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ON LOGARITHMS OF LINEAR OPERATORS
ON HILBERT SPACES

1. Introduction and terminology

Throughout this paper H denotes a complex Hilbert space and L(H)
the Banach algebra of all bounded linear operators on H. For A € L(H)
the spectrum and the spectral radius of A are denoted by o(A) and r(4),
respectively. For the resolvent set of A we write p(A).

DEFINITIONS. An operator A € L(H) is said to be

(a) normal if AA* = A*A,

(b) unitary if AA* = I = A*A, where I denotes the identity operator H,

(c) symmetric if A* = A,

(d) positive if A is symmetric and (Az|z) > 0 for all z € H, where (-|-)
denotes the inner product on H.

For A € L(H) we denote by e the operator

00 An
6A=Z —n—|

n=0
In [5], C. R. Putnam has proved the following result:
THEOREM A. If A € L(H) is positive, T € L(H),
el =A and ||T| < 2log?2

then T is symmetric.

S. Kurepa has shown in [3, Theorem 3| that it is sufficient to assume
that ||T|| < 2
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THEOREM B. If A € L(H) is positive, T € L(H),
eT =A and |T|| <2n
then T is symmetric.

Since 2™ = I, the condition ||T|| < 27 cannot be replaced by ||T|| < 27
without changing the conclusion.

The following result is also due to S. Kurepa (see [3, Theorem 2]).
THEOREM C. Suppose that N € L(H) is normal, 0 < a < %, T € L(H),
o(N)C {'r‘ew :—ar < ¢ < am, r > 0},

o2
ef' =N and ||T| < (1 — —Z> T

then T is normal.

The aim of the present paper is to prove some generalizations and im-
provements of Theorem B and Theorem C. Furthermore we shall extend
Corollary 1 in [3]. To this end we need some preparations which we will give
in this section. In Section 2 we consider logarithms of normal operators. Sec-
tion 3 deals with logarithms of symmetric operators. Logarithms of positive
operators are considered in Section 4. In Section 5 we are concerned with
logarithms of unitary operators.

DEFINITION. A set 2 C C is called 2wi-congruence-free if A1, A2 € Q and
A1 = A2 (mod 27i) imply that A; = Ag.

1.1. PROPOSITION. Let A, B € L(H).

(a) If 0(A) is 2mi-congruence-free and e = eB then AB = BA.

(b) If 6(A) and o(B) are 2mi-congruence-free and ede? = ePel then
AB = BA.

(c) If edef = eAtB = ePel and (A + B) is 2mi-congruence-free then
AB = BA.

(d) A is normal if and only if

efeh” = eAtA" = eATeA

Proof. (a) is shown in [2].

Proofs of (b) can be found in [6] or [8].

(c) is proved in [7, Theorem 2].

(d) Since A + A* is symmetric, 0(A + A*) C R. Hence (A + A*) is
2mi-congruence-free. Now use (c) to get the result. m

1.2. PROPOSITION. Let A € L(H).

(a) If A is symmetric, then e is positive.
(b) If A is normal, then r(A) = || Al].
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(c) Let A be normal. Then:
A is symmetric <= o(A) CR
and
A is positive <= o(A) C [0,00).
Proof. (a) It is clear that e“ is symmetric. For each z € H we have
(eAz|z) = (ePe?z|z) = (eTzle?z) = e 2% > 0,
hence e4 is positive.
(b) is shown in {4, Lemma 4.3.11].
(c) follows from Proposition 4.4.7 in [4]. =
DEFINITIONS. Let A € L(H).

(a) The real part Re(A) of A is defined by
Re(4) = (4 + A°).

(b) If A is positive there is a unique positive operator, denoted by A3,
satisfying (A2)2 = A (see [4, Proposition 3.2.11]). A? is called the square
root of A.

(c) The absolute value |A| of A is defined by

4] = (47 4)*
(observe that A*A is positive).
(d) We denote the set of eigenvalues of A by o,(A).
(e) The set 0,(A) = {A € 0(A4) : |A\| = r(A)} is called the peripheral
spectrum of A.

1.3. PROPOSITION. Let A,B € L(H) and AB = BA. Then r(A+ B) <
r(A) + r(B) and r(AB) < r(A)r(B).

Proof. [1, Satz 13.11]. =

2. Logarithms of normal operators

Throughout this section N denotes a normal operator in £(H).
2.1. THEOREM. If T € L(H), e¥ = N and o(T) is 2mi-congruence-free,
then T is normal.

