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GEOMETRY OF ¿-PROJECTIVE STRUCTURES 

Abstract. The main purpose of this paper is to define and study t-projective struc-
ture on even dimensional manifold M as a certain reduction of the second order frame 
bundle over M. This t-structure reveals some similarities to the projective structures of 
Kobayashi-Nagano [KN1] but it is a completely different one. The structure group is the 
isotropy group of the tangent bundle of the projective space. With the t-structure we 
associate in a natural way the so called normal Cartan connection and we investigate its 
properties. We show that t-structures are closely related the almost tangent structures on 
M. Finally, we consider the natural cross sections and we derive the coefficients of the 
normal connection of a t-projective structure. 

0. Introduction 
Grassmannians of higher order appeared for the first time in a paper [Sz2] 

in the context of the Cartan method of moving frames. Recently, A. Szybiak 
has given in [Sz3] an explicit formula for the infinitesimal action of the second 
order jet group in dimension n on the standard fiber of the bundle of second 
order grassmannians on an n-dimensional manifold. 

In the present paper we introduce an another notion of a grassmannian 
of higher order in the case of a projective space which is in the natural 
way a homogeneous space. It is well-known that many interesting geometric 
structures can be obtained as structures locally modeled on homogeneous 
spaces. Interesting general approach to the Cartan geometries is developed 
in the book by R. W. Sharpe [Sh]. From the other hand T. Morimoto in 
his important paper [Mor] suggested the general universal procedure based 
on the theory of filtered manifolds and gave the general criterion to con-
struct a Cartan connection associated with a geometric structure. However, 
we don't apply here his general method but we present a concrete example 
which is a good geometrical case in which we can construct a normal Cartan 
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connection by direct calculations without relying on a rather big machinery. 
The detailed analysis of our particular case leads to deeper geometric re-
sults concerning the almost tangent structures. Other important geometric 
structures investigated with the use of Cartan connections can be found in 
[KN1], [Og], [Mil], [Mi2], [Dh], [Moz2], [Ta], [Och], [Ya], 

For the additional informations concerning the considered subject see 
[AG1], [AG2], [AG3], [Go], [Mozl], [Sz3], [MM], [Ru]. 

For the basic notions and notations in the jet theory see the book by I. 
Kolaf, P. Michor, J. Slovak [KMS]. 

1. The projective space of first order 
Let Ti(Kn + 1) = Rego (R 1 ,R n + 1 )o , where R e g ^ R 1 , R N + 1 ) 0 denotes the 

set of all regular jets of second order of mappings 1R1 —> Kn + 1 of the 
source and target at 0. The manifold Ti(R™+1) is called a Stiefel manifold 
of 1-frames of second order on R n + 1 at 0. Note that the Stiefel manifold of 
1-frames of first order is an ordinary Stiefel manifold (cf. [Sz2]). 

Let G = {(a, b) : a, b € R, a ^ 0} be a group with the following multipli-
cation rule 

(a, b) • (c, d) = (ac, ad + be). 

The action of the group G on Ti(RN + 1) is given by 

( x , y ) • (a, b) = (ax, ay + bx), 

where (x,y) are the coordinates of the jet G Ti(Kn+1)- We then set 
Pp = Ti (R n + 1 ) /G and call this space the projective space of first order. 

On the other hand we consider a matrix group 

G = {(A, B ) : A e GL(n + 1), B E M ( n + 1)} , 

where M(n + 1) denotes the set of all (n + 1) x (n + 1) real matrices and a 
multiplication is defined as follows 

( A , B ) • (C, D ) = ( A C , BC + A D ) . 

The group G is isomorphic to the subgroup of the group GL(2n + 2) of 
matrices of the form 

A B 

0 A \ ' 

where det A / 0. The group G acts on Ti(Mri+1) by the formula 
( A , B ) - ( x , y ) = ( A x , A y + B x ) . 

