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FINITE OPERATORS

Abstract. In this paper we give a class of finite operators of the form A + K,
where A € £(H) and K is compact. These results are used to generalize the theorem
of P.R.Halmos [2, Theorem 7 ] and the result given by J. P. Williams [7, Theorem 5] and
we prove that Wo(64,8) = coo(64,B), where Wo(64,8), coa(64 ) denote respectively
the numerical range of 64, g and the convex hull of 6(64,B) (the spectrum of 64 g) for
certain operators A,B € £(H). 64 p is the operator on £(H) defined by 64 p(X) =
AX - XB (X € £(H)).

1. Introduction

Let £(H) be the algebra of all bounded linear operators on an infinite
dimensional complex and separable Hilbert space H.

An operator A € £(H) is called finite if ||AX — XA —I|| > 1 for each
X € £(H). The class §(H) of finite operators is uniformly closed. It contains
every direct sum of a compact and normal operator [8]. For each integer
n>1, R, = {T € £&H) : T has an n — dimensional reducing subspace}. It
is known that %, C F(H) for n > 1 where the bar indicates the norm closure
of R, (8], each of the following conditions is a sufficient conditions for an
operator A to belong to R;:

1) |A = M| = (A — AI) [2, Theorem 8.

2) A=T+ K, where T is hyponormal and K is compact |7, Theorem
2]. In [4] we show that the set of all finite operators is not invariant under
similarity. In this paper we prove that every dominant operator is finite
and every operator of the form (dominant + compact) is also finite. In
addition we find a new class of finite operators which contains the class of
operators A € £(H) such that ||A — AI|| = r(A—AI) and we prove that every
operator of this form + compact is finite. Finally we obtain a new proof of
the containment in %; of the algebra £ of all multiplication operators on
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£2 and the algebra T of all analytic Toeplitz operators. Consequently we
obtain the following results:

T+ K(H)CF(H), £°+K(H)CFH)

where JC(H) is the ideal of all compact operators on H. For 4, B € £(H),
let 64, denotes the operator on £(H) defined by 64 p(X) = AX — XB. If
A = B, 64 is called the inner derivation induced by A € £(H). J.H.Anderson
and C.Foias (1] show that if A, B are normal operators, then 20y(64 g) =
coo(d4,B), where 205(64,B), coo(64 p) denote respectively the numerical
range of 64 g and the convex hull of 0(64,5) (the spectrum of 64 g). Here
we prove this result for a large class of operators A, B € £(H).

2. Finite operators

An operator A € £(H) is called dominant by J. G. Stampfli and B. L.
Wadhwa [6] if, for all complex A, range(A — A) C range(A — A\)*, or
equivalently, if there is a real number M, > 1 such that [[(4 - A)* f|| <
My ||(A—=X)f||, for all f € H.

If there exists a real number M such that M), < M for all A, the dominant
operator A is said to be M — hyponormal. A 1— hyponormal is hyponormal.

For A € £(H) the set 2(A) = {(Az | z) : = € H and ||z|| = 1} is called
the numerical range of A. 99(A) is bounded, convex and o(A) C 20(A). Let
0ar(A) (resp. 0,(A)) denotes the approximate reducing spectrum (resp. the
approximate spectrum) of A defined by

04r(A) = the set A € C such that there exists a normed sequence (z,);
n € N* for which lim, (A4 - M)z, = 0 and lim, (A4 — A\)*z, = 0.

0,(A) = the set A\ € C such that there exists a normed sequence (z,);
n € N* for which lim, (A — M)z, =0.

LEMMA 1. 2] Ry ={A€ L(H) :0,(A)#0 }.

LEMMA 2. Let A € £(H). If ReA > 0, then {\ € 0o(A) : ReA > 0} C
Oar(A).

Proof. Let A € 0,(A), then there exists a sequence (z,) such that
(A= X)zp, — 0, then

1
B =Re(A- ) 25[(A—/\)+(A—)\)*]
satisfies (Bzy, | ) — 0. Since B > 0, it results that Bz, — 0, i.e,
1
2
Since (A — A)zp, — 0, then (A — A)*z, — 0. »

[(A=XNzn+ (A—A)'zs) — 0.
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THEOREM 3. R; contains the following operators:

1) A € £(H) such that 020(A) No(A) # 0,
2) dominant operators.

Proof. 1) We have 870(A)No(A) C 04r(A). Indeed, by the transformation
A aA+ S

the hypothesis A € 020(A4) N o(A) C 0,4 can be replaced by 0 € 620(A) N
o(A) C o4 with ReA > 0. Since 0 € Jdo(A) C o,(A), it results from
Lemma 2 that 0 € 0,,(A). Since 020(A4) N o(A) # 8, then o,-(A) # 0.

