

Marian Liskowski

INTEGRAL OF FUNCTION WITH VALUES IN COMPLETE MODULAR SPACE

Abstract. The theorem on existence of an integral of a function with values in a modular space and some fundamental properties of this integral are given.

Let X be a real vector space. A functional $\rho : X \rightarrow \overline{\mathbb{R}}_+ = [0, +\infty]$, is called a *convex pseudomodular* on X if $\rho(0) = 0$, $\rho(-u) = \rho(u)$ and $\rho(\alpha u + \beta v) \leq \alpha\rho(u) + \beta\rho(v)$ for all $u, v \in X$ and $\alpha, \beta \geq 0$, $\alpha + \beta = 1$. If, additionally, $\rho(u) = 0$ only for $u = 0$, then ρ is called a *convex modular* on X . The vector space $X_\rho = \{u \in X : \rho(au) < \infty \text{ for some } a > 0\}$ is called the *modular space* generated by ρ . Examples of modular spaces, e.g. Orlicz spaces, may be found in [3].

A sequence (u_k) of elements of X_ρ is called *modular convergent to u* , $u \in X_\rho$, if there exists a $\lambda > 0$ such that $\rho(\lambda(u_k - u)) \rightarrow 0$ as $k \rightarrow \infty$. A sequence (u_k) is called a *Cauchy sequence in X_ρ* , if $\rho(\lambda(u_k - u_l)) \rightarrow 0$ as $k, l \rightarrow \infty$, for some $\lambda > 0$.

The modular space X_ρ is called *complete* if every Cauchy sequence in X_ρ is convergent in X_ρ . In the following by X_ρ we shall mean a complete modular space.

We assume henceforth that Ω is a non-empty abstract set and let (Ω, Σ, μ) be a finite measure space with a complete and positive measure on Σ .

Let $\{B_1, B_2, \dots, B_k\}$ be a finite collection of mutually disjoint, Σ - measurable subsets of Ω and let $\{c_1, c_2, \dots, c_k\}$ be a corresponding collection of points of X_ρ . The mapping f on Ω into X_ρ defined by

1991 *Mathematics Subject Classification*: 46G12, 46A80, 46E30.

Key words and phrases: Bochner integral, modular space, Orlicz space.

$$f(x) = \sum_{i=1}^k c_i \chi_{B_i}(x),$$

where χ_B is the characteristic function of B , is called a *simple function*.

An arbitrary function f defined almost everywhere on Ω into X_ρ , is said to be a $\rho - \Sigma$ -measurable function (briefly ρ -measurable) if there exists a sequence (f_n) of simple functions such that

$$(1) \quad \rho(\lambda_1(f_n(x) - f(x))) \rightarrow 0 \quad \text{as } n \rightarrow \infty \quad \text{for some } \lambda_1 > 0$$

and for almost all $x \in \Omega$ and

$$(2) \quad \rho(\lambda_2 f_n(x)) \rightarrow \rho(\lambda_2 f(x)) \quad \text{as } n \rightarrow \infty \quad \text{for some } \lambda_2 > 0$$

and for almost all $x \in \Omega$.

Let us remark that if $\lambda_2 \geq \lambda_1$, then the constants λ_1 and λ_2 may be taken identical.

LEMMA 1. *Let ρ be a convex pseudomodular in a real vector space X . If $u, v \in X_\rho$ and $\rho(v) < \infty$, then for arbitrary α such that $0 < \alpha \leq 1$ the inequality*

$$\rho(u) - \rho(v) \leq \frac{1}{2} \alpha \rho \left(\frac{2}{\alpha} (u - v) \right) + \frac{1}{2} \alpha \rho(2v)$$

holds.

Proof. Let $0 < \alpha \leq 1$ and $\beta = 1 - \alpha$. By convexity of ρ we have

$$\rho(u) \leq \alpha \rho \left(\frac{u}{\alpha} - \frac{\beta}{\alpha} v \right) + \beta \rho(v).$$

Hence

$$\rho(u) - \rho(v) \leq \alpha \rho \left(\frac{1}{\alpha} (u - v) + v \right) \leq \frac{1}{2} \alpha \rho \left(\frac{2}{\alpha} (u - v) \right) + \frac{1}{2} \alpha \rho(2v).$$

The following statement shows that if the condition (1) holds for every $\lambda > 0$, then (2) follows from (1).