Proof From e”” = (e7)* = N* we get
eTel = N*N =NN*=eTeT".
Now use Proposition 1.1(b) to derive TT* = T*T". =

Our next result generalizes Theorem C:
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2.2. COROLLARY. Suppose that T € L(H),
ef =N and r(T) <.
Then T is normal.

Proof. Since r(T) < =, o(T) is 2wi-congruence-free. The normality of T
follows from Theorem 2.1. m

EXAMPLE. Let H = C? and the operator T be given by the matrix

T = <” 0 )
z —i7r

where z € C\ {0} is arbitrary. Then o(T) = {im, —in}, 7(T) = = and
eT = —I. But T is not normal. This shows that the condition r(T) < 7 in
Corollary 2.2 cannot be replaced by »(T) < .

2.3. THEOREM. Suppose that T € L(H) and eT = N. Then
T is symmetric <= o(T) C R
In this case N is positive.

Proof. (=): If T is symmetric, o(T) C R. By Proposition 1.2(a), N = eT
is positive.

(«<=): Since o(T) C R, o(T) is 2wi-congruence-free, thus, by Theorem
2.1, T is normal. Now use Proposition 1.2(c) to see that T' is symmetric. m

2.4. COROLLARY. If T € L(H) and €T = N then
T is positive <= o(T) C [0, 00).
Proof. Theorem 2.3 and Proposition 1.2(c). m

2.5. THEOREM. Let T € L(H) and eF = N. The following assertions are
equivalent:

(a) T is normal;

(b) eT+T" = N*N;

(c) eRe(T) = |N|.
Proof. If T is normal,

eTHT" = ¢T"eT = N*N,

thus (a) implies (b).

Suppose that (b) holds. It follows from Proposition 1.2(a) that eT+7
and eRe(T) are positive. Hence eRe(T) is the square root of eT+T"  Therefore

eRe(T) — (N*N)% — iN|,

hence (c) is valid.
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Now assume that (c) holds. Then
eT*T" = |N|> = N*N = NN*,
hence
oTHT" _ JT° T _ T T
It follows from Proposition 1.1(d) that T is normal. =

3. Logarithms of symmetric operators
Throughout this section A denotes a symmetric operator in £L(H).
As an immediate consequence of our results in Section 2 we have:

3.1. THEOREM. Let T € L(H) and eT = A.
(a) If o(T) is 2mi-congruence-free, then T is normal.
(b) T is normal <= 717" = A2,
(c) T is symmetric <= o(T) CR.
(d) T is positive <= o(T) C [0, 00).
DEFINITIONS. For j € Z put
QJ‘ = {a+j7rz' RS ]R},
Q= U Q5, Q_= U Qajs1,
jez\{o0} jez
Q=0,U0_.
The following lemma is easily verified.
3.2. LEMMA.

(a) =R and Q CC\R.

(b) For A € C we have
(i) e* €R and e* >0 <= X € Q U, and
(ii) e* €eR and e* <0 <= A€ N_.

(c) IfK={AeC:|A| <2n} then

K NQy = {2m, —2mi}
and
KnQ_={atir:aeR |of < V3r}.

3.3. THEOREM. Let T € L(H) and e¥ = A. Then
T is symmetric <= o(T)NN = 0.
In this case A is positive.
Proof. (=): If T is symmetric, o(T) C R, thus o(T)NQ = 0.

379
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(«<=): Since €T is invertible in £L(H), 0 € p(A), therefore o(A) C R\ {0}.
Take A € o(T), then, by the spectral mapping theorem ([1, Satz 99.2}),
e* € o(A). Part (b) of Lemma 3.2 yields, since o(T) N =0, A € Qy =
R. Therefore we have that ¢(T) C R. Use Theorem 3.1(c) to derive the
symmetry of T'. m

3.4. COROLLARY. Let T € L(H), e = A and r(T) < 2r. The following
assertions are equivalent:

(a) T is symmetric.
(b) —2mi, 2mi € o(T) and o(T)N{atin:a R, |a| < 37} =0.

Proof. Lemma 3.2(c) and Theorem 3.3. m

4. Logarithms of positive operators
Throughout this section let A € £L(H) be positive and T € L(H).

4.1. THEOREM. If eT = A then
T is normal < e®(T) = 4.
Proof. Since A is positive, Theorem 2.5 gives
T is normal <= e®¢(T) = |4] = (Az)% =An
4.2. THEOREM. If €T = A then
T is symmetric < o(T) Ny =0.

