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ON THE SEQUENTIAL STRONG-WEAK CLOSEDNESS
OF THE NEMYTSKIJ MULTIVALUED OPERATOR

Abstract. Let 2 be a measure space, and E, F be separable Banach spaces. Given a
multifunction f : @ x E — 2F, denote by N ¢ (z) the set of all measurable selections of the

multifunction f(-,z(-)) : Q@ — 2F, s — f(s,(s)), for a function z : Q@ — E. In this note
we obtain a general theorem on the sequential strong-weak closedness for the Nemytskij
multivalued superposition operator Ny acting into a Banach space of measurable F-valued
functions in the infinite-dimensional case dim F = +o0, via discovering a new relation
between the Q-upper limit and the M-upper limit of a sequence of subsets of F'.

Introduction

Closedness-type theorems play important roles in many problems of the
theories of differential / integral inclusions and optimal control. The first
results of this kind were obtained in the work of C. Olech, A. Lasota, L. Ce-
sari, C. Castaing, C. Castaing and M. Valadier, and others in 1960’s decade
(see references e.g. in [7, 9]).

The present note devotes the sequential strong-weak closedness problem
for the Nemytskij multivalued superposition operator Ny generated by a
multifunction f : @ x E — 2F (Q is a measure space, and E, F are sepa-
rable Banach spaces) and which acts into a Banach space Y of measurable
F-valued functions. In the finite-dimensional case dim F' < 400 the general
sequential strong-weak closedness result for Ny, at least in the case of the
L,-type space Y, can be immediately deduced from the above mentioned
work. In the infinite-dimensional case dim F = 400, various results on the
sequential strong-weak closedness for Ny acting into the L,-type space Y
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(1 < p < o0) were obtained via different proofs by C. Castaing, C. Cas-
taing and M. Valadier, H. Attouch and A.Damlamian, J. P. Daures, N. S.
Papageorgiou, and many others (see all different historical comments and
numerous references in [1, 2, 4-7, 9-11, 14]).

In this note we present a general sequential strong-weak closedness the-
orem (see Theorem 2.1 in Section 2) which incorporates many of known
results of this kind for Ny acting into the L,-type space Y and which imme-
diately extends these results to the case of the non-L,-type space Y (such
as Orlicz space, Banach lattice, K6the-Bochner space [12], or Banach mod-
ule [13]). Theorem 2.1/(2) together with its proof is crucially based on a
new relation (see Lemma 2.1) between the Q-upper limit and the M-upper
limit of a sequence of subsets of F in the case dim F = +00. Note that
Theorem 2.1/(2) allows immediately to refine recent existence theorems (2,
3] for nonlinear inclusions with nonpolynomial / exponential nonlinearities
by droping such the additional assumption of {2, 3] that Ny maps an order
bounded set into an order bounded set of Y.

The collection of all proofs of the results of Section 2 will be given in
Section 3.

1. Some terminology and notations

First, we shall give some terminology and notations in set-valued anal-
ysis following, e.g., [7, 9, 11]. Given a multifunction I' : X — 2Y and
M C X, define GrT = {(z,y) € X xY : y € TI'(z)}, domT = {z €
X : T(z) # 0}, and I'(M) = Uyep I(z). Let F be a metric vector space.
Denote by cl(M) (resp., co(M) and c6(M) = clco(M)) the closure (resp.,
the convex hull, the closed convex hull) of a set M in F. We denote [2]
by P(F) (resp., CI(F), Bd(F), Cv(F), etc.) the family of all nonempty
(resp., and closed, and bounded, and convex, etc.) subsets of F. We de-
note by CI(Fy) (resp., Cp(Fy), CvCp(Fy), etc.) the family of all nonempty
w-weakly closed (resp., w-weakly compact, convex and w-weakly compact,
etc.) subsets in F,, endowed with the w-weak topology o(F, F'*). Denote by
B(F) the algebra of all Borel subsets of F.. We recall the Cesari’s Q-upper

limit: Q —lim A, def U{ N cleo{ U z&} : zx € Ax}, and the M-upper
n=1 k>n

limit: w — imA,, def {u € Fy : w=lmu,, in Fy, up, € An,}. We recall

also the K-lower limit: limA, def {v € F: u=limuy, u, € Ap}, and the

K -upper limit: imA,, def {u € F: u=Ilimug,,, u,, € A,,}. Nowlet E

be a metric space. Then f : F — 2F is called Q-upper semicontinuous if
Q- lim f(un) C f(u) (asequence u, — uin E); M-upper semi-continuous
n—oo