2) If A is dominant we have 0,(A) C 04,(A), indeed, if A € 0,(A), then
there exists a normed sequence {z,} such that lim,(4 — A)z, = 0. Since A
is dominant there exists a real number M) > 1 such that ||(A — A)* z,| <
My ||(A = A)zy,||, hence imp(A — A)*z, = 0, hence A € 04,(A4), that is,
04(A) = 047(A) and since o(A) C 0,(A), then 04.(4) # 0. In the two
cases we have A € R; by Lemma 1. w

LEMMA 4. If there exists A € C such that ||A — M || = r(A—MI) (the spectrum
radius of (A — AI)), then A € 00(A)No(A) .

Proof. It suffices to consider the case where ||A| = r(A4). If ||A]| = r(A),
then there exists A € o(A) : || = ||4]|; A € int20(A). Since o(A) C W(A4);
02(A) = w(A) NCw(A) and 20(A) C D(0,]}4]]), we have (D(0, ||All)
Ca(A), where (20(A) is the complementary of 25(A4) and [ICD(O lAf) =
{X: |Al > |lAll}, so that ||A|| € CD(0,JA])), then ||Al| € T2W(A) and we
have ||A|| € 23(A), that is, | A]| € 02B(A) No(A). =

REMARK 1. Theorem 3 generalizes the result given by P.R.Halmos [2], which
asserts that if, |4 — AI|| = r(A — AI), then 4 € W1.

DEFINITION 1. An operator A € £(H) satisfies the condition € if,
[1(4 ~ A1) 7H)| < [dist(A, coo(A)] 7 VA € coa(A),
where dist(\,coo(A) ) is the distance from A to coo(A).

THEOREM 5. R contains the following operators

1) ||A|| = w(A), where w(A) is the numerical radius of A.
2) A € £(H) such that A satisfies C.

Proof. 1) Let 9 be the set {\ € 26(A) : |A| = ||A]|}. Since M C H20(A) and
0W(A)No(A) C 04r(A). It suffices to prove that I C g,-(A). Suppose that
|A|l € 9, let (z5) be a normed sequence such that ||A|| = limp(Az, | zn).
Since,

[(Azn | 2,)| < [|Aza]l < || A]
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we have
lim || Az, | = || 4]
Then,
lim [|(4 ~ A 2all® = lim (4 = 4]z | (4~ | 4])zn)
= lim (|| Aza|l® + 4> = 4]l (A2p | 20) ~ | A]| (0 | Azn))

= A" + (| 41* ~ | AI° - 4% = 0.

So, ||A|| € 0.(A) C o(A), that is, ||A]| € oqr(A). Hence it suffices to apply
Lemma 1.
2) Since the equality

W(A) = coo(4) ()
implies 029(A) N o(A) # 0, it suffices to prove that (*) is a consequence of
¢. In other words, since 205(A) D coo(A) we prove that if, A € coo(A) then,
A € W(A). By applying the transformation
A A+

we can suppose that [A < 0,0 € cooc(A) C {z€ C:Rez>0}]. For every
Ve < 0 the estimate

dist(c,coa(4)) > ||
implies
(A= < e,
o)
Fllz)* < (A-)z | (A-c)z).
This implies (after letting ¢ tend to minus infinity) that
(Az | z) + (z | Az) > 0.

Hence,

W(A) c {z€C:Rez >0},
that is, A € W(A). It results that 020(A) No(A) # 0. Then, it results from
Theorem 3 that A € R;.

COROLLARY 6. F(H) contains the following operators:

1) A € £(H) such that 020(A)No(A) #0
2) dominant operators

3) A€ £(H) such that M # §

4) A € £(H) such that A satisfies €.
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Proof. In these cases we have A € ®; and since ®, C F(H);n > 1, then
Ae E(H) [ ]

COROLLARY 7. Every quasinilpotent operator A such that Re A > 0 belongs
to A;.

Proof. It follows immediatly by Lemma 2 and Lemma 1. =
DEFINITION 2. Let 4 be the set {4 € £(H): M # 0}.

REMARK 2. We can define an element satisfies ¢ (resp. belongs to 4 ) in the
C*— algebra 2 by a satisfies € (resp. a € U ) if,

(e — Xxe) Y| < [dist(), coo(a))]™ L VA € coo(a)

(resp. a € i such that {A € W(a) : [A| = |la||} # 0. An element a € U is
called dominant if, there is m) such that

(a=N*(@a=X)—mi3a—A(a—A)*>0VYreC.

