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ON HILBERT SPACES 

1. Introduction and terminology 
Throughout this paper H denotes a complex Hilbert space and C(H) 

the Banach algebra of all bounded linear operators on TI. For A € C(7I) 
the spectrum and the spectral radius of A are denoted by <j(A) and 
respectively. For the resolvent set of A we write p{A). 

DEFINITIONS. An operator A E C(H) is said to be 

(a) normal if AA* = A* A, 
(b) unitary if AA* = I = A* A, where I denotes the identity operator H, 
(c) symmetric if A* = A, 
(d) positive if A is symmetric and (Ax\x) > 0 for all I G H , where (-|-) 

denotes the inner product on 7i. 

For A G £(%) we denote by eA the operator 

In [5], C. R. Putnam has proved the following result: 

THEOREM A . If A E C(H) is positive, T e C{H), 

eT — A and | |T| |<21og2 

then T is symmetric. 
S. Kurepa has shown in [3, Theorem 3] that it is sufficient to assume 

that ||T|| < 2?r: 

oo 
A' 
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T H E O R E M B . If A e C(H) is positive, T E C(H), 

eT = A and ||T|| < 2ir 
then T is symmetric. 

Since e2niI = I, the condition ||T|| < 2ir cannot be replaced by ||T|| < 2ir 
without changing the conclusion. 

The following result is also due to S. Kurepa (see [3, Theorem 2]). 
T H E O R E M C. Suppose that N e C(H) is normal, 0 < o l < \ , T e C{H), 

then T is normal. 
The aim of the present paper is to prove some generalizations and im-

provements of Theorem B and Theorem C. Furthermore we shall extend 
Corollary 1 in [3]. To this end we need some preparations which we will give 
in this section. In Section 2 we consider logarithms of normal operators. Sec-
tion 3 deals with logarithms of symmetric operators. Logarithms of positive 
operators are considered in Section 4. In Section 5 we are concerned with 
logarithms of unitary operators. 

DEFINITION. A set f i C C is called 2iri-congruence-free if Ax, A2 € f i and 
Ai = A2 (mod27ri) imply that Ai = A2. 
1 . 1 . PROPOSITION. Let A,B e C{H). 

(a) If a (A) is 2m-congruence-free and eA = eB then AB — BA. 
(b) If <r(A) and u(B) are 2m-congruence-free and eAeB = eBeA then 

AB = BA. 
(c) If eAeB = eA+B = eBeA and a(A + B) is 2m-congruence-free then 

AB = BA. 
(d) A is normal if and only if 

eAeA* = eA+A' = eA'eA. 
P r o o f , (a) is shown in [2]. 

Proofs of (b) can be found in [6] or [8]. 
(c) is proved in [7, Theorem 2], 
(d) Since A + A* is symmetric, a(A + A*) C R. Hence a(A + A*) is 

27ri-congruence-free. Now use (c) to get the result. • 
1 . 2 . PROPOSITION. Let A e £ ( H ) . 

(a) If A is symmetric, then eA is positive. 
(b) If A is normal, then r(A) = ||A||. 
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(c) Let A be normal. Then: 

A is symmetric a(A) C R 

and 

A is positive <J(A) C [0, OO). 

P r o o f , (a) It is clear that eA is symmetric. For each x € H we have 

(eAx\x) = (e^e$x\x) = (e$x\e$x) = ||ê z||2 > 0, 
hence eA is positive. 

(b) is shown in [4, Lemma 4.3.11]. 
(c) follows from Proposition 4.4.7 in [4], • 

DEFINITIONS. L e t A e C(H). 

(a) The real part Re(yl) of A is defined by 

(b) If A is positive there is a unique positive operator, denoted by A?, 
satisfying {A*)2 = A (see [4, Proposition 3.2.11]). A * is called the square 
root of A. 

