{i}}}{\partial x^j}(0), \quad f_{\bar{j}}^i = \frac{\partial f^i}{\partial y^j}(0), \quad \dots \quad \text{etc.}$$

Then the second order jet of f has the following coordinates

$$\left(f_j^i, f_{\bar{j}}^i, f_j^{\bar{i}}, f_{\bar{j}}^{\bar{i}}, f_{jk}^i, f_{j\bar{k}}^i, f_{\bar{j}k}^i, f_{\bar{j}\bar{k}}^i, f_{\bar{j}\bar{k}}^{\bar{i}} \right).$$

We associate to each element (4.1) of H the second order jet of the fractional transformation (4.2). We get a mapping

$$\begin{aligned} (a_i, a_j^i, b_i, b_j^i) &\mapsto (a_j^i, 0, b_j^i, a_j^i, -a_j^i a_k - a_k^i a_j, \\ &\quad 0, 0, -b_j^i a_k - b_k^i a_j - a_j^i b_k - a_k^i b_j, -a_j a_k^i - a_k a_j^i, 0). \end{aligned}$$

Let $P^2(M)$ denotes the bundle of the second order frames over M , $\dim M = 2n$ with the structure group G_{2n}^2 . We then have

THEOREM 4.1. *For each element $a \in H$ let f be the fractional transformation (4.2). Then a mapping $a \mapsto j_0^2 f$ is an isomorphism of H onto its image in G_{2n}^2 which shall be also denoted by H .*

DEFINITION 4.1. A subbundle P of $P^2(M)$ with the structure group H will be called a t-projective structure on M .

Consider the canonical form $T = (T^\alpha, T_\beta^\alpha)$, $\alpha, \beta = 1, 2, \dots, 2n$ on $L^2(M)$. Let

$$T^\alpha = (\vartheta^i, \vartheta^{\bar{i}}), \quad T_\beta^\alpha = \begin{bmatrix} \vartheta_j^i & \vartheta_{\bar{j}}^i \\ \vartheta_{\bar{j}}^i & \vartheta_{\bar{j}}^{\bar{i}} \end{bmatrix} \quad i, j = 1, \dots, n, \quad \bar{i} = i + n, \quad \bar{j} = j + n.$$

If we restrict the canonical form T to the subbundle with the structure group H we obtain

$$T_{\beta}^{\alpha} = \begin{bmatrix} \vartheta_j^i & 0 \\ \vartheta_j^i & \vartheta_j^i \end{bmatrix}.$$

We shall prove

THEOREM 4.2. *For each t-projective structure on M there is a unique t-projective connection $\omega = (\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j)$ such that*

$$(4.3) \quad \omega^i = \vartheta^i, \quad \eta^i = \vartheta^i, \quad \omega_j^i = \vartheta_j^i, \quad \eta_j^i = \vartheta_j^i$$

and

$$(4.4) \quad d\omega^i = -\omega_j^i \wedge \omega^j, \quad d\eta^i = -\eta_j^i \wedge \omega^j - \omega_j^i \wedge \eta^j$$

$$(4.5) \quad \sum_i \Omega_i^i = 0, \quad \sum_i H_i^i = 0, \quad \sum_i K_{jil}^i = 0, \quad \sum_i N_{jil}^i = 0.$$

P r o o f. Since

$$\vartheta_k^i = (x_t^i)^{-1} dx_k^t - (x_j^i)^{-1} x_{pk}^j dx^p$$

then $d\vartheta_k^i$ cannot involve the terms of the form $\omega^k \wedge \eta^l$ and $\eta^k \wedge \eta^l$. This means that $L_{jkl}^i = M_{jkl}^i = 0$. Using the local expression of ϑ_k^i we show that $G_{jkl}^i = B_{jkl}^i = 0$. Let $j_0^2 f$ corresponds to $a \in H$ under the isomorphism of Theorem 4.1. It easy to see that $ad(a^{-1})$ and $ad(j_0^2 f^{-1})$ coincide. Then from Theorem 3.2 we get the theorem. ■

DEFINITION 4.2. The unique t-projective connection for P given by the above theorem we call the normal t-projective connection.