PROPOSITION. *If $\rho(cu) < \infty$ for some $c > 0$ and $\rho(a(u_n - u)) \rightarrow 0$ as $n \rightarrow \infty$ for every $a > 0$, then there exists a constant $a_1 > 0$ such that $\rho(a_1 u_n) \rightarrow \rho(a_1 u)$ as $n \rightarrow \infty$.*

Proof. Let $\epsilon > 0$ be arbitrary and let $\rho(\frac{1}{4}cu_n) \geq \rho(\frac{1}{4}cu)$. Let $\alpha \in (0, 1]$ be so small that $\frac{1}{4}\alpha\rho(cu) < \frac{1}{2}\epsilon$. For given α

$$\frac{1}{2}\alpha\rho \left(\frac{c}{2\alpha} (u_n - u) \right) < \frac{1}{2}\epsilon$$

holds for sufficiently large n . Thus, by Lemma 1, we have

$$0 \leq \rho\left(\frac{1}{4}cu_n\right) - \rho\left(\frac{1}{4}cu\right) \leq \frac{1}{2}\alpha\rho\left(\frac{c}{2\alpha}(u_n - u)\right) + \frac{1}{4}\alpha\rho(cu) < \epsilon$$

for sufficiently large n and $\alpha \in (0, 1]$.

Let now $\rho\left(\frac{1}{4}cu_n\right) < \rho\left(\frac{1}{4}cu\right)$. Then

$$0 < \rho\left(\frac{1}{4}cu\right) - \rho\left(\frac{1}{4}cu_n\right) \leq \frac{1}{2}\alpha\rho\left(\frac{c}{2\alpha}(u - u_n)\right) + \frac{1}{2}\alpha\rho(cu_n).$$

For the sequence $(\rho\left(\frac{1}{2}cu_n\right))$ there exists a constant $M > 0$ such that

$$\rho\left(\frac{1}{2}cu_n\right) \leq \rho(c(u_n - u)) + \rho(cu) \leq M$$

for every n . Hence, we obtain $0 < \rho\left(\frac{1}{4}cu\right) - \rho\left(\frac{1}{4}cu_n\right) < \epsilon$ for sufficiently small $\alpha \in (0, 1]$ and sufficiently large n . Finally, we have $|\rho\left(\frac{1}{4}cu_n\right) - \rho\left(\frac{1}{4}cu\right)| < \epsilon$ for sufficiently large n . ■

Let $f : \Omega \rightarrow X_\rho$ be a simple function. The ρ –Bochner integral of f is defined by

$$\int_{\Omega} f(x) d\mu = \sum_{i=1}^k c_i \mu(B_i).$$

Immediately from above definition it follows

LEMMA 2. (i) Let $f : \Omega \rightarrow X_\rho$ be a simple function. Then

$$\rho\left(\int_{\Omega} f(x) d\mu\right) \leq \frac{1}{c} \int_{\Omega} \rho(cf(x)) d\mu,$$

where $c = \mu(\Omega)$.

(ii) Let f, g be two simple functions, $\alpha, \beta \in R$. Then $\alpha f + \beta g$ is also a simple function and

$$\int_{\Omega} (\alpha f(x) + \beta g(x)) d\mu = \alpha \int_{\Omega} f(x) d\mu + \beta \int_{\Omega} g(x) d\mu.$$

A function $f : \Omega \rightarrow X_\rho$ is said to be ρ –Bochner integrable if there exists a sequence (f_n) of simple functions satisfying (1) and (2) such that

$$(3) \quad \lim_{n \rightarrow \infty} \int_{\Omega} \rho(\lambda_3(f_n(x) - f(x))) d\mu = 0 \quad \text{for some } \lambda_3 > 0,$$

$$(4) \quad \lim_{n, m \rightarrow \infty} \int_{\Omega} |\rho(\lambda_2 f_n(x)) - \rho(\lambda_2 f_m(x))| d\mu = 0,$$

where the constant λ_2 is the same as in (2).

For any set $B \in \Sigma$ and for any ρ -measurable and integrable f we define the ρ -Bochner integral of f over B by

$$\int_B f(x) d\mu = \lim_{n \rightarrow \infty} \int_{\Omega} \chi_B(x) f_n(x) d\mu.$$

The above limit exists and its value is independent of the approximating sequence of simple functions (f_n) .