(c) The absolute value of A is defined by 

\A\ = {A*A)% 

(observe that A*A is positive). 
(d) We denote the set of eigenvalues of A by <Jp(A). 
(e) The set an(A) = {A € cr{A) : |A| = r(A)} is called the peripheral 

spectrum of A. 

1 . 3 . PROPOSITION. Let A,B € C{H) and AB = BA. Then r(A + B) < 
r(A) + r(B) and r(AB) < r(A)r(B). 

P r o o f . [1, Satz 13.11]. • 

2. Logarithms of normal operators 
Throughout this section N denotes a normal operator in C(H). 

2.1. THEOREM. If T e C(H), eT - N and a(T) is 2m-congruence-free, 
then T is normal. 

P r o o f . From eT' — (eT)* = N* we get 

eT" eT = N*N = NN* = eTeT'. 

Now use Proposition 1.1(b) to derive TT* = T*T. u 

Our next result generalizes Theorem C: 
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2 . 2 . COROLLARY. Suppose that T e C(H), 

eT = N and r(T) < TT. 

Then T is normal. 

P r o o f . Since r(T) < ir, cr(T) is 27ri-congruence-free. The normality of T 
follows from Theorem 2.1. • 

EXAMPLE. Let H — C2 and the operator T be given by the matrix 

where z e C \ {0} is arbitrary. Then <J(T) = {in, — ¿7r}, r(T) = 7r and 
eT = —I. But T is not normal. This shows that the condition r(T) < 7r in 
Corollary 2.2 cannot be replaced by r(T) < 7r. 

2.3. THEOREM. Suppose that T e C(H) and eT = N. Then 

In this case N is positive. 

P r o o f . (=») : If T is symmetric, a(T) C R. By Proposition 1.2(a), N = eT 

is positive. 
(<==)'• Since a(T) Ç R, a(T) is 27ri-congruence-free, thus, by Theorem 

2.1, T is normal. Now use Proposition 1.2(c) to see that T is symmetric. • 
2.4. COROLLARY. IfT e C{H) and eT = N then 

P r o o f . Theorem 2.3 and Proposition 1.2(c). • 

2.5. THEOREM. Let T € C(H) and eT = N. The following assertions are 
equivalent: 

(a) T is normal; 

T is symmetric a(T) Ç R. 

T is positive cr(T) Ç [0,oo). 

(b) eT + T* = AT*JV; 
(c) eRe(T) = \N\. 

P r o o f . If T is normal, 

hence (c) is valid. 



Logarithms of linear operators 379 

Now assume that (c) holds. Then 
eT+T' = |AT|2 = N*N = NN*, 

hence 
eT+T' = eT'eT = eTeT'. 

It follows from Proposition 1.1(d) that T is normal. • 

3. Logarithms of symmetric operators 
Throughout this section A denotes a symmetric operator in C(7i). 
As an immediate consequence of our results in Section 2 we have: 

3 . 1 . T H E O R E M . Let T G C(H) and eT = A. 

(a) If a(T) is 2TTZ-congruence-free, then T is normal. 
(b) T is normal eT+T* = A2. 
(c) T is symmetric a(T) C R. 
(d) T is positive a(T) C [0,oo). 

DEFINITIONS. F o r j G Z p u t 

Clj = {a + jni : a G R}, 

n + = ( J n 2 j , = I J a 2 j + i , 
je z\{0} jez 

n = 

The following lemma is easily verified. 

3 . 2 . LEMMA. 

(a) = R and £1 C C \ R. 
(b) For A G C we have 

(i) eA G R and eA > 0 A € f2o U and 
(ii) ex e R and ex < 0 A G . 

(c) If K = {A € C : |A| < 2Tr} then 
K D ii+ = {2ni, -2Tri} 

and 
K D = {A ± iit : a: G R , \a\ < V^TT}. 

3.3. THEOREM. Let T G C{H) and eT = A. Then 

T is symmetric a(T) fl ii = 0. 

In this case A is positive. 