5. Linear connections and t-projective connections

Let us consider the isotropy group

$$H = \left(\begin{bmatrix} A & 0 \\ B & A \end{bmatrix}, \begin{bmatrix} C & 0 \\ D & C \end{bmatrix} \right) \subset L_{2n}^2$$

(via the isomorphism from theorem 4.1) and let

$$\begin{aligned} G_1 &= \left\{ \begin{bmatrix} A & 0 \\ B & A \end{bmatrix} : A \in \text{GL}(n), B \in \text{M}(n) \right\} \\ &= \left\{ \left(\begin{bmatrix} A & 0 \\ B & A \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right) : A \in \text{GL}(n), B \in \text{M}(n) \right\} \subset H. \end{aligned}$$

Let P be a t-projective structure on M . The natural projection of $P^2(M)$ onto $P^1(M)$ restricted to P gives a subbundle $P_1 \subset P^1(M)$. In this way we obtain a G_1 -structure on M which is known as an almost tangent structure [CG]. Then there exists a $(1, 1)$ -tensor F such that $F^2 = 0$. From now on we suppose that this structure is integrable ([CG]). It follows that there exists

an atlas with respect to which the components of F are constant functions. A linear connection ∇ in $L^1(M)$ is adapted to G_1 -structure iff $\nabla F = 0$. Let φ_β^α be the transition function of P_1 . Then

$$(5.1) \quad F_\gamma^\beta \varphi_\beta^\alpha = F_\beta^\alpha \varphi_\gamma^\beta, \quad \alpha, \beta, \gamma = 1, \dots, 2n.$$

Differentiating (5.1) we obtain

$$F_\gamma^\beta \varphi_{\beta\delta}^\alpha = F_\beta^\alpha \varphi_{\gamma\delta}^\beta.$$

The functions $\{\varphi_\beta^\alpha, \varphi_{\beta\gamma}^\alpha\}$ fulfill the cocycle condition. Then there exists a bundle $P_F^2(M)$ determined by these functions.

THEOREM 5.1.

- (1) *The cross sections $M \rightarrow P_F^2(M)/G_1$ are in one-to-one correspondence with the connections adapted to almost tangent structure F .*
- (2) *The cross sections $M \rightarrow P_F^2(M)/H$ are in one-to-one correspondence with the *t*-projective structures of M .*

P r o o f. Let $(x^\alpha, u_\beta^\alpha, u_{\beta\gamma}^\alpha)$ be the coordinates of $P_F^2(M)$. On $P_F^2(M)/G_1$ we introduce the coordinates $(z^\alpha, z_{\beta\gamma}^\alpha)$ given by

$$\begin{aligned} z^\alpha &= x^\alpha \\ z_{\beta\gamma}^\alpha &= u_{\delta\mu}^\alpha (u_\beta^\delta)^{-1} (u_\gamma^\mu)^{-1}. \end{aligned}$$

Then the cross section $\Gamma : M \rightarrow P_F^2(M)/G_1$ is given locally by a set of functions

$$z_{\beta\gamma}^\alpha = -\Gamma_{\beta\gamma}^\alpha, \quad \text{where} \quad \Gamma_{\beta\gamma}^\alpha = \Gamma_{\gamma\beta}^\alpha.$$

It is easy to see that $\Gamma_{\beta\gamma}^\alpha$ behave under the change of coordinate system as the coefficients of a linear connection. Obviously we have $\nabla F = 0$.

The second assertion is evident. ■

Composing Γ with a projection $P_F^2(M)/G_1 \rightarrow P_F^2(M)/H$ we get a *t*-projective structure (integrable).