It is easy to see that this action factorises to the action on P". 
Let's introduce the inhomogeneous coordinates on P f . Let (x,y) G 

T i ( R N + 1 ) and ( x , y ) = ( x a , y a ) , where a , ¡3 = 0, . . .n. If x° + 0 then we 
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set a = ¿r, b = - and we get 

393 

(x,y) = (xa,ya) = l.Tn.O, 
x0y{ - f x i 

Q\2 (¿0) 

x '̂-ofs x the inhomogeneous where i = 1 , . . . , n . We call xl = f r , yl = 

coordinate system of P™. Note that the elements (A, B ) and (aA, 6A + aB), 
a 0 in G induces the same transformation of P™. Identifying such elements 
we get a group Now, we can define the inhomogeneous coordinates in 

If Ag / 0 then 

(A,B) = {A%B$) = 
1 

•m oto o 

§ 0 

0 
A0 R* — R°4i 
0 0 0 0 

w 

12 
A0 Ft* — Ft0 A' 0 j . 0 ' 

" W 
We set 

_ . i _ -"-0 
* ~ A0' ~ A0 ^o o 

A1 
i _ Ai 

>ai = 

b . = A°oBi B { A ° B > 0 - BgA* .t KB) 
= rrfïTô >6 j = 

B°A> 

' (A0°)2 ' ' (A®* ' 
We call the above the inhomogeneous coordinate system in the neighborhood 
of the identity of defined by A% / 0. The induced action of «py on P f in 
terms of the introduced inhomogeneous coordinate system is given by the 
following formulas 

" 1 a{ 0 hi' 
y y 

y b)ì 
( x W ) 

a1 + aljXJ 

1 + CLjXi 

b% + b*xj + - djtfyi + {a,jb%k - alkbj)xjxk + (afcaj - ajalk)xkyj 

( 1 + ajXiy 

2. The Maurer-Cartan equations 
We are going to derive the structure equations of G. The identity of G 

is given by (1,0) and 

{A, B y 1 = ( A ' 1 , -A~lBA~l) . 

If we set 

(Q,fj ) = (A,B)-1(dA,dB) 

then 

G) = A^dA, fj = A_1dB - A_1BA~ldA. 

Prom the above formula we get 
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LEMMA 2.1. (the structure equations of G). If (u,fj) = a>P = 
0 , . . . , n then 

(2.1) dup = A a/g 

(2 .2) = 

We shall find the structure equations of Let ,ujj,u)j,r]1 ,T]j,T]j be 
the left invariant 1-forms on such that 

u1 = da1, aij = dalj, Uj = da3, 

-rf = db\ rfj = d&j, rjj - dbj 

at the identity. From the definition of the inhomogeneous coordinates in 
we have at the identity 

u* = dai = dAl, u) = da) = dA) - 6)dA^ Uj = daj = dA°j, 

rf =. db{ = dBl
0, T]) = db) = dB) - 6)dBl, TJJ = dbj = db 

Hence we have 

THEOREM 2.1. The Maurer-Cartan equations are 

dul = -u\ A u*, 

dujj = -ul A Uj - u\ A Uj + 6jUJt A u\ 

(2.3) J , . >' 

drf = UA 7)1 + T] A ul
t, 

drjj = —a/ A 7)j — rji A UJ3 + 8)7)t A u1 - UJ\ A 7)] - 7)\ A UJ) , 
dr]j — -7)t A uj - ut A 7)j. 

3. Cartan t-projective connections 
Let M be a manifold, dim M = 2n. We consider a principal fiber bundle 

P over M with a structure group H - the isotropy group of (0 , . . . , 0) with 
the a Cartan connection u with values in the Lie algebra p™ of With 
respect to the natural basis in the Lie algebra p™ the form u is given by the 
set of 1-forms 

U = (Ul,Ulj,Uj,7)l,7)lj,7)j) . 

Such connection will be called a Cartan t-projective connection. The 
structure equations of the Cartan t-projective connection u are given by 
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(3.1) 

du{ = -u>ì Awf + fV, 

duj*• = -ul A u)j - u\ A ujj + SjUt A w ' f ÌÌJ, 

du j = — u t A wj + i î j , 

drf — uj1 A rji + rf A + 

drjj = -<J A rij — rf A Uj + 6)r)t Aw' - Art)- r]\ A uj + tfj, 

dr)j = -T)t A LU* — u>t A r f j + Hj. 

For the sake of simplicity we shall take these equations as a defini-
tion of the 2-forms fi*, ùj, Hl, i i j , H3. Each element A of the Lie al-
gebra h of H induces on P a vector field A*. With each element (£,7) = 
(£X> •••>£"> 71) • • • > 7 n ) G M2" we can associate a unique vector field D(£, 7) 
on P with the following properties: 

By a lengthy but straightforward calculations we obtain 

LEMMA 3 .1 . 