P r o o f . (=* ) : If T is symmetric, a(T) C R, thus a(T) n ii = 0. 
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(«*=): Since eT is invertible in £{H), 0 e p(A), therefore a(A) C R\{0}. 
Take A G cr(T), then, by the spectral mapping theorem ([1, Satz 99.2]), 
ex e <r(A). Part (b) of Lemma 3.2 yields, since a(T) n Q = 0, A € i)0 = 
R. Therefore we have that a(T) C M. Use Theorem 3.1(c) to derive the 
symmetry of T. • 

3 . 4 . COROLLARY. Let T E C{H), eT = A and r(T) < 2TT. The following 
assertions are equivalent: 

(a) T is symmetric. 
(b) -2m, 2iri £ a(T) and a(T) n {a ± in : a € R, |a | < \/3tr} = 0. 

P r o o f . Lemma 3.2(c) and Theorem 3.3. • 

4. Logarithms of positive operators 
Throughout this section let A € C(H) be positive and T € C{H). 

4 . 1 . THEOREM. If eT = A then 

T is normal e R e ( T ) = A. 

P r o o f . Since A is positive, Theorem 2.5 gives 

T is normal eR e(T ) = \A\ = {A2)% = A. • 

4 . 2 . THEOREM. If eT = A then 

T is symmetric a{T) D i2+ = 0. 
P r o o f . If A € o-(T) then eA 6 a(A). Since 0 e p(A), we get eA > 0, by 
Proposition 1.2(c). Lemma 3.2(b) gives then that a(T) D — 0. Now use 
Theorem 3.3 to complete the proof. • 

4 . 3 . COROLLARY. IfeT = A and r(T) < 2ir then 

T is symmetric 2ni £ a(T) and — 2m ^ a (T). 

P r o o f . Lemma 3.2(c) and Theorem 4.2. • 

REMARK. AS an immediate consequence of Corollary 4 .3 we get Theorem B 
(Section 1). 

4 . 4 . THEOREM. Suppose that B E C(H) is symmetric and that eT = eB. 
then the following assertions are equivalent: 

(a) T = B. 
(b) a(T) C R. 
(c) a{T) n = 0. 

P r o o f . The implications (a )=>(b)=>(c) are clear. Now suppose that (c) 
holds. Since eB is positive (Proposition 1.2(a)), Theorem 4.2 shows that T 
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is symmetric. Hence T — B is symmetric. From eT = eB and Proposition 
1.1(a) we derive TB = BT and so eT~B = I. 

Now take A G a(T - B). Then A e R and eA = 1, thus A = 0. This gives 
<j(T — B) = { 0 } , hence r(T — B) = 0. Since T — B is symmetric, Proposition 
1.2(b) shows that ||T - B|| = 0, hence (a) is valid. • 

4.5. COROLLARY. Suppose that B E C(Ti) is symmetric, 

eT = eB and r(T) < 2TT. 

(a) T = B «=>- 2m <£ a(T) and -2irz £ a(T). 

(b) I f r ( T ) < 2TT then T = B. 

P r o o f , (a) Since r(T) < 2ir, we get from Lemma 3.2(c) that 

a(T) n C {2-ni, -2m}. 

Consequently, by Theorem 4.4, T = B if and only if 2ni, —2ni £ a(T). 

(b) follows from (a). • 

DEFINITION. T € is called isoloid if every isolated point of o{T) 

belongs to crp(T). 

From [1, Satz 112.2] we get: 

4.6. LEMMA. IfT is normal, then T is isoloid. 

4.7. THEOREM. Let eT = A and r(T) < 2ir. 

(a) If T is invertible in C{H),2m 0 a(T) or -2iri £ a(T) then T is 

normal. 

(b) Let 2trz i ap(T) and -2iri £ ap(T). Then 

T is isoloid <i=i> T is normal T is symmetric. 