Let us denote

$$s_n = \int_{\Omega} \chi_B(x) f_n(x) d\mu.$$

The existence of the limit follows from the inequality

$$\begin{aligned} \rho \left(\frac{\lambda_3}{2c} (s_n - s_m) \right) &\leq \frac{1}{2c} \int_B \rho(\lambda_3(f_n(x) - f(x))) d\mu \\ &\quad + \frac{1}{2c} \int_B \rho(\lambda_3(f_m(x) - f(x))) d\mu \end{aligned}$$

where $c = \mu(\Omega)$, and from the completeness of X_{ρ} . The constant λ_3 is chosen as in (3).

THEOREM 1. *Let ρ be a convex modular on X . A ρ -measurable function $f : \Omega \rightarrow X_{\rho}$ is ρ -Bochner integrable if and only if the function $\rho(cf(x))$ is μ -integrable with the constant c from (2).*

P r o o f. Since f is ρ -measurable there exists a sequence (f_n) of simple functions satisfying (1) and (2). Define functions y_n , $n = 1, 2, \dots$, on Ω by

$$y_n(x) = \begin{cases} f_n(x) & \text{if } x \in A_n \\ 0 & \text{otherwise} \end{cases},$$

where $A_n = \{x \in \Omega : \rho(\lambda_2 f_n(x)) \leq 2\rho(\lambda_2 f(x))\}$. Obviously every y_n is simple. We put $B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A'_k$, where $A'_k = \Omega - A_k$. Then we have $\mu(B) = 0$, (see [2]). Hence $\rho(\lambda_1(y_n(x) - f(x))) \rightarrow 0$ as $n \rightarrow \infty$ almost everywhere on Ω and $\rho(\lambda_2 y_n(x)) \rightarrow \rho(\lambda_2 f(x))$ as $n \rightarrow \infty$ almost everywhere on Ω .

Moreover, if $\lambda_1 \leq \lambda_2$ then

$$\rho \left(\frac{1}{2} \lambda_1 (y_n(x) - f(x)) \right) \leq \rho(\lambda_2 y_n(x)) + \rho(\lambda_2 f(x)) \leq 3\rho(\lambda_2 f(x))$$

for almost all $x \in \Omega$. The dominated convergence theorem yields

$$\lim_{n \rightarrow \infty} \int_{\Omega} \rho \left(\frac{1}{2} \lambda_1 (y_n(x) - f(x)) \right) d\mu = 0.$$

In the case $\lambda_1 > \lambda_2$ the constants in (1) and (2) may be taken identical putting the smaller of them. Then

$$\rho\left(\frac{1}{2}\lambda_2(y_n(x) - f(x))\right) \leq 3\rho(\lambda_2 f(x))$$

and

$$\lim_{n \rightarrow \infty} \int_{\Omega} \rho\left(\frac{1}{2}\lambda_2 y_n(x) - f(x)\right) d\mu = 0.$$

Arguing in a similar manner we may easily show that

$$\lim_{m,n \rightarrow \infty} \int_{\Omega} |\rho(\lambda_2 y_n(x)) - \rho(\lambda_2 y_m(x))| d\mu = 0.$$

Thus f is ρ -Bochner integrable.

Let the function f be ρ -Bochner integrable and let (f_n) be a sequence of simple functions with properties (1) - (4). Let us denote $z_n(x) = \rho(\lambda_2 f_n(x))$. The functions z_n are simple and the sequence (z_n) is convergent to $\rho(\lambda_2 f(x))$ for almost all $x \in \Omega$. Applying (4) we obtain for any fixed $\epsilon > 0$

$$\left| \int_{\Omega} z_n(x) d\mu - \int_{\Omega} z_m(x) d\mu \right| < \epsilon$$

for sufficiently large m, n . Hence $\rho(\lambda_2 f(x))$ is μ -integrable over Ω . ■

Let us consider the modular space X_ρ with Luxemburg norm $\|\cdot\|_\rho$ generated by the convex modular ρ . We shall investigate the connection between Bochner integral of f and ρ -Bochner integral of f . We shall show that if the function $f : \Omega \rightarrow X_\rho$ is strongly measurable and Bochner integrable, then f is also ρ -measurable and ρ -Bochner integrable on Ω .