Proof If A € o(T) then e* € o(A). Since 0 € p(A), we get e* > 0, by
Proposition 1.2(c). Lemma 3.2(b) gives then that o(T) N Q- = 0. Now use
Theorem 3.3 to complete the proof. m

4.3. COROLLARY. If eT = A and r(T) < 27 then
T is symmetric <= 2ni € o(T) and —27i € o(T).
Proof Lemma 3.2(c) and Theorem 4.2. m

REMARK. As an immediate consequence of Corollary 4.3 we get Theorem B
(Section 1).
B

4.4. THEOREM. Suppose that B € L(H) is symmetric and that eT = €B.
then the following assertions are equivalent:

(a) T = B.

(b) o(T) CR.

(c) o(T)NQ4 = 0.
Proof. The implications (a)=>(b)=>(c) are clear. Now suppose that (c)
holds. Since e? is positive (Proposition 1.2(a)), Theorem 4.2 shows that T
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T

is symmetric. Hence T — B is symmetric. From e = e® and Proposition

1.1(a) we derive TB = BT and so eI~ 8 =I.

Now take A € o(T — B). Then A € R and e* = 1, thus A = 0. This gives
o(T — B) = {0}, hence r(T'— B) = 0. Since T — B is symmetric, Proposition
1.2(b) shows that ||T"— B|| = 0, hence (a) is valid. =

4.5. COROLLARY. Suppose that B € L(H) is symmetric,
eT =eB and r(T) < 27
(a) T = B<=2mt € o(T) and —2mi & o(T).
(b) If r(T') < 2w then T = B.
Proof. (a) Since r(T') < 27, we get from Lemma 3.2(c) that
a(T)NQ, C {2mi, —27i}.
Consequently, by Theorem 4.4, T = B if and only if 27i, —27i & o(T).
(b) follows from (a). m

DEFINITION. T' € L(H) is called isoloid if every isolated point of o(T)
belongs to o,(T).

From [1, Satz 112.2] we get:
4.6. LEMMA. If T is normal, then T is isoloid.
4.7. THEOREM. Let €T = A and (T) < 27.
(a) If T is invertible in L(H),275 € o(T) or —2mi & o(T) then T is
normal.
(b) Let 2mi & 0,(T") and —27i & 0,(T). Then
T is isoloid <= T is normal <= T is symmetric.
Proof. (a) We assume that —27i & o(T) (the proof for the case 273 ¢ o(T)
is similar). Take A € o(T). Then e* > 0, thus A = a + 2kxi for some @ € R
and k € Z. Then
A2 = o + 4K*7% < r(T)? < 4n?,
hence k € {0,1,—1}. Suppose k = —1. Thus A = @ — 2xi, which gives
IA? = & + 47? < 47%, hence @ = 0 and so A = —27i, a contradiction.
Therefore k = 0 or k = 1. If k = 1 then A = 2xi. This shows that
o(T) € ([-2m, 2] U {2mi}) \ {0}.

But the last set is 2wi-congruence-free, hence o(T') has this property. The-
orem 2.1 shows that T is normal, as desired.
(b) Because of Lemma 4.6, the implications

T symmetric = T normal = T isoloid
are clear.
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Now suppose that T is isoloid. Assume that 27¢ € o(T). As in the proof
of (a), 27i is an isolated point of o(T'), hence 273 € 0,(T), a contradiction.
Thus 27t € o(T'). The same argument gives —27i ¢ o(T). Use Corollary 4.3
to get the symmetry of T'. m

In what follows we investigate logarithms of the operator e A, where
6 € (0,2m). The following result is due to S. Kurepa ([3, Corollary 1}). We
will give a slightly different proof.

4.8. THEOREM. Let eT = €'’ A and 0 € (0,27).

(a) If 6 € (0, 7] then r(T) > 6.
(b) If 6 € [m,27) then r(T) > 27 — 6.