P r o o f , (a) We assume that —2m £ a(T) (the proof for the case 27rz ^ a (T) 

is similar). Take A e o(T). Then eA > 0, thus A = a + 2km for some a e M 
and k e Z . Then 

|A|2 - a 2 + 4 A ; V < r ( T ) 2 < 4TT2, 

hence k € { 0 , 1 , - 1 } . Suppose k = —1. Thus A = a — 27rz, which gives 
|A|2 = a2 + 47t2 < 47T2, hence a = 0 and so A = — 2m, a contradiction. 
Therefore fc = 0 or A; = 1. If fc = 1 then A = 2m. This shows that 

a{T) C ([—2TT, 2TT] U {2TTZ}) \ { 0 } . 

But the last set is 27rz-congruence-free, hence a ( T ) has this property. The-
orem 2.1 shows that T is normal, as desired, 

(b) Because of Lemma 4.6, the implications 

T symmetric T normal = > T isoloid 

are clear. 
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Now suppose that T is isoloid. Assume that 2iri e cr(T). As in the proof 
of (a), 2m is an isolated point of a(T), hence 2iri € crp(T), a contradiction. 
Thus 2iri £ cr(T). The same argument gives —27rz ^ cr(X'). Use Corollary 4.3 
to get the symmetry of T. m 

In what follows we investigate logarithms of the operator eieA, where 
0 6 (0,2ir). The following result is due to S. Kurepa ([3, Corollary 1]). We 
will give a slightly different proof. 

4 . 8 . THEOREM. Let eT = eidA and 9 e (0,2VR). 

(a) If 9 £ (0,TT] then r(T) > 9. 
(b) If 9 € [vr, 2Tr) then r(T) >2ir-9. 

P r o o f , (a) Assume to the contrary that r(T) < 9. Then r(T - i9I) < 
r(T) + 9 < 29 < 2TT. From eT~m = A and Corollary 4.3 we see that 
T — i9I is symmetric, thus T is normal and T — T* = 2i9I. Furthermore, by 
Proposition 1.2(b), 

29 - r(T - T*) = ||r - T*|| < ||T|| + ||r*|| = 2||r|| = 2r(T) < 29, 

a contradiction. 
(b) Put I? = 2TT - 9, then if e (0, TT] and 

Our final result in this section reads as follows: 

4 . 9 . THEOREM. Let eT = ei9A and 9 e (0,2TT). 

(a) If 9 E (0,7r) and r(T) = 9 then T is normal and 

an(T) = {i9}. 

(b) If 9 = TT and r(T) = 9 then 

a^{T) - {¿TT, -in}. 

(c) If 9 € (it, 2ir) and r(T) — 2ix — 9 then T is normal and 

av{T) = {i(9 - 2 t t ) } . 

EXAMPLE . Le t H = C 2 and 

where z G C \ { 0 } (see Example 2.6). Then 

r(T) = ir, eT = - I = eiwI 

and 
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But T is not normal. This example shows that in part (b) of Theorem 4.9 
in general T is not normal and an(T) is not a singleton. 

P r o o f of T h e o r e m 4.9. (a) Let A e <M r ) - Then eA = eiea for some 
a > 0. Thus there is k G Z such that A = log a + i(0 + 2kir). From 

|A|2 = (log a) 2 + (9 + 2fc7r)2 = r(T)2 = 92, 

we derive 19 + 2kn\ < 9. It follows that kir > -9 and k < 0. Since 9 < 
7r, — 1 < k < 0, thus k = 0. Hence A = log a + i9. Again by |A| = 8, we 
get A = i9 and so <rw(T) = { i 9 } . Prom r(T) = 9 < 7r we see that a(T) is 
27rz-congruence-free. Since A = eT~iei, eT'+iSI = A* = A = eT~ld. Hence 

eT _ eT'+2i6I 

Proposition 1.1(a) shows then that T(T* + 2i0I) = (T* + 2iOI)T, thus T is 
normal. 