Let us suppose that the function f is Bochner integrable. Then there exists a sequence (f_n) of simple functions, $f_n : \Omega \rightarrow X_\rho$, such that

$$(5) \quad \lim_{n \rightarrow \infty} \|f_n(x) - f(x)\|_\rho = 0 \quad \text{for almost all } x \in \Omega,$$

and

$$(6) \quad \lim_{n \rightarrow \infty} \int_{\Omega} \|f_n(x) - f(x)\|_\rho d\mu = 0.$$

In virtue of (5),

$$(7) \quad \rho(\lambda(f_n(x) - f(x))) \rightarrow 0 \quad \text{almost everywhere in } \Omega \text{ for every } \lambda > 0.$$

Let $0 < \epsilon \leq 1$. By (5) we have $\|\lambda(f_n(x) - f(x))\|_\rho < \epsilon \leq 1$ almost everywhere in Ω for every $\lambda > 0$ and $n > N(\lambda, x)$. Hence

$$\rho(\lambda(f_n(x) - f(x))) \leq \|\lambda(f_n(x) - f(x))\|_\rho$$

almost everywhere in Ω for sufficiently large n . Integrating above inequality over Ω and applying (6) we obtain

$$\lim_{n \rightarrow \infty} \int_{\Omega} \rho(\lambda(f_n) - f(x)) d\mu = 0 \quad \text{for every } \lambda > 0.$$

In order to prove (2) let us first show that for every strongly measurable function f there exists a constant $d > 0$ such that $\rho(df(x)) < \infty$ for almost all $x \in \Omega$. Let $g : \Omega \rightarrow X_{\rho}$ be a simple function, $g(x) = \sum_{i=1}^k c_i \chi_{B_i}(x)$, where $\{c_1, c_2, \dots, c_k\} \subset X_{\rho}$. For every i , $i = 1, 2, \dots, k$, there exists $\lambda_i > 0$ such that $\rho(\lambda_i c_i) < \infty$. Let $a = \min \{\lambda_1, \lambda_2, \dots, \lambda_k\}$. Then

$$(9) \quad \rho(ac_i) < \infty \quad \text{for } i = 1, 2, \dots, k.$$

Hence $\int_{\Omega} \rho(ag(x)) d\mu = \sum_{i=1}^k \rho(ac_i) \mu(B_i) < \infty$. We conclude: there exists a constant $a > 0$, independent on x , such that the real function $\rho(ag(x))$ is μ -integrable on Ω .

For arbitrary $n_0 \in N$, by (9), we have that

$$(10) \quad \rho(cf_{n_0}(x)) < \infty \quad \text{for some } c > 0 \quad \text{and every } x \in \Omega.$$

Thus, by (7) and (10), we obtain

$$(11) \quad \rho\left(\frac{1}{2}cf(x)\right) \leq \frac{1}{2}\rho(c(f(x) - f_{n_0}(x))) + \frac{1}{2}\rho(cf_{n_0}(x)) < \infty$$

for allmost all $x \in \Omega$. Therefore, putting $d = \frac{1}{2}c$, we have

$$(12) \quad \rho(df(x)) < \infty \quad \text{for almost all } x \in \Omega.$$

In virtue of *Proposition*, by (7) and (12), we obtain

$$(13) \quad \rho\left(\frac{1}{8}cf_n(x)\right) \rightarrow \rho\left(\frac{1}{8}cf(x)\right) \quad \text{as } n \rightarrow \infty, \quad \text{almost everywhere in } \Omega.$$

Thus f is ρ -measurable

Replacing the constant $\frac{1}{2}c$ by $\frac{1}{8}c$ in (11) and integrating this inequality over Ω , we have by (8)

$$\int_{\Omega} \rho\left(\frac{1}{8}cf(x)\right) d\mu \leq \int_{\Omega} \rho\left(\frac{1}{4}c(f(x) - f_{n_0}(x))\right) d\mu + \int_{\Omega} \rho\left(\frac{1}{4}cf_{n_0}(x)\right) d\mu < \infty.$$

Thus the real function $\rho\left(\frac{1}{8}cf(x)\right)$ is μ -integrable on Ω . Hence, by *Theorem 1*, f is ρ -Bochner integrable on Ω .