If ||A|| = r(A), then there exists A9 € o(A) such that || = ||A|| and we
have Ag € 0(A) C 2W(A), that is, M # 0.

THEOREM 8. Let a be an element of A, then a € F(A) in each of the following
cases:

1) a dominant
2) a satisfies €
3)acl

Proof. It is known [3, p.97] that there exists a *-isometric homomorphism
¢ and a Hilbert space H (¢ : % — £(H)). Then ¢(a) is dominant, ¢(a)
satisfies € and @(a) € Y . Since ¢ is isometric it results from Corollary 6
that ¢ € F(%). w

COROLLARY 9. F(H) contains the following operators:
1) T=A+ K, K compact and A dominant

2) T = A+ K, K compact and A satisfies €
3) T =A+ K, K compact and A € 4.

Proof. Since the Calkin algebra B is a C*~ algebra then [A] € B is dom-
inant, [A] satisfies ¢ and [A] € {4 . Hence it follows from Theorem 8 that
[A] € F(2) and we have

11 =TX - XT|| 2 |7] - [A)lX] - [X][A][l = I/ = 1. =
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REMARK 3. Since U contains the class of operators A such that ||A|| = r(A4),
hence the above corollary generalizes the result given by J. P. Williams {7]
which asserts that §(H) contains every operator of the form T + K, where
IT|| = r(T) and T is compact.

LEMMA 10. Every operator which commutes with S, where S is the unilateral

or the bilateral shift belongs to Ry .

Proof. If S is the bilateral shift then, the commutant of S is the algebra
of all multiplication operators £° = {My : ¢ € £2°(z, )} [5, p.37]. If S is
the unilateral shift then, the commutant of S is the algebra ¥ of analytic
Toeplitz operators [5, p.37]. In the two cases we have ||A|| = r(A), it results
from Lemma 4 and Theorem 3 that A € :®/; and we can deduce that %; con-
tains the algebra of all multiplication operators and the algebra of analytic
Toeplitz operators. m

COROLLARY 11. F(H) contains the following operators:

1) Every quasinilpotent operator such that Re A > 0
2) The algebra of all multiplication and Toeplitz operators.

Proof. It follows immediately from Corollary 9 and Lemma 10. =
REMARK 4. According to Corollary 6 and Lemma 10 we can affirm that
THK(H) C 3(H), £*°+K (H)cCF(H).

3. Numerical ranges
Let A denote a complex Banach algebra with identity e.
Let 2% be a C* - algebra with identity and let P(2) be the set

{fev s =lsll=1}.
For A e A, the set
Wo(4) = {f(4): f € P(A)}

is said to be the numerical range of A. Let A € % and L4, R4 defined
respectively by X — AX, X — XA. Adapted from J. H. Anderson and C.

Foias 1] we have

(3.1) Wo(A) = Wo(La) = Wo(Ra),

and if 2 = £(H), then Wy(A) = 2(A).

LEMMA 12. Let A € £(H), then Wy(4) = coa(A), if and only if,
I(A = 27| < [dist(A, coa(A)] ™

for all A & coo(A).
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=>) Let A € coo(A). We can suppose that the pair (A, A) satisfies
(3.2) [A < 0,0 € coo(A) then, coo(A) C {z € C:Rez>0}]

by the transformation
A— aA+ 3.

Let W(A) = coo(A), we prove that for all A gcoo(A) we have
I(A = X)7H| < [dist(X, coo(A))] 7.

It suffices to consider the cases (), A) satisfies (3.2). Then for every z € H
we have

I(A = Nal? = |Az|* = M[(Az | 2) + (2 | Az)] +A? [le]|*.
Since (A — A) is invertible, then for every z € H we have
lzl* = X%[I(4 = X a)?,

then

AT 2 A= A7
Or

|A| = dist(A, coo(A)).
<) See the proof of Theorem 5. m

THEOREM 13. Let A, B € £(H) such that ||(A - \)~1|| < [dist(), coo(A4))] ™"
for all X ¢ coo(A) and [|[(B— N1 < [dist(g,coo(B)]™" for all p ¢
coo(B). Then,
W0(5A,B ) = COU(6A,B )
Proof. We have
Wo(ba,8) ={f(6a,B): f € P(E(L(H)))} =
{f(La—-Rp): f € P(S(£(H)))},
it results that
Wo(é4,8) € {f(La) : f € P(2(£(H)))} — {9(RB) : f € P(£(£(H)))} =
Wo(La) — Wo(RB).
Then, it follows by (3.1) that
Wo(L4) = Wo(A), Wo(Rp) = Wy(B)

by applying Lemma 12 we obtain Wy(64,5) C Wy(A) — Wy(B) = coo(A4) —
coo(B) = co(o(A) — o(B)) = co(o(64,B))-
Since o(64,8) C Wo(64,B), then co(o(64,8)) C Wo(64,8 ). Hence