Proof. (a) Assume to the contrary that r(T) < 6. Then (T — i6I) <
r(T) + 6 < 20 < 27. From eT-% = A and Corollary 4.3 we see that
T — 101 is symmetric, thus T is normal and T — T™ = 2¢I. Furthermore, by
Proposition 1.2(b),

20 =r(T-T7) =T -T"|| < 1Tl + IT*}| = 2|IT| = 2r(T) < 26,

a contradiction.
(b) Put ¢ = 27 — @, then ¥ € (0, 7] and

eI = (eT) = e~ A = 270 4 — ¢4,
Now use (a) to derive
r(M)=r(T*)20=2r—-0. n
Our final result in this section reads as follows:
4.9. THEOREM. Let eT = ¢ A and 0 € (0, 2r).
(a) If 8 € (0,7) and r(T') = 6 then T is normal and
o (T) = {i6}.
(b) If 8 = 7 and r(T') = 0 then
o-(T) = {im, —in}.
(c) If 0 € (w,27) and r(T) = 2w — 6 then T is normal and
o(T) = {i(0 - 2m)}.
ExAMPLE. Let H = C? and
(s 1)
z —iw
where z € C\ {0} (see Example 2.6). Then
r(T)=n, el =-I=¢e"]

and
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0(T) = 0,(T) = {im, —in}.
But T is not normal. This example shows that in part (b) of Theorem 4.9
in general T is not normal and o,(T) is not a singleton.

Proof of Theorem 4.9. (a) Let A € 0, (T). Then e* = e« for some
a > 0. Thus there is k € Z such that A = loga + (6 + 2k7). From

IA? = (loga)? + (6 + 2km)? = r(T)? = 62,
we derive |6 + 2knw| < 6. It follows that kw7 > —6 and k < 0. Since § <
m, ~1 < k €0, thus k£ = 0. Hence A = loga + 6. Again by |A| = 6, we
get A = i0 and so o,(T) = {i0}. From r(T) = 6 < m we see that o(T) is
2mi-congruence-free. Since A = eT~#1 T 401 — A* = A = ¢T~% Hence

oT = T +2i81

Proposition 1.1(a) shows then that T'(T* + 2i6I) = (T + 2i6I)T, thus T is
normal.

(c) Put ¥ = 27 — 0. As in the proof of Theorem 4.8(b) we have ¥ € (0, 7)
and eT" = e*? A. Since r(T*) = 7(T) = 21 — 6 = 9, (a) gives the normality
of T and 0,(T) = {X : A € 0,(T*)} = {~-i¥} = {i(6 — 2m)}.

(b) Take A € 0.(T). Then X = loga + i(w 4 2kx) for some o > 0 and
k € Z. Use

A2 = (log a)? + (2k 4 1)272 = 72
to derive k € {0,-1}. Thus A=imror A= —in. =

5. Logarithms of unitary operators

Throughout this section let U denote an unitary operator in £(H) and
let T,S € L(H).

5.1. LEMMA. c(U) C {A € C: |A\| =1}.
Proof. [1, Satz 118.1]. m
5.2. THEOREM. If e = U, then

S is normal <= § = -S*.

Proof. (<=): Clear.
(=>): By hypothesis and Theorem 2.5,

S = U =1
Take A € 0(S + S*). Then A € R and €* = 1, thus A = 0. Therefore
o(S+ 5*) = {0} and r(S + S*) = 0. Proposition 1.2(b) gives § = —S*.
5.3. COROLLARY. Let €T = U. Then the following assertions are equwalent

(a) T is normal.
(b) T is symmetric.
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Proof Put S = 1T and use Theorem 5.2 to derive
Tisnormal < Sisnormal <= S = S +=iT=iT" <= T=T* n

5.4. COROLLARY. Suppose that €T = U and r(T) < n. If 1 ¢ o(T) or
—n & o(T) then T is symmetric.

Proof Take A € o(iT). Then e* € o(U), thus |e*| = 1, by Lemma 5.1. It
follows that A = i3 for some 8 € R. Since || = |A| < r(T) < =,

o(iT) C {iB: B € [, 7]}
By hypothesis, ix & o(iT) or ~in ¢ o(iT), hence o(iT) is 2wi-congruence-
free. From
e-—iT" — (eiT)* —=U* = U—1 — e_iT,
we get 7 = T, From Proposition 1.1(a) we then derive that T is normal.
Corollary 5.3 shows therefore that T is symmetric. m

REMARK. Example 2.6 shows that we cannot drop the condition "x ¢ o(T")
or —m € o(T')” in Corollary 5.4 without changing the conclusion.

5.5. COROLLARY. Suppose that e'T is unitary and that r(T) < w. Then T
s symmeltric.
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