DEFINITION 5.1. A linear connection Γ adapted to an integrable almost tangent structure is said to belong to *t*-projective structure P if Γ induces P in the manner described above. We say that two such connections are *t*-projectively related if they belong to the same *t*-projective structure.

From the action of H on $P_F^2(M)$ it follows that connections $\Gamma, \tilde{\Gamma}$ are *t*-projectively related if

$$\begin{aligned}
(5.2) \quad & \tilde{\Gamma}_{jk}^i = \Gamma_{jk}^i - \delta_j^i a_k - \delta_k^i a_j, \\
& \tilde{\Gamma}_{\bar{j}k}^i = 0 = \Gamma_{\bar{j}k}^i, \\
& \tilde{\Gamma}_{\bar{j}\bar{k}}^i = 0 = \Gamma_{\bar{j}\bar{k}}^i, \\
& \tilde{\Gamma}_{jk}^{\bar{i}} = \Gamma_{jk}^{\bar{i}} + \delta_j^i b_k + \delta_k^i b_j - \delta_j^i a_k - \delta_k^i a_j, \\
& \tilde{\Gamma}_{\bar{j}k}^{\bar{i}} = \Gamma_{\bar{j}k}^{\bar{i}} - \delta_j^i a_k - \delta_k^i a_j, \\
& \tilde{\Gamma}_{\bar{j}\bar{k}}^{\bar{i}} = 0 = \Gamma_{\bar{j}\bar{k}}^{\bar{i}}.
\end{aligned}$$

Let $\Gamma : M \rightarrow P_F^2(M)/G_1$ be an adapted linear connection. Then we have a reduction of $L^2(M)$ to subbundle with a structure group G_1 . This gives an isomorphism $\gamma : P_1 \rightarrow P_F^2(M)$.

THEOREM 5.2. *Let Γ be an adapted linear connection and $\gamma : P_1 \rightarrow P_F^2(M)$ the above isomorphism. Let $(T^\alpha, T_\beta^\alpha)$ be the canonical form on $P_F^2(M)$. Then $\gamma^*(T^\alpha)$ is a canonical form on P_1 and $\gamma^*(T_\beta^\alpha)$ is an adapted connection to an almost tangent structure.*

The forms Ω_j^i, H_j^i given by (3.1) define a certain tensor on M depending only on the t-projective structure P . This tensor is called the t-projective Weyl tensor.

6. Natural frames and coefficients of t-projective connections

Let P be a t-projective structure on M and U be a coordinate neighborhood in M with a local coordinate system $(x^1, \dots, x^n, y^1, \dots, y^n)$. Let $\sigma : U \rightarrow P$ be a cross section and let $U \times H \approx P|_U$ be the isomorphism induced by σ . Let (a_j^i, a_i, b_j^i, b_i) be the local coordinate system in H . Then we may take $(x^i, y^i, a_j^i, a_i, b_j^i, b_i)$ as a local coordinate system in $P|_U$. Let $(\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j)$ be the normal t-projective connection in P . Let us put

$$\begin{aligned}
(6.1) \quad & \psi^i = \sigma^*(\omega^i) = \Pi_k^i dx^k, \\
& \psi_l^i = \sigma^*(\omega_l^i) = \Pi_{kl}^i dx^k, \\
& \psi_j = \sigma^*(\omega_j) = \Pi_{kj} dx^k + \bar{\Pi}_{kj} dy^k, \\
& \phi^i = \sigma^*(\eta^i) = \Xi_k^i dx^k + \bar{\Xi}_k^i dy^k, \\
& \phi_j^i = \sigma^*(\eta_j^i) = \Xi_{kj}^i dx^k, \\
& \phi_j = \sigma^*(\eta_j) = \Xi_{kj} dx^k + \bar{\Xi}_{kj} dy^k.
\end{aligned}$$