WO(6A)B) = COU(5A,B). [
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LEMMA 14. Let A € £(H) be hyponormal then,
H(A — /\)_1“ < [dist(\, coa(A))] ™ for all A & coa(A).

This lemma is a very well-known result in an even stronger version,
estimating the norm of the resolvant by the inverse of the distance from A
to the spectrum of a hyponormal operator contain it.

COROLLARY 15. If A, B are hyponormal operators, then
WO(‘SA,B ) = COU(6A,B )
Proof. It suffices to apply Lemma 14. w

REMARK 5. The inclusions relating to the classes of nonnormal opera-
tors listed above are follows: NormalCQuasinormalCSubnormalCHyponor-
mal; the above inclusions are all proper, if A is hyponormal operator then,
(A = X)7Y| < [dist(A, co o(A))]™! for all A ¢ coo(A), by the above lemma.
This fact shows that our result generalizes ([2], Th. 5.7) to certain non nor-
mal cases.

Let A denote a complex Banach algebra with identity e. Let A € A.
Then 0 € Wp(A) if, and only if, |A| < ||A = Al (*) for all A € C, (see
[8]). Write AX — X A instead of A in (*) and choose A = 1, that is, A is
finite if, and only if, 0 € Wy(AX — X A). This fact shows that there is a
relation between finite operators and the numerical range of a derivation. In
(8], J. P. Williams shows that, if a € A, then the following statements are
equivalent:

LEMMA 16 [8]. For a € A, the following statements are equivalent:

(1) 0 € Wo(az — za), forallz e A
(2) lax —za—e|| > 1, forallz € A
(3) there exists a state f such that f(az) = f(za), for all z € A.

4. Generalized finite operators

The present paper initiates a study of a more general class of finite
operators defined by

GF ={(A,B) € L(H)xL(H) : |[I-(AX —XB)|| > 1, for each X € £(H)}.
We call such operators generalized finite operators.
THEOREM 17. GF(A) is closed in A.

Proof. Let (an)n, (bn)n m € N* be two Cauchy’s sequences in GF(A), con-
verge respectively to a and to b. We have for all z € A

1< lle = (anz — zbn)|l < [le — (az — zb)|| + llan — alt |2[| + [|bn — ]| |21 -
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Hence for all € > 0, by the choice of n > N,, we get
1-2¢ljz|| < fle - (az — zb)|],
then
le = (az — zb)|| > 1,

hence a,b € GF(A). »
THEOREM 18. For a,b € A the following statements are equivalent:

(i) laz —xzb—e|| > 1, forallz € A
(ii) there exists a state f such that f(az) = f(zb), for allz € A
(iii) 0 € Wo(az — zb), for allz € A.

Proof. (i)=(ii): By hypothesis, R(6,5) N {€e} = 0, we define f; € G*,
where G = R(6,5) ® {e}, by fo(e) = 1 and fo(R(6sp) = 0. Since for y =
e — (az — zb), fo(y) =1 and |jy|| > 1, we have fo(y) < |ly||, hence || fol| = 1.

According to the Hahn Banach theorem fy can be prolonged on an ele-
ment fof P={f € A*: f(e) =1=|f||}, satisfying (ii).

(il)=(i): If f satisfies (ii), then f(e — (az — zb)) = f(e) =1 and

1< |Ifll lle = (az — zb)|| = |le — (az — zd)||,

hence (i) is fulfilled.

(iii)=(i): For an arbitrary = € A, let f; € P such that fz(az — zb) =0,
then

1= fz(e — (az — zb)) < ||foll lle — (az — zb)|| = [le — (az — zb)]| -

Hence (i) is fulfilled. =

Finally we recall the following open questions of L. A. Fialkow, D. Her-
rero and J. P. Williams:

1. Is R, = F(H)?

2. For all T is there an operator A similar to T such that A € F(H)?

3. Is dist(Z, R(64)) = r € |0, 1] implies dist(I, R(6545-1)) = r for all S
invertible?

At the end of this paper I would like to thank the referee for his useful
remarks.
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