(M-u.s.c.) if w — limf(un) C f(u) (a sequence u, — u in E); sequentially
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strong-weakly closed, if the graph Gr f is sequentially closed in E X F,. It is
known that (see references, e.g., in [11, 14]): If f : E — CvCl(F,) where F
is a Banach space and FE is a metric space, then ” f : E — Cl(F,) is u.s.c.”
= " f has sequentially closed graph in E x F, ” < 7 f is M-u.s.c”. Remem-
ber that given topological spaces X, Y and a multifunction I : X — 2Y, T
is called upper semicontinuous (or usc) at zo € X if for any openset V CY
such that I'(zg) C V, one can find an open neighbourhood U C X of z
such that I'(z) C V for all z € U. This multifunction I' is called upper
semicontinuous or usc, if it is usc at every z € X.

Second, from this place, unless stated to the contrary, E and F, etc.
denote separable Banach spaces; (2,9, 1) denotes a fixed measure space
with a complete o-finite o-additive measure 4 on a g-algebra % of subsets
of Q; S(, F) denotes the complete metric vector space of all (classes of
equivalent) measurable functions z : @ — F, equipped with the metric
topology via the convergence in measure. Given a property Ps, we shall
denote P, (mod0) if P; is valid for almost all (a.a.) s € Q. In Theorem 2.1
we need a Banach space Y which is continuously embedded into S(2, F).
For example, it is known that every Kéthe-Bochner space Y = Y[F] (and
every Banach module Y in the sense [13]) always is continuously embedded
into S(Q, F). We recall some definitions. A Banach space Y C S(Q2, R) with
norm |||y is called a Kéthe space (also under the name, Banach lattice), if
z €Y and y € S(N,R) and |y(s)| < |z(s)| a.e. then y € Y and ||ylly < ||z]|y.
Given a Kothe space Y C S(,R), define the Kothe-Bochner space Y =

Y[F] C S(, F) as the Banach space of all measurable functions z : Q@ — F

such that ||z(-)||F € Y, with norm ||z|ly ef llz(:)lIplly- Concrete examples

of Kothe spaces are Lebesgue spaces L, and many non-L,-type spaces such
as general Orlicz / Lorentz / Marcinkiewicz spaces and many others (see
e.g. [12]).

Third, we denote by Sel g the set of all measurable selectors of a multi-
function g : Q — 2F i.e.

(1) Selg ={y € S(Q, F): y(s) € g(s) ae.}.

Further, a multifunction f : Q x E — 2F is called [2] superpositionally
Sel-measurable on G = S(2, E) or shortly sup-Sel-measurable, if for every
z € G the multifunction I' = f(-,z(-)) : Q@ — 2F is Sel-measurable, i.e.
SelT # .

2. The sequential strong-weak closedness

THEOREM 2.1. Let F' be a separable Banach space with dim F = 400, Y be
a Banach space embedded continuously into S(Q, F). Let E be a complete
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separable metric space, f(-,-,A): Q@ x E — CvCl(F,) U {0} for each X of a
metric "space of parameters” A.

Suppose one of the following conditions (in fact, the condition 2 = the
condition 1):

(1) f(-,-,A) is sup-Sel-measurable for each A, and f(s,-,-) is Q-upper
semicontinuous for a.a. s € §Q;

(2) f(-,u,A) is a Sel-measurable on Q multifunction for each (u,)) €
E x A, for a.a. s € Q f(s,-,-) on E x A is w-weakly pre-compact
in Fy [in particular, bounded in F with F' being reflezive] on each
convergent sequence and it is Q-upper semicontinuous (& M-u.s.c.
& sequentially strong-weakly closed).