Now, let us take into account the following example. Let us consider the Lebesgue space $L^p(0, 1)$, $p \geq 1$ as the Orlicz space L^{ϕ} where $\phi(s) = \frac{1}{p}s^p$, $p \geq 1$. Then obviously $L^{\phi}(0, 1)$, $p \geq 1$ is a modular space generated by the

modular $\rho(u) = \frac{1}{p} \int_0^1 |u(t)|^p dt$. Let $\|\cdot\|_\rho$ be a Luxemburg norm generated by ρ . Then we can express the norm $\|\cdot\|_\rho$ in the following form $\|u\|_\rho = \left(\frac{1}{p}\right)^{\frac{1}{p}} \|u\|_p$, where $\|u\|_p = \left(\int_0^1 |u(t)|^p dt\right)^{\frac{1}{p}}$. If $f : \Omega \rightarrow L^p(0, 1)$ is ρ -integrable, then $\rho(f_n(x) - f(x)) \rightarrow 0$ and $\int_\Omega \rho(f_n(x) - f(x)) d\mu \rightarrow 0$ as $n \rightarrow \infty$ almost everywhere in Ω for some sequence (f_n) of simple functions. The first condition is equivalent to $\|f_n(x) - f(x)\|_\rho \rightarrow 0$ as $n \rightarrow \infty$ a.e. in Ω and for the second of them we have

$$\int_\Omega \rho(f_n(x) - f(x)) d\mu = \int_\Omega \|f_n(x) - f(x)\|_\rho^p d\mu.$$

This equality implies that

$$\int_\Omega \|f_n(x) - f(x)\|_\rho d\mu \rightarrow 0 \quad \text{as } n \rightarrow \infty \text{ a.e. in } \Omega.$$

Thus f is a strongly measurable and Bochner integrable.

Further elementary facts about the ρ -Bochner integral are collected below.

THEOREM 2. *If f is a ρ -Bochner integrable function, then*

$$(i) \lim_{\mu(A) \rightarrow 0} \int_A f(x) d\mu = 0,$$

(ii) if (A_i) is a sequence of pairwise disjoint members of Σ and $A = \bigcup_{i=1}^{\infty} A_i$, then $\int_A f(x) d\mu = \sum_{i=1}^{\infty} \int_{A_i} f(x) d\mu$.

P r o o f. (i) Let (f_n) be a sequence of simple functions. Let us denote

$$\nu(A) = \int_A f(x) d\mu \quad \text{and} \quad \nu_n(A) = \int_A f_n(x) d\mu \quad \text{for any } A \in \Sigma.$$

There exists the constant $a_1 > 0$ such that for every $\epsilon > 0$

$$\int_\Omega \left(\frac{1}{2} a_1 (f_n(x) - f(x)) \right) d\mu < \epsilon \quad \text{for } n > n_0.$$

We can find the constant $a_2 > 0$ such that the real functions $\rho(a_2 f_n(x))$, $n = 1, 2, \dots, n_0$ are μ -integrable. Thus, we can choose $\delta > 0$, that

$$(14) \quad \int_A \rho(a_2 f_n(x)) d\mu < \epsilon \quad \text{for every } A \in \Sigma \quad \text{with } \mu(A) < \delta$$

and $n = 1, 2, \dots, n_0$. Taking $a = \min \{a_1, a_2\}$, we have that for $n > n_0$

$$(15) \quad \int_A \left(\frac{1}{4} a f_n(x) \right) d\mu \leq \frac{1}{2} \int_A \rho \left(\frac{1}{2} a (f_n(x) - f_{n_0}(x)) \right) d\mu \\ + \frac{1}{2} \int_A \rho \left(\frac{1}{2} a f_{n_0}(x) \right) d\mu < \epsilon$$

provided $\mu(A) < \delta$. Combining (14) and (15) we obtain that for every n

$$(16) \quad \int_A \rho \left(\frac{1}{4} a f_n(x) \right) d\mu < \epsilon \quad \text{provided} \quad \mu(A) < \delta.$$

Since, for $c = \frac{a}{4\mu(\Omega)}$, the following inequality

$$\rho(c\nu_n(A)) \leq \frac{1}{\mu(\Omega)} \int_A \rho \left(\frac{1}{4} a f_n(x) \right) d\mu$$

holds. Then, in virtue of (16), the functions ν_n are uniformly absolutely continuous.