[A*, £>(£, 7)] = D(A£, ¿ 7 + BO - (£a + a$I, 0,7a + £b + b£I + a71,0). 

With this preparation we are now in the position to state 

THEOREM 3 .2 . 

We shall consider the situation whether we can find a Cartan connection 
in P when the forms u>1, u>j, rj1, rjl- are given a priori. 

THEOREM 3.3. Suppose that on P are given the forms with 
values in the Lie algebra p" of satisfying the following conditions: 

= V, "jim-r)) = 0, 7)) = 0, 

r}\D{i, 7)) = 7 \ rfj(D{£i 7)) = 0, Vj (D( t , 7)) = 0. 

(3.2) 

H* = -N}kluk A + -G)klu;k At}1 + -B}klV
k A V

l 

Hi = \Njkluk A u ' + ìGjk lu>k At / + ì B j k l r ) k A i f . 
1 
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(1) for each Ae h, A= (A^, a,j, , bj) 

UJ\A*) = 0,ui(A') = A),riW) = ^ { A * ) = B) 

(2) RXu^wirf,^) = a d a - x ^ , ^ , ^ ) for a € H 

(3) if u l ( X ) = r f ( X ) — 0, i = 1 , . . . , n then X is tangent to a fibre 

(4) du1 = -UJ) A UJ, drf = -7?j A - wj A rf. 

Then there exists a unique Cartan connection (UJ1 , UJ), UIJ, RF, rj), RJJ) suc/i that 

= kU = o, £ = £ = 0 

i i i i 

JVj« = 0, E Gjw = 0, E Gi« = o. 
i i i i 

P r o o f . The following Cartan-Laptev lemma plays an essential role in our 
proof. 

LEMMA 3.2. (cf. [Szl]). Suppose that we have a system of p-forms tp», v = 

1 , . . . n and a system of n linearly independent 1-forms av. If the identity 

ipu A av = 0 holds then there exists a system of forms 5 / i 7 such that we have 

ipv - S P 7 A cr", 

being of degree p — 1 and being symmetric. 

Differentiating the formulas (4) and using the Cartan-Laptev lemma we 
obtain that the forms fi* and H) do not involve the terms of the form 
rf A r)k. We shall study the relationship between two Cartan connections 
u> — (ui\ujj,ujj,ri\rjj,rij), ZJ = (UJ1 , tv), tij ,rfj ,f}j). We can write 

Uj - Uj = Ajkuk - Bjkr)k 

Vj ~ f}j = Cjkujk + Djkr)k. 

Reasoning similarly as in [KN1] and [Og] we get the theorem. • 

Applying the exterior differentiation to the structure equations we obtain 
THEOREM 3 .4 . Let P be a principal fibre bundle over M with the group H as 
a structure group. If (UJ1 , UJ), UJ, RF, RJ), RJJ) is a Cartan connection satisfying 
the conditions of Theorem 3.2 then 

(1) iij A u* = 0 
(2) A ili = 0 
(3) a A Hi + rf A il j = 0 
(4) if A fit + u* A Hi = 0. 

If i ij . = 0, H) = 0 and dim M > 6 then fy = Hj = 0 . 
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4. t-projective structures 
We consider now the isotropy group H of the point (0, . . . ,0) . Then 

a1 = bl = 0 and an element 

(4.1) 

acts on P 1 as a fractional transformation 

1 a. 0 bi' 
0 a) 5 0 V J 

€ H 

(4-2) ( x W ) 
a1

jxj tfjxi + al
Jyj + {a,jbl

k - al-bk)x^xk + (afca). - ajak)xkyi 

1 + djxi ( 1 + a j x i y 

Let / : 

etc. 

f ( x , y ) = ( f i ( x , y ) , f i ( x , y ) ) , 

i — i + n, be a smooth mapping such that /(0) = 0. We put 

OP - d f 1 DP n = $ = •&<•<». Q = -
Then the second order jet of / has the following coordinates 

I f i f i f i f i f i f i f i f i f i f i _ \ 
y j ' j j ' /j'l Jj> JjkiJjki Jjki Jjk' jjk' J]kJ • 

We associate to each element (4.1) of H the second order jet of the fractional 
transformation (4.2). We get a mapping 

(oj, aj,6i,6}) (a*-, 0, b), a}, -a)ak - al
kaj, 

0,0, -b)ak - bl
ka,j - a}6fc - a\bj, -ajak - afca},0). 