Then after the tedious but simple calculations we have

$$\begin{aligned}
\omega^i &= (a_k^i)^{-1} \psi^k, \\
\omega_j^i &= \alpha_j^i + \omega^i a_j + (a_k^i)^{-1} \psi_l^k a_j^l + \delta_j^i a_k \omega^k,
\end{aligned}$$

$$\begin{aligned}
\omega_j &= \alpha_j - a_k \omega_j^k + a_j a_k \omega^k + \psi_k a_j^k, \\
\eta^i &= (a_p^i)^{-1} \phi^p - (a_s^i)^{-1} b_p^s \omega^p, \\
\eta_j^i &= (a_s^i)^{-1} \psi^s b_j + (a_s^i)^{-1} \psi_p^s b_p^p + (a_p^i)^{-1} \phi^p a_j - (a_s^i)^{-1} b_p^s (a_k^p)^{-1} \psi^k a_j + \\
&\quad + (a_p^i)^{-1} \phi_z^p b_j^z - (a_s^i)^{-1} b_p^s (a_k^p)^{-1} \psi_z^k b_j^z - a_s (a_p^s)^{-1} \phi^p \delta_j^i - \\
(6.2) \quad &- b_s (a_p^s)^{-1} \psi^p \delta_j^i + a_s (a_p^s)^{-1} b_r^p (a_k^r)^{-1} \psi^k \delta_j^i + a_t (a_s^t)^{-1} \psi^s (a_k^t)^{-1} b_j^k - \\
&- a_t (a_s^t)^{-1} \psi^s (a_k^t)^{-1} b_p^k (a_z^p)^{-1} b_j^z + \beta_j^i, \\
\eta_j &= - a_t (a_s^t)^{-1} \psi^s b_j + \psi_s b_j^s - a_t (a_s^t)^{-1} \psi_p^s b_p^p - a_s (a_p^s)^{-1} \phi^p a_j - \\
&- b_s (a_p^s)^{-1} \psi^p a_j + a_s (a_p^s)^{-1} b_r^p (a_k^r)^{-1} \psi^k a_j + \phi_z b_j^z - a_s (a_p^s)^{-1} \phi_z^p b_j^z - \\
&- b_s (a_p^s)^{-1} \psi_z^p b_j^z + a_s (a_p^s)^{-1} b_r^p (a_k^r)^{-1} \psi_z^k b_j^z + a_t (a_s^t)^{-1} \psi^s b_j - \\
&- a_t (a_s^t)^{-1} \psi^s a_k (a_r^k)^{-1} b_j^r - a_t (a_s^t)^{-1} \psi^s b_r (a_z^r)^{-1} b_j^z + \\
&= a_t (a_s^t)^{-1} \psi^s a_r (a_p^r)^{-1} b_q^p (a_z^q)^{-1} b_j^z + \beta_j.
\end{aligned}$$

where $(\alpha_j^i, \alpha_j, \beta_j^i, \beta_j)$ is the canonical form on H .

THEOREM 6.1. *Let P be a t -projective structure on M and $(\omega^i, \omega_j^i, \omega_j, \eta^i, \eta_j^i, \eta_j)$ the normal t -projective connection. Let U be a coordinate neighborhood in M with local coordinate system (x^i, y^i) . Then there exists a unique local cross section $\sigma : U \rightarrow P$ such that*

$$\begin{aligned}
\sigma^*(\omega^i) &= dx^i, \quad \sigma^*(\eta^i) = dy^i, \\
\sum \sigma^*(\omega_i^i) &= 0, \quad \sum \sigma^*(\eta_i^i) = 0.
\end{aligned}$$

If we set for such a σ

$$\begin{aligned}
\sigma^*(\omega_j^i) &= \Pi_{kj}^i dx^k, \quad \sigma^*(\omega_j) = \Pi_{kj} dx^k + \bar{\Pi}_{kj} dy^k, \\
\sigma^*(\eta_j^i) &= \Xi_{kj}^i dx^k, \quad \sigma^*(\eta_j) = \Xi_{kj} dx^k + \bar{\Xi}_{kj} dy^k
\end{aligned}$$

then

$$\Pi_{kj}^i = \Pi_{jk}^i, \quad \Pi_{kt} = \Pi_{tk}, \quad \bar{\Pi}_{kt} = 0, \quad \Xi_{kt}^i = \Xi_{tk}^i, \quad \Pi_{tk} = \Xi_{kt}.$$