From the definition of ρ -Bochner integral and the inequality

$$\rho(\nu(A)) \leq \frac{1}{2} \rho \left(2 \left(\int_A f(x) d\mu - \int_A f_n(x) d\mu \right) \right) + \frac{1}{2} \rho(2\nu_n(A))$$

it follows that there exists a constant $b > 0$ such that $\rho(b\nu(A)) < \epsilon$ provided $\mu(A) < \delta$.

(ii) Let us show first that for any fixed n , we have

$$(17) \quad \nu_n \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \nu_n(A_i).$$

For arbitrary set $B \in \Sigma$ and $\epsilon > 0$ by Lemma 2 and (3) we have

$$\rho \left(\frac{\lambda_3}{\mu(\Omega)} (\nu_n(B) - \nu_m(B)) \right) \leq \frac{1}{\mu(\Omega)} \int_B \rho(\lambda_3(f_n(x) - f_m(x))) d\mu < \epsilon$$

for $n, m > n_0$. Hence, by completeness of the space X_ρ , the sequence $(\nu_n(B))$ is uniformly convergent to $\nu(B)$ with respect to $B \in \Sigma$. Thus, there exists a constant $a > 0$ such that

$$(18) \quad \rho(a(\nu(A) - \nu_n(A))) < \epsilon \quad \text{and} \quad \rho \left(a \left(\nu_n \left(\bigcup_{i=1}^k A_i \right) - \nu \left(\bigcup_{i=1}^k A_i \right) \right) \right) < \epsilon$$

for sufficiently large n .

Arguing in a similar manner as in the first part of the proof of the thesis (i), we obtain that there exists a constant $c > 0$ such that

$$\int_A \rho(cf_n(x))d\mu < \infty$$

for every n . Therefore the series $\sum_{i=1}^{\infty} \int_{A_i} \rho(cf_n(x))d\mu$ is convergent and consequently

$$(19) \quad \sum_{i=k+1}^{\infty} \int_{A_i} \rho(cf_n(x))d\mu \rightarrow 0 \quad \text{as } k \rightarrow \infty.$$

It follows from (17) that

$$\rho\left(\nu_n(A) - \sum_{i=1}^k \nu_n(A_i)\right) \leq \frac{1}{\mu(\Omega)} \sum_{i=k+1}^{\infty} \int_{A_i} \rho(\mu(\Omega)f_n(x))d\mu.$$

Hence, by (19), we get that for $c_1 = \frac{c}{\mu(\Omega)}$

$$(20) \quad \rho\left(c_1\left(\nu_n(A) - \sum_{i=1}^k \nu_n(A_i)\right)\right) < \epsilon \quad \text{for sufficiently large } k.$$

By convexity of ρ , we have that for every pair of positive integers k and n

$$\begin{aligned} \rho\left(\nu(A) - \sum_{i=1}^k \nu(A_i)\right) &\leq \frac{1}{3}\rho(3(\nu(A) - \nu_n(A))) \\ &\quad + \frac{1}{3}\rho\left(3\left(\nu_n(A) - \sum_{i=1}^k \nu_n(A_i)\right)\right) \\ &\quad + \frac{1}{3}\rho\left(3\left(\sum_{i=1}^k \nu_n(A_i) - \sum_{i=1}^k \nu(A_i)\right)\right). \end{aligned}$$

Finally, let $b = \frac{1}{3} \min\{a, c_1\}$. Then, by (18) and (20), we have, for sufficiently large positive integers k

$$\rho\left(b\left(\nu(A) - \sum_{i=1}^k \nu(A_i)\right)\right) < \epsilon.$$

This completes the proof of the theorem. ■

Acknowledgement. I wish to thank Professor Julian Musielak for useful discussions regarding the results presented herein.

References

- [1] J. Diestel, J. J. Uhl, *Vector Measures*, Mathematical Surveys-15, American Mathematical Society, 1977.
- [2] P. R. Halmos, *Measure Theory*, Springer Verlag, New York-Heidelberg-Berlin 1974.
- [3] J. Musielak, *Orlicz Spaces and Modular Spaces*, Lecture Notes in Mathematics 1034, Springer Verlag, 1983.
- [4] K. Yosida, *Functional analysis*, Springer Verlag, 1965.

INSTITUTE OF MATHEMATICS
POZNAŃ UNIVERSITY OF TECHNOLOGY
Piotrowo 3A
60-965 POZNAŃ, POLAND
E-mail: mliskows@math.put.poznan.pl

Received April 2nd, 2001.