Then, if N(x, ) ef Sel f(-,z(-),A) C Y for every (z,)) of some domain
G C S(Q,FE) x A, the operator N : G — CvCl(Y,o(Y,Y™*)) is sequen-
tially strong-weakly closed. In particular, if X being another metric space
is continuously embedded into S(Q, E) and N(z,\) CY for every (z,)) of
X x A, then N: X x A — CvCl(Y,0(Y,Y™)) is sequentially strong-weakly
closed.

Note that the proof of Theorem 2.1/(2) relies on Lemma 2.1 and Propo-
sition 2.1. Note also that different particular cases in different forms of Theo-
rem 2.1/(2) for M-u.s.c. f(s, -, -) have been continuously and intensively used
together with repeating their proofs (different from our proof) for the
L,-type space Y = L,[F] (p # oo) by N.S. Papageorgiou and his co-workers
since 1987 (see references in [5, 11, 14]). A particular case of Theorem 2.1/(2)
is the case when Y is some L,-type space and the generating function f sat-
isfies the condition: f(-,u, A) is a Sel-measurable on 2 multifunction for each
(u,A) € Ex A, for a.a. s € Q f(s,-,-) on E x A is w-weakly pre-compact
in F,, [in particular, bounded in F with F' being reflexive] on each conver-
gent sequence and it is strong-weak upper semicontinuous from E x A into
F, (see different well-known forms of this case together with their proofs
(different from our proof), and various references in 5, 7, 9, 11}]; cf. also
with [1, 4, 6]). The related closedness problems were treated, e.g., in [1, 4,
6, 7).

LEMMA 2.1. Let F be a Banach space, {A,, : n € N} C Cv(F), and USZ; A,
be w-weakly pre-compact in F,, [in particular, if F is reflexive and U3, An
is bounded in F]. Then

(2) ow— lim A, =cl(Q— lim A,} #0.

n—o0
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Remark that Ch. Hess [10] (see also in [4]) shows that under the assump-
tion of Lemma 2.1 the relation ©w—~ lim A, = () clco{ |J Ak} holds,
n—o n=1 k>n
but we need not use this relation here.

PROPOSITION 2.1. Let F be a separable Banach space with dim F' = 400,
f: Qx E — CvCp (Fy) U {0} be a multifunction such that f(-,u) is Sel-
measurable for all w € E and f(s,-) is Q-upper semicontinuous for a.a.
s € Q. Suppose that f(s,-) is w-weakly pre-compact (in particular, bounded
with F being reflexive) on each convergent sequence [then, the above Q-
upper semicontinuity < M -upper semicontinuity & sequential strong-weak
closedness for f(s,-)/.

Then f is sup-Sel-measurable on S(Q0, E).

3. Proofs of the results of Section 2

We recall the support function for a set A: o(u*, A) = sup{(u*,u) :
u € A}

Proof of Lemma 2.1. First we remark that Q— Iim 4, =

n=—+00
co{@Q—- Lim A,}, since all A, are convex. Putting A = w— lim A,, B=
n—oo n—00

Q- lim A,, we must show T6A = clB. Since {A, : n € N} is w-weakly

pre-compact, via the Krein-Smulian Theorem (8], B C t6{A4, : n € N} €
CvCp(Fy), so clB € CvCp(F,). On other hand, by the classical Banach-
Saks-Mazur Theorem [8: Theorem I1.5.2], A C B, and so we get

(3) # # A C clB € CvCp (Fy),
4) o(z*,c0A) < o(z*,clB) = o(z*,B) < +o0 (z* € F*).

We claim that

(5) o(z*,B) < lim (z*,A4,) < +oo (z* € F*),
(6) Iim (z*, A,) < o(z*,T6A) (z* € F*).