P r o o f. Let $\bar{\sigma}$ be a cross section such that $\bar{\sigma}^*(\omega^i) = dx^i$, $\bar{\sigma}^*(\eta^i) = dy^i$. In terms of the local coordinate system $(u^\alpha, u_\beta^\alpha, u_{\beta\gamma}^\alpha)$ in P the cross section $\bar{\sigma}$ is given by

$$\begin{aligned}
u^\alpha &= (x^i, y^i), \\
u_\beta^\alpha &= \delta_\beta^\alpha, \\
u_{\beta\gamma}^\alpha &= -\Gamma_{\beta\gamma}^\alpha,
\end{aligned}$$

where $\Gamma_{\beta\gamma}^\alpha$ is a function of x^i, y^i . We take σ as the cross section given by

$$\begin{aligned}\bar{u}^\alpha &= (x^i, y^i), \\ \bar{u}_\beta^\alpha &= \delta_\beta^\alpha, \\ \bar{u}_{\beta\gamma}^\alpha &= -\Pi_{\beta\gamma}^\alpha,\end{aligned}$$

where

$$\begin{aligned}(6.3) \quad \Pi_{jk}^i &= \Gamma_{jk}^i - \frac{1}{n+1} \delta_j^i \Gamma_{kz}^z - \frac{1}{n+1} \delta_k^i \Gamma_{jz}^z, \\ \Pi_{\bar{j}k}^i &= 0, \\ \Pi_{j\bar{k}}^i &= 0, \\ \Pi_{jk}^{\bar{i}} &= \Gamma_{jk}^{\bar{i}} - \frac{1}{n+1} \delta_j^i \Gamma_{k\bar{i}}^{\bar{i}} - \frac{1}{n+1} \delta_k^i \Gamma_{j\bar{i}}^{\bar{i}}, \\ \Pi_{j\bar{k}}^{\bar{i}} &= \Gamma_{j\bar{k}}^i - \frac{1}{n+1} \delta_j^i \Gamma_{kz}^z - \frac{1}{n+1} \delta_k^i \Gamma_{jz}^z, \\ \Pi_{\bar{j}\bar{k}}^{\bar{i}} &= 0.\end{aligned}$$

It is easy to see that this cross section is a unique one with the desired properties.

The remaining assertions follows easily from the facts that $\Omega^i = 0$, $H^i = 0$, $\sum \Omega_i^i = 0$, $\sum H_i^i = 0$. ■

References

- [AG1] M. A. Akivis, V. V. Goldberg, *On the Theory of Almost Grassmann Structures*, New developments in differential geometry, Budapest 1996, Kluwer Acad. Publ., Dordrecht, 1999, 1–37.
- [AG2] M. A. Akivis, V. V. Goldberg, *Conformal and Grassmann structures*, Differential Geom. Appl. 8 (1998), 177–203.
- [AG3] M. A. Akivis, V. V. Goldberg, *Semiintegrable almost Grassmann structures*, Differential Geom. Appl. 10 (1999), 257–294.
- [CB] B. S. Clark, M. R. Bruckheimer, *Sur les structures presque tangentes*, C. R. Acad. Sci. Paris 25 (1966), 569–576.
- [CG] R. S. Clark, D. S. Goel, *On the geometry of an almost tangent manifolds*, Tensor N. S. 24 (1972), 243–252.
- [Dh] P. F. Dhooghe, *Grassmannian structures on manifolds*, Bull. Belg. Math. Soc 1 (1994), 597–622.
- [El] H. A. Eliopoulos, *On the general theory of differentiable manifolds with almost tangent structure*, Canad. Math. Bull. 8 (1965), 721–748.
- [Go] W. M. Goldman, *Geometric structures on manifolds and varieties of representations*, Contemp. Math. 74 (1988), 169–198.
- [Ko1] S. Kobayashi, *Transformation Groups in Differential Geometry*, Springer, Berlin, Heidelberg, New York, 1972.
- [Ko2] S. Kobayashi, *Canonical forms on frame bundles of higher order contact*, Proc. Symp. Pure Math. 3 Amer. Math. Soc. (1961), 186–193.