(c) Put •& = 27r - 9. As in the proof of Theorem 4.8(b) we have d € (0, ix) 
and eT* = e^A. Since r(T*) = r(T) = 2TT - 9 = tf, (a) gives the normality 
of T and a„(T) = {A : A E a^(T*)} = {-¿T?} = {i(9 - 2TT)}. 

(b) Take A € Then A = log a + i(ir + 2kn) for some a > 0 and 
k € Z. Use 

|A|2 = (log a) 2 + (2k + l)27r2 = n2 

to derive k 6 {0, —1}. Thus A = i-K or A = — wr. • 

5. Logarithms of unitary operators 
Throughout this section let U denote an unitary operator in C(H) and 

let T,S E £(H). 

5 . 1 . L E M M A . a(U) c { A e C : |A| = 1 } . 

P r o o f . [1, Satz 118.1]. • 

5 . 2 . T H E O R E M . If es = U, then 

S is normal S = —S*. 

P r o o f . (<=) : Clear. 
( = » ) : By hypothesis and Theorem 2.5, 

e s + s * = U*U = I. 
Take A G a(S + S*). Then A 6 R and eA = 1, thus A = 0. Therefore 
a(S + S•) = {0} and r ( 5 + S*) = 0. Proposition 1.2(b) gives S = -S*. m 

5 . 3 . COROLLARY. LetelT — U. Then the following assertions are equivalent: 

( a ) T is normal. 
( b ) T is symmetric. 
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Proof . Put S = iT and use Theorem 5.2 to derive 

T is normal S is normal <=$> S = -S* iT = iT* <i=> T = T*. m 

5 . 4 . COROLLARY. Suppose that eiT = U and r(T) < TT. If ir g a(T) or 
—7T ^ a(T) then T is symmetric. 
Proof . Take A € cr(iT). Then eA € a(U), thus |eA| = 1, by Lemma 5.1. It 
follows that A = iß for some ß e R. Since \ß\ = |A| < r(T) < TT, 

tr(iT) C{iß:ße [-TT.TT]}. 
By hypothesis, in g cr(iT) or —in £ cr(ir), hence cr(iT) is 27rz-congruence-
free. From 

e-iT' = ^ T y = u * = jj-1 = e-iTt 

we get e i T = elT . From Proposition 1.1(a) we then derive that T is normal. 
Corollary 5.3 shows therefore that T is symmetric. • 

REMARK. Example 2 .6 shows that we cannot drop the condition "7r ^ CR(T) 
or —7r 0 er(T)" in Corollary 5.4 without changing the conclusion. 

5 . 5 . COROLLARY. Suppose that etT is unitary and that r(T) < n. Then T 
is symmetric. 

References 

[1] H. H e u s e r , Funktionalanalysis, Teubner (1991). 
[2] E. H i l l e On roots and logarithms of elements of a complex Banach algebra, Math . 

Ann. 136 (1958), 46-57. 
[3] S. K u r e p a , A note on logarithms of normal operators, Proc. Amer. Math. Soc. 13 

(1962), 307-311. 
[4] G. K. P e t e r s e n , Analysis Now, Springer (1988). 
[5] C. R. P u t n a m , On square roots and logarithms of self-adjoint operators, Proc. Glas-

gow Math . Assoc. 4 (1958), 1-2 . 
[6] Ch. S c h m o e g e r , Remarks on commuting exponentials in Banach algebras, Proc. 

Amer. Math . Soc. 127 (1999), 1337-1338. 
[7] Ch. S c h m o e g e r , Remarks on commuting exponentials in Banach algebras II, Proc. 

Amer. Math . Soc. 128 (2000), 3405-3409. 
[8] E. M. E. W e r m u t h , A remark on commuting operator exponentials, Proc. Amer. 

Math . Soc. 125 (1997), 1685-1688. 

MATHEMATISCHES INSTITUT I 
UNIVERSITÄT KARLSRUHE 
D-76128 KARLSRUHE, GERMANY 
E-mail: christoph.schmoeger@math.uni-karlsruhe.de 

Received June 11, 2001; revised version November 6, 2001. 