To see (5), fix z* € F* and y € B. Then by definition, y € B’ where
B’ =n1im co{z; : j > n} for some z, € A,. Remark that B’ = lim co{z; :

n~—oo
j=>n}=lm co{z;: j > n},sinceco{z;: > n} | (n1). Then there exist
n—oo
Yn € co{z; : j > n} such that y, — y in norm of F. So we can find positive

numbers an(x) and elements . (k = 1,---,K,) with n < n(k) € N
such that y, = Zi;"l Qn(k)Zn(k)s ZkK="1 ank) = 1, any > 0. We get
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* K, * * Kn *
(II) ) yn) = Ek:l Oln(k) ((IJ s zn(k)) §31>1P (117 ) x]) Zk:l a'n(k) =Sl>1p (:L' ) 513]),
Jz Jzn

hence (z*,y) =lim (z*,y,) < limsup (z*,z;) = lim (z*,a—vn) < lim
n—oo n—00,

]Zn n— o0 n—oo
(z*, Ayn). So we get (5).

The inequality (6) is easily checked since {4, : n € N} is w-weakly pre-
compact. From the inequalities (4), (5), (6) we get o(z*,T0A4) = o(z*,clB) €
R (z* € F*), and then by (3) and Hérmander’s Theorem [7] we deduce
A =clB (ie. (2)). =

Proof of Proposition 2.1. Since f(-,u) : & — Cv(F)U {0} is Sel-
measurable for all 4 € E, f is sup-Sel-measurable on the set of all measurable
step-functions. Further, fix a measurable function z :  — E and let {z,}
be a sequence of measurable step-functions such that z,(s) — z(s) a.e. on Q.
For each z,, fix a measurable selection y,, of the Sel-measurable multifunction

f( ().
Consider the multifunction A, A(s)défQ— lim y,(s). Since clco{yx(s) :
n—oo

k > n} C cleo{f(s,zx(s)) : k > n} is w-weakly compact for a.a. s € Q,
we have, via the definition of Q-upper limit, A(s) = NS, clco{yk(s) : k >

n} # 0(mod0). Via e.g. [10] for clco and for lim , the multifunction A

n—00

is (mod0)-Gr-measurable, i.e. exists D € A with p(Q2\D) = 0 such that
the graph of A : D — 2F belongs to the product algebra 2 x B(F). So
applying the known von Neumann-Aumann Selection Theorem (7], we get
a measurable selection y € Sel A. Since f(s,-) is @-u.s.c., we get A(s) C
Q- E?;o f(s,2n(8)) C f(s,z(s)) (mod0). Hence, y € Sel f(-,z(-)).

The equivalent relations inside of Proposition follow from f(s,u) €
CvCp (Fy) C CvBdCl(F)(mod0) and Lemma 2.1 since we get then the
equivalence of four following inclusions (a sequence u, — v in E): Q— lim

Floun) € Fls,w), (@ T f(s,un) € flo,), w— T fls,un) C

f(s,u), and To(w— niin—;o f(s,un)) C f(s,u). =

Proof of Theorem 2.1. First we suppose the condition 1 of Theorem.
Then N(z,A) = Sel f(-,z(-),A) € Cv(Y) for every (z,A) € G. Now, fix
(Tn, An), (z,A) € G and y, € N(zn,An) such that z, — z in S(Q, E),
An = Ain A} y, — y in (Y,0(Y,Y™)). Via Riesz’s Theorem z,, — z a.e.
for some subsequence n. Via Banach-Saks-Mazur’s Theorem [8: Theorem
11.5.2] there exist 2; € co{yn; : j > k} such that 2z — y in norm of Y, and
so zr, — y in S(, F), and therefore via Riesz’s Theorem, by passing to a
subsequence of k and denoting it again by k, zx(s) — y(s) a.e. Hence,

(s) € {n,(5) : 5 2 k} = Q= T 4y () (modo).
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Since f(s,-,-) is @-upper semicontinuous for a.a. s € {2, we get then
y(s) € Q— k@o Un, (8) C @— k@;o (8,20, (8), An,) C f(s,2(s), A) (mod0)

that proves y € N(z, A), and so the sequential strong-weak closedness of N
follows.

Second, via Proposition 2.1 and via Lemma 2.1 (together with the
analogous argument such as in the end of Proof of Proposition 2.1), from
the condition 2 of Theorem the condition 1 of Theorem follows as well as
we get all equivalent implications inside the condition 2 of Theorem. m
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