Let P2(M) denotes the bundle of the second order frames over M, 
dimM = 2n with the structure group G\n. We then have 

THEOREM 4 . 1 . For each element a € H let f be the fractional transformation 
(4.2). Then a mapping a j f i f is an isomorphism of H onto its image in 
G\n which shall be also denoted by H. 

DEFINITION 4 .1 . A subbundle P of P2(M) with the structure group H will 
be called a t-projective structure on M. 

Consider the canonical form T = (T a , Tp), a , /? = 1 ,2 , . . . , 2n on L2(M). 
Let 

T a = = 
I I 
tfl- til 3 J J 

i , j = l , ...,n, i = i + n, j = j + n. 
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If we restrict the canonical form T to the subbundle with the structure group 
H we obtain 

0 rpoc 
-

We shall prove 
THEOREM 4.2. For each t-projective structure on M there is a unique t-

projective connection u = ( u i l , u>j, u ) j , r j 1 , T)1-, r ] j ) such that 

(4.3) 
and 

(4.4) 

(4.5) 

du1 = -üj) A u> j, drf - - r j ) A cu j - wj A rf 

i i i i 

P r o o f . Since 
4 = ( x i r ' d x i - ( x } ) - 1 x i p k d x ? 

then dê lk cannot involve the terms of the form uik A rj1 and r/k A r]1. This 
means that L l-kl = M l-kl = 0. Using the local expression of we show that 
G l-kl = B j k l = 0. Let j'q/ corresponds to a € H under the isomorphism of 
Theorem 4.1. It easy to see that ad ( a - 1 ) and ad ( j o / - 1 ) coincide. Then 
from Theorem 3.2 we get the theorem. • 

DEFINITION 4.2. The unique t-projective connection for P given by the 
above theorem we call the normal t-projective connection. 

5. Linear connections and t-projective connections 
Let us consider the isotropy group 

' A 0" "C 0 ' 
B A 5 D C 

H 

(via the isomorphism from theorem 4.1) and let 
A 0 

C L 2 2 n 

G1 
B A 

A 0" '0 0' 
B A 

î 0 0 

: A € GL(n), B € M(n) ^ 

: i 4 e G L ( n ) , B € M ( n ) | C H. 

Let P be a t-projective structure on M. The natural projection of P2(M) 
onto P 1 (M) restricted to P gives a subbundle Pi C P 1 (M). In this way we 
obtain a Gi-structure on M which is known as an almost tangent structure 
[CG]. Then there exists a (1, l)-tensor F such that F2 = 0. From now on we 
suppose that this structure is integrable ([CG]). It follows that there exists 
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an atlas with respect to which the components of F are constant functions. 
A linear connection V in L 1 (M) is adapted to Gi-structure iff V F = 0. Let 
<pp be the transition function of Pi. Then 

(5 .1 ) = a , / 3 , 7 = 1 , . . . , 2 n . 

Differentiating (5.1) we obtain 

F^h = Fp^s-

The functions fulfill the cocycle condition. Then there exists a 
bundle Pp(M) determined by these functions. 

THEOREM 5 .1 . 

(1) The cross sections M —> Pp(M)/G\ are in one-to-one correspon-
dence with the connections adapted to almost tangent structure F. 

(2) The cross sections M P$(M)/H are in one-to-one correspondence 
with the t-projective structures of M. 

P r o o f . Let be the coordinates of Pj(M). On P | ( M ) / G i we 
introduce the coordinates (z a ,zg ) given by 

Then the cross section T : M —> Pp(M)/G\ is given locally by a set of 
functions 

z ^ = -T a
0 y , where = 

It easy to see that behave under the change of coordinate system as the 
coefficients of a linear connection. Obviously we have V F = 0. 

The second assertion is evident. • 

Composing T with a projection Pp{M)/G\ —> Pp{M)/H we get a t-
projective structure (integrable). 

DEFINITION 5.1. A linear connection T adapted to an integrable almost 
tangent structure is said to belong to t-projective structure P if T induces 
P in the manner described above. We say that two such connections are 
t-projectively related if they belong to the same t-projective structure. 

From the action of H on Pp(M) it follows that connections T, T are 
t-projectively related if 
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(5.2) 

T)k = r}fc - 8)ak - 8l
kav 

r}fc = r)k + 6)bk + 6l
kbj - 6)ak - 6l

kaj 
ri -vi 

Let r : M —> PP(M)/G\ be an adapted linear connection. Then we have 
a reduction of L2(M) to subbundle with a structure group G\. This gives 
an isomorphism 7 : Pi —> Pj-(M). 

