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ON MATRICES OF MAZUR TYPE ON RATE SPACES

1. Preliminaries

Mazur (6] showed that Cesdro metrices of all positive orders are of type
M. Later Hill [5] established that under certain conditions the Norlund,
Hausdorff and Weighted Mean are of type M. Chandrasekhara Rao proved
that the Abel and the Borel methods are also of type M. General properties
of methods of type M are discussed in Wilansky’s book [8]. The present
paper is devoted to matrix methods of type M in respect of rate spaces and
related topics.

A sequence with n-th term z, is denoted by (z,) or z.

Let C denote the set of all complex numbers.

Let m = (m,) be a sequence of positive numbers. Let

My = {(zn) : (:—")is bounded}; m = {all bounded sequences};

. T .
Cr = {(zn) : nll’ngo W—"emsts}; ¢ = {all convergent sequences};
n

Cor = {(fbn) : lim % = 0}; ¢o = {all null sequences};

n—oo My,

L= {all those sequences {z,} such that Z |za] < oo}.

n=1

Note that mr, ¢x and cor are BK-spaces with the norm

|| = sup |z mn|.
(n)
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Also cgr C ¢ C my. All continuous linear functionals on ¢, will be denoted
by ck.

THEOREM 1 ([3] and [4]). f € ¢; if and only if

f(z) = Z thZn + alim,

n=1
where tr = (tn/mn) €4, a € C and

. . In
lim, z = lim —.
n—oo Ty,

In what follows, let A = (ank), n,k =1,2,... be an infinite matrix with
complex entries.

THEOREM 2 ([3] and [4]). Let car = {z : Az € ¢r}. Then cr4 is an FK -
space with seminorms

00
§ ankmk’;
k=1

pon(z) = |Zp|,n = (1,2,...); and

po(z) = sup(1/my,)
(n)

Pan-1(z) = sup l Zankﬂvk'; (n=1,2,...).
(m) k=1
THEOREM 3 ([3] and [4]). f € c; 4 if and only if
o0 [o o] [o o]
flz) = Z,kal:k + Z tn AnkTr + alirjmz,
k=1 1

n=1 k=

where (t,mn) € £, a € C, (Bn) € cfA, the B- dual of cra, and

o0
limzg z = lim (1/7,) Zankwk.
n=—0
k=1

THEOREM 4 ([3] and [4]). A € (¢, : ¢x) if and only if

(1) im ang/7n = af ezists for all k;
n—00
(2) lim (1/7,) Zankgk =qa"? exists;
o0
(3) > lankl(ox/me) < M,
k=1

where M is a constant independent of n and k.
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THEOREM 5 ([3] and [4]). A € (¢, : ¢) if and only if

4) im anp = ap exists;
n— 00
(5) lim Zankgk = a? ezists;
(6) Z |ank|ox = O(1) for all n.
k=1

DEFINITION [7]. Let A = (ank) and B = (bnk), (n,k = 1,2,...) be sequence
—to—sequence matrix transformations. Their convolution C = A - B is
defined by C = (cni), where

Cnk = anlbn,k—l + an2bn,k—2 +...+ an,k—lbnl-

2. Properties and Theorems

THEOREM 6. Let A € (¢, : ¢) and B € (¢, : ¢). Then their convolution A- B
belongs to (c, : ¢).

Proof anx — ar as n — 00, by — br as n — 00. Hence cpp — aybp_1 +
aobk—2 + ...+ ak—1b1. Also Y re, ankor — a®! asn — oo,

oo
ankgk — b?asn — oo.

k=1

But then Y 727 ) cnkok = (3 ey @nk0k) (D pwq brkor) and so Y 4o Cakor —
a®'bel. This completes the proof.

DEFINITION. A matrix A is called c,—reversible if for every y € ¢, there
exists a unique z such that Az = y.

THEOREM 7. If A is ¢y —reversible, then cya is a Banach space with the

norm
00
:_>_ ankzkl-

k=1

po(z) = sup(1/ms)
(n)

Also, every f € (cr4)* has a representation f(z) = Y oo tn D pey GnkTk +
plimg 4 z, where (t,7,) € £, p € C and limp—,00(1/7n) 3 peq GnkZk €xists.

THEOREM 8. We have x(f) = px(A) where

x(f) = F(17) = 3 (8,
k=1
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x(A)=ad" ——Zak with af = lim Ink

n—oo T
k=1 n

and
a'nk
= Jim, Z
Proof. We have that f € (car)* has the representation

(7) flz) = Zthankmk + plimg 4 .
n=1 =1

Take z = 6%, with 6* = (0,.. 0,...), 1 in the k*® place and zeros else-
where. Then we have

PFIChE Zzt Onk +Nzak
k=1 =1n=1

Take 1* = (1,1,1,...) in place of the sequence = z in (7).
We obtain

o0 [ o]
f(l*) = Ztn Z Qnk + pa”.
n=1 k=1
Hence f(1*) 312, f(6%) = p(a™ — Y re, a¥) which implies x(f) = ux(4),
where x(A) = a™ — Y - ; af. This establishes the result.

THEOREM 9. Let f € ¢} 4. Then forx € cza
f@) =D zuf(6*) = a A (z) + t(Az) — (tA)z,
k=1

where

oQ
A(z) = limg4 z — Za’,:a:k
k=1

forzeI={z €cra:) 1o, aiTi converges}.
Proof. Take z = 6* in (7). Then we have

(8) F(8%) =Bk + > tnank + aaf.

n=1
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Hence Bk = f(6%) — 327, tnanx — @al Using this in (&) we obtain

f(@) =Y [f(6") = D tntnk + aaf]zi
k=1 n=1

o0 o
+ Z tn Z AnkTr + a17irrir41z.
=1 k=1

Therefore
f&) =)z f(6*) = a A (z) + t{Az) — (tA)z.
k=1
Hence the result is proved.

DEFINITION. We define

L= {z € cra: (tA)z = f: i tnlnkTk exists}.

k=1n=1
We recall I = {Z € cra : ) pwy GR Tk CODVErges}.
We define F = {T € cra : 3 pe; Tk f(6F) converges for all f € ¢} ,}.

THEOREM 10. If ¢g is not dense in L, then L = I. Consequently L = F' and
L#W.

Proof. For z € L, we have t(Az) = (tA)z. Consequently f € c 4, we have
9 fz) =Y zkf(6*) = a A (2).
k=1

If f = 0 on cp then f(6%) = 0. Hence (9) reduces to f(z) = aA(z). If f #0
on L, then o # 0. So, x € I. Thus L C I. But always I C L. Hence L = I.
Now F = LN1I. Hence F = L since I = L. Therefore f = uA and A # O
on L.

This means that

L¢g At ={z€cras:A(z) =0}
But W =FNA*=LNA*. Since L ¢ AL, we get L # W.
This proves the result.
DEFINITION. Let A € (¢x : ¢r). Then A = (ank), n,k = 1,2,..., is said
to be of type M(cr : ¢x) if Yo tnank = 0, oo ) [tams| < 0o imply that
t, = 0 for all nn.

THEOREM 11. Let A belong to (cx : ¢x). Let A be cx —reversible and mul-
tiplicative. Then A is of type M(cx : ¢cx) if and only if T is ¢ mazimal
subspace of cx 4. Here Tq is the closