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Marian Liskowski

INTEGRAL OF FUNCTION WITH VALUES
IN COMPLETE MODULAR SPACE

Abstract. The theorem on existence of an integral of a function with values in a
modular space and some fundamental properties of this integral are given.

Let X be a real vector space. A functional p : X — R, where Ry =
[0,400), is called a convez pseudomodular on X if p(0) = 0, p(—u) = p(u)
and p(au+ Bv) < ap(u)+ Bp(v) for all u,v € X and o, > 0, o+ =1. If,
additionally, p(u) = 0 only for u = 0, then p is called a convex modular on
X. The vector space X, = {u € X : p(au) < 0o for some a > 0} is called
the modular space generated by p. Examples of modular spaces, e.g. Orlicz
spaces, may be found in [3].

A sequence (u) of elements of X, is called modular convergent to u,
u € X, if there exists a A > 0 such that p(A(uxr —u)) - O0ask — co0. A
sequence (ug) is called a Cauchy sequence in X,, if p(A(ur —u;)) — 0 as
k,l — oo, for some A > 0.

The modular space X, is called complete if every Cauchy sequence in

X, is convergent in X,. In the following by X, we shall mean a complete
modular space.

We assume henceforth that 2 is a non-empty abstract set and let
(©2,%, 1) be a finite measure space with a complete and positive measure
on X.

Let {Bj, Bz, ..., B} be a finite collection of mutually disjoint, ¥ - mea-
surable subsets of Q and let {¢;,¢z,...,cx} be a corresponding collection of
points of X,. The mapping f on {2 into X, defined by
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k
flz)=>cixs,(z)
i=1

where xp is the characteristic function of B, is called a simple function.

An arbitrary function f defined almost everywhere on € into X, is said
to be a p — E—measurable function (briefly p - measurable) if there exists a
sequence (fr) of simple functions such that

(1) p(A(fn(z) — f(z))) >0 as n—ooo  forsome A; >0
and for almost all z €  and
(2) p(A2fn(z)) — p(A2f(z)) as mn— oo  forsome Ay >0

and for almost all z € Q.

Let us remark that if Ao > Aj, then the constants A\; and A, may be
taken identical.

LEMMA 1. Let p be a convex pseudomodular in a real vector space X. If
u,v € X, and p(v) < oo, then for arbitrary o such that 0 < o < 1 the
inequality

bl = (o) < 5o (2= 0)) + Jap(aw)

holds.
Proof Let 0 < @ <1 and 8 =1 — a. By convexity of p we have
u B
< - .
p(u) < ap (a av) + Bp(v)

Hence

() = (o) < a9 (5= 0)+0) < an (2w=v) + Fan(z0)

The following statement shows that if the condition (1) holds for every

A > 0, then (2) follows from (1).

PROPOSITION. If p(cu) < oo for some ¢ > 0 and p(a(u, — u)) — 0 as
n — oo for every a > 0, then there erists a constant a; > 0 such that
pla1un) — p(a1u) as n — oo.

Proof. Let € > 0 be arbltrary and let p (fcun) > p(cu). Let o € (0,1]
be so small that 4ap(cu) < 26 For given a

o) <
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holds for sufficiently large n. Thus, by Lemma 1, we have

1 1 1 c 1
0<p (Zcun) —-p (Zcu) < Eap( (un — u)) + Zap(cu) <e€

for sufficiently large n and « € (0, 1].
Let now p( cun) <p (%cu) . Then

0< E - la c(_ )-!—la(cu)
plaew) —plgeun ) < 5an( 5o (u—un 5ap(Cun).

For the sequence (p (3cun)) there exists a constant M > 0 such that

o (;u) < plclun — ) + plew) < M

for every n. Hence, we obtain 0 < p ( ) P ( icun) < e for sufficiently small
a € (0,1] and sufficiently large n. Finally, we have l p(3cun) —p (%cu)l <e€
for sufficiently large . m

Let f : @ — X, be a simple function. The p — Bochner integral of f is
defined by

k
| f@)dp=> cn(B
0 i=1

Immediately from above definition it follows

LEMMA 2. (i) Let f : Q@ — X, be a simple function. Then

p( | f(fv)du) < % | plcf(@))du,

Q Q
where ¢ = p(9).

(ii) Let f, g be two simple functions, a,3 € R. Then af + B9 is also
a stmple function and

J(af(@) + Bg(@)dp= o f(z)du+ B g(z)dp.

Q Q Q

A function f : @ — X, is said to be p — Bochner integrable if there
exists a sequence (f,) of simple functions satisfying (1) and (2) such that

(3) nli_'n;os p(As{fn(z) — f(2)))du=0  for some A3 >0,
Q
@ im [ 1eOusn(@) ~ o fm(@))ldi =0,
Q

where the constant A; is the same as in (2).
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For any set B € ¥ and for any p-measurable and integrable f we define
the p — Bochner integral of f over B by

) f@)dp = lim | x5(2)fa(z)du
Q

B
The above limit exists and its value is independent of the approximating
sequence of simple functions (fn).
Let us denote
Sp = S XB(CIJ)fn(.’D)d/_L
Q
The existence of the limit follows from the inequality

P (e6on = 5m) < 35§ AOne) ~ S

+ -21— [ P0Oa(fim() — £(2)))dp
B

where ¢ = p(f2), and from the completeness of X,. The constant A3 is chosen
as in (3).

THEOREM 1. Let p be a conver modular on X. A p-measurable function

f : Q— X, is p-Bochner integrable if and only if the function p(cf(zx)) is
p-intergrable with the constant ¢ from (2).

Proof. Since f is p-measurable there exists a sequence (f,) of simple func-
tions satisfying (1) and (2). Define functions y,, n =1,2,..., on 2 by

_ falz) if z€A,
z) { otherwise

where A, = {z € Q: p(Aafn(z)) <2p(A2f(z))}. Obviously every y, is
simple. We put B = N3, UL, A}, where A}, = Q — A;. Then we have
u(B) = 0, (see [2]). Hence p()\l(yn( ) — f(z))) — 0 as n — oo almost ev-
erywhere on € and p(Ayn(z)) — p(A2f(z)) as n — oo almost everywhere
on {2.

Moreover, if \; < A3 then

) (gxl(yn(z) - f(:v))) < payn(@)) + P2 f (@) < 3p(haf ()

for almost all z € . The dominated convergence theorem yields

1
lim =A(yn(z) — f(z)) | dp = 0.
n_mép<2 y )u
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In the case A; > Ay the constants in (1) and (2) may be taken identical
puting the smaller of them. Then

1
p (372m(0) - 1)) < 3000 S (@)
and
) 1
lim {5 <§A2yn(z) - f(x))) du=0.
Q
Arguing in a similar manner we may easily show that
ml}lriloo S lp(X2yn () — p(A2ym(z))l dp = 0.
' o
Thus f is p-Bochner integrable.
Let the function f be p-Bochner integrable and let (f,,) be a sequence of
simple functions with properties (1) - (4). Let us denote 2,(z) = p(A2 fa(z)).

The functions z,, are simple and the sequence (2y,) is convergent to p(A2f(z))
for almost all z € Q. Applying (4) we obtain for any fixed € > 0

S zn(z)dp — S zZm(z)dp
Q Q

<e€

for sufficiently large m, n. Hence p(A2f(z)) is - integrable over . m

Let us consider the modular space X, with Luxemburg norm || ||, gener-
ated by the convex modular p. We shall investigate the connection between
Bochner integral of f and p-Bochner integral of f. We shall show that if the
function f : @ — X, is strongly measurable and Bochner integrable, then
f is also p-measurable and p-Bochner integrable on (2.

Let us suppose that the function f is Bochner integrable. Then there
exists a sequence (f,) of simple functions, f, : @ — X, such that

(5) nli.ngo | fn(z) — f(z)l, =0 foralmostall ze€q,
and
(6) lim {lfa(2) = f@)lpdu = 0.

Q

In virtue of (5),
(1) p(M(fn(z) — f(z))) = 0 almost everywhere in Q for every A > 0.

Let 0 < € < 1. By (5) we have ||A(fa(z)— f(2))ll, < € £ 1 almost everywhere
in § for every A > 0 and n > N(A, z). Hence

P(A(fn(2) = f(2))) < IMFn(z) — f(2)lo
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almost everywhere in ) for sufficiently large n. Integrating above inequality
over {2 and applying (6) we obtain

lim S p(A(fr) — f(z)))dp =0 for every A > 0.

n—oo

In order to prove (2) let us first show that for every strongly measurable
function f there exists a constant d > 0 such that p(df(z)) < oo for almost

allz € Q. Let g : Q — X, be a simple function, g(z) = 3, cix, (@),

where {c1,¢2,...,ck} C X,. Forevery i,1=1,2,,...,k, there exists A\; > 0
such that p(\;c;) < 0o. Let @ = min {A1, Aa,..., At} . Then
(9) plac;) < oo for i=1,2,...,k.

Hence {, p(ag(z))dp = SF_, plac)u(B;) < 0o. We conclude: there exists a
constant a > 0, independent on z, such that the real function p(ag(z)) is u-
integrable on 2.

For arbitrary ng € N, by (9), we have that

(10) plcfn,(z)) <00 forsome ¢>0 andevery z €.
Thus, by (7) and (10), we obtain

1) o (5ef@)) £ GO ~ Fu(OD) + oleSra(o)) <0

for allmost all z € 2. Therefore, putting d = %c, we have
(12) p(df(z)) < oo for almost all z € Q.

In virtue of Proposition, by (7) and (12), we obtain

(13) »p (%cfn(z)) —p (%cf(a:)) as n — 0o, almost everywhere in Q).

Thus f is p-measurable
Replacing the constant %—c by %c in (11) and integrating this inequality
over ), we have by (8)

{ o (3e@)) du < [ (Gets0)fun(a)) it (Gefma(@) du< oo

Q 0

Thus the real function p (%c f (x)) is u-integrable on 2. Hence, by Theorem 1,
f is p-Bochner integrable on .

Now, let us take into account the following example. Let us consider the
Lebesgue space LP(0,1), p > 1 as the Orlicz space L? where ¢(s) = %s”,

p > 1. Then obviously L#(0,1), p > 1 is a modular space generated by the
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modular p(u) = %S(l) |u(t)|Pdt. Let || ||, be a Luxemburg norm generated
by p. Then we can express the norm | ||, in the following form |lul|, =

(2)" lhully, where Jlull, = (5 lu(®)irdt)” . 1 £+ Q@ = LP(0,1) is p-

integrable, then p(fn(z) — f(z)) — 0 and {, p(fn(z) — f(z))dp — 0 as
n — oo almost everywhere in {2 for some sequence (f,) of simple functions.
The first condition is equivalent to || f,(z) — f(z)||, — 0 as n — oo a.e. in
2 and for the second of them we have

[ o(fa(@) = F@))du = | I £a(a) — £(2)IEdn.

Q Q

This equality implies that

S Ifn(z) — f(z)|lpdp — 0 as n— ooa.e. in (.
Q

Thus f is a strongly measurable and Bochner integrable.

Further elementary facts about the p-Bochner integral are collected bel-
low.

THEOREM 2. If f is a p-Bochner integrable function, then

(i) lim | f(z)dp=0,

n(A)—0
A
(i) of (A;) is a sequence of pairwise disjoint members of ¥ and A = U2, A;,
then S flz)dp = Z S f(z)du.
A i=1 A;

Proof. (i) Let (f.) be a sequence of simple functions. Let us denote
v(A) = Sf(:z:)d,u. and v,(4) = S fa(z)dp forany A€ 3.
A A
There exists the constant a; > 0 such that for every € > 0
1
S (Eal(fn(m) - f(z))) du <e for n>ny.
Q

We can find the constant az > 0 such that the real functions p(azfn(z)),
n=1,2,...,np are u-integrable. Thus, we can choose § > 0, that

(14) S plagfn(z))du <€ forevery AeX with u(A)<é§
A
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and n =1,2,...,ng. Taking a = min {a,,a,}, we have that for n > ng

09 {(Gore) <5 1o (Gol) - o))

1 1
+51p (—afno(w)) dp<e
2 2
A
provided p(A) < 6. Combining (14) and (15) we obtain that for every n

(16) /S‘p (%af,ﬂm)) dp < e provided p(A) <é.

Since, for ¢ = Zﬁ_}’ the following inequality

plcvm(A)) < (19)§ (%afn(a:)) dp

holds. Then, in virtue of (16), the functions v, are uniformly absolutely
continuous.
From the definition of p-Bochner integral and the inequality

o) < 5o(2( | F(a)du- j nl@)iu) ) + 3o(200(4)

A

it follows that there exists a constant b > 0 such that p(bv(A)) < e provided
p(A) < 6.
(ii) Let us show first that for any fixed n, we have

(17) Vn(i;in) = 1iyn(A)

For arbitrary set B € ¥ and € > 0 by Lemma 2 and (3) we have
P (s 4o (B) ~ 5 (B) ) < iy L pOsthnle = (e <

for n,m > ng. Hence, by completeness of the space X, the sequence (v, (B))
is uniformly convergent to v(B) with respect to B € X. Thus, there exists
a constant a > 0 such that

(18) p(a(v(A)—vn(A))) < e and p(a(un<£J1Ai)—V(inAi)>) <e

for sufficiently large n.
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Arguing in a similar manner as in the first part of the proof of the thesis
(¢), we obtain that there exists a constant ¢ > 0 such that

| plcfale))dp < 00
A

for every n. Therefore the series 3,2, §{, p(cfa(z))dp is convergent and
consequently

o0

(19) > | olcfalz))dp -0 as k— oo.

i=k+1 A,‘

It follows from (17) that

,,(,,n(A)_f;,,n(A,.)> 3 | )i
i=1 Q i=k+1 A;

Hence, by (19), we get that for ¢; = o

~—

k

(20) p(cl (un(A) - Z I/n(Ai))) < ¢ for sufficiently large k.

=1

By convexity of p, we have that for every pair of positive integers k and n

u 1
p(v4) - ov(4) ) < 004) - 1)

Finally, let b =  min{a,c;}. Then, by (18) and (20), we have, for suffi-
ciently large positive integers k

p<b(z/(A) - f: V(Ai)>) <e

i=1

This completes the proof of the theorem. m
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