- [KN1] S. Kobayashi, T. Nagano, *On projective connections*, J. Math. Mech. 13, 2 (1964), 215–235.
- [KN2] S. Kobayashi, T. Nagano, *On filtered Lie algebras and geometric structures I, II, III, IV, V*, J. Math. Mech. 13 (1964), 875–907; 14 (1965), 5 13–522; 14 (1965), 679–706; 15 (1966), 163–175; 15 (1966), 315–328.
- [KMS] I. Kolař, P. W. Michor, J. Slovák, *Natural Operations in Differential Geometry*, Springer-Verlag, Berlin, 1993.
- [Og] K. Ogiue, *Theory of conformal connections*, Kodai Math. Sem. Rep. 19 (1967), 193–224.
- [MM] A. Miernowski, W. Mozgawa, *Projective spaces of second order*, Collectanea Math. 48, 3 (1997), 355–362.
- [Mi1] R. Miyaoka, *Lie contact structures and normal Cartan connections*, Kodai Math. J. 14 (1991), 13–41.
- [Mi2] R. Miyaoka, *Lie contact structures and conformal structures*, Kodai Math. J. 14 (1991), 42–71.
- [Mor] T. Morimoto, *Geometric structures on filtered manifolds*, Hokkaido Math. J. 22 (1993), 263–347.
- [Moz1] W. Mozgawa, *Some topological properties of Grassmannians of higher order*, Bull. Acad. Pol. Sci. XXV, 7 (1977), 691–695.
- [Moz2] W. Mozgawa, *Holomorphically projective structures I. The connections*, An. Științ. Univ. "Al. I. Cuza" XXX (1984-5), 55–68.
- [Och] T. Ochiai, *Geometry associated with semisimple flat homogeneous spaces*, Trans. Amer. Math. Soc. 152 (1970), 159–193.
- [Ru] E. A. Ruh, *Cartan connections*, Proc. Symp. Pure Math. 54 (1993), Part 3, 505–519.
- [Sh] R. W. Sharpe, *Differential Geometry*, Grad. Texts Math. 166, Springer-Verlag, Berlin 1997.
- [Sz1] A. Szybiak, *Covariant differentiation of geometric objects*, Covariant differentiation of geometric objects LVI, Dissertationes Mathematicae, PWN, Warszawa 1967.
- [Sz2] A. Szybiak, *Grassmannians of higher order and equations of moving frame*, An. Științ. Univ. "Al. I. Cuza" 22 (1976), 201–212.
- [Sz3] A. Szybiak, *Derivation equations of second-order Grassmannians*, (in Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 6 (1998), 87–95.
- [Ta] N. Tanaka, *On the equivalence problems associated with simple graded Lie algebras and Cartan connections*, Hokkaido Math. J 8 (1979), 23–84.
- [Ya] K. Yamaguchi, *Differential systems associated with simple graded Lie algebras*, Adv. Stud. Pure Math. 22 (1993), 413–494.

INSTITUTE OF MATHEMATICS
 UNIVERSITY OF M. CURIE-SKŁODOWSKA
 pl. Marii Curie Skłodowskiej 1
 20-031 LUBLIN, POLAND
 E-mail: mierand@golem.umcs.lublin.pl
 mozgawa@golem.umcs.lublin.pl

Received January 19, 2001; revised version July 24, 2001.