THEOREM 5.2. Let r be an adapted linear connection and 7 : Pi —» Pj.(M) 
the above isomorphism. Let (Ta,Tp) be the canonical form on PP(M). Then 
7 *(Ta) is a canonical form on Pi and 7 *(Tp) is an adapted connection to 
an almost tangent structure. 

The forms fi*-, HL- given by (3.1) define a certain tensor on M depending 
only on the t-projective structure P. This tensor is called the t-projective 
Weyl tensor. 

6. Natural frames and coefficients of t-projective connections 
Let P be a t-projective structure on M and U be a coordinate neigh-

borhood in M with a local coordinate system ( x 1 , . . . , xn, y1,..., yn). let 
A : U —> P be a cross section and let U x H « P\U be the isomorphism 
induced by a. Let (a^Oj, , bi) be the local coordinate system in H. Then 
we may take (xl, y1, a*-, a^, b%-, bi) as a local coordinate system in P\jj. Let 
(0/, u>j, ujj, rf,rjl-, rjj ) be the normal t-projective connection in P. Let us put 

^ = c r "V) - n j[dx k , 

ri = cx*K) = Wkldxk, 

(6 .1) 

fa = cr*(r]j) - Ekjdxk + Ekjdyk. 

Then after the tedious but simple calculations we have 

u/ = ( 4 ) - V f c , 
u;} = a ) + J a 3 + ( 4 ) ~ V N 5 + 

1 „/,* 
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Uj =aj - akUJj + a,jaku>k + ipkak, 

rf = ( a j ) " V " 

Vj H a i r ' r b j + (ajrVp&S + (4)-Va,- - (ai)-1bsp(apk)-^kaj+ 

+ (air^b* - ( a i r ' b ; « ) - 1 ^ - a . ( a j ) -

(6.2) - b s i a i r ^ n ) + a s ( a s p ) ~ X ( a r k ) - V * } + a ^ a ' ) " V K ) - 1 ^ -

- a ^ J " V K r ^ K ) - 1 ^ + 

V j = - a t i a ^ r b j + ipsb* - a t ( a 4 s ) -Vp^ - as(asp)-Vpay-

- bs(asp)-'raj + a ^ r ^ K r V S + ~ as{asp)-l<t?zb]-

- + a ^ y ^ i a i r ^ b j + a t ( a < ) - V & , -

- a t t e S ) - V a * ^ ) " ^ - 0 ^ ) " V M O " " 1 ^ 

= a^a4,)-VM^)-1 + (3j. 

where (a j , a ^ , , ) is the canonical form on H. 

THEOREM 6.1. Let P be a t-projective structure on M and (ujl,ujj,Uj,ril, 

rjj,r]j) the normal t-projective connection. Let U be a coordinate neighbor-

hood in M with local coordinate system (xl,yl). Then there exists a unique 

local cross section a : U —» P such that 

a*(ui) = dxi, a*(ni) = dyi, 

If we set for such a a 

= n j [ j d x k , a*{uj) = n kjdxk + ILkjdyk, 

a*(7?j) = s?kjdxk, ct*(t7j) - Ekjdxk + Ekjdyk 

then 

nfcj = n}fc> n f c t = n t f c , n fct = o, Elkt — E\k, Utk = Sfct. 

P r o o f . Let a be a cross section such that a*{u>1) = dxl, &*(t]1) = dyl. In 
terms of the local coordinate system ( i t i n P the cross section a 

is given by 

ua = (xi,yi), 

u$ = 61, 
na — _ r a 

where is a function of xl,yl. We take cr as the cross section given by 



402 A. Miernowski , W. Mozgawa 

where 

*a = (xi,Vi), 

Û/3-y - — n ^ , 

n + l j kz n + 1 

n j f c = °> 
% = °> 

(6.3) , , i . , i . „ N ' TTÎ -px CÎ "PI 
n ' f c - " Ï T T ï J ~~ 

n + l j k z n + l 
TTÎ -pî gt'PZ C2 T~lZ 

jfc - ~ r r r ^ 1 ~ r x T ' k 

% = 0-

It easy to see that this cross section is a unique one with the desired prop-
erties. 

The remaining assertions follows easily from the facts that f = 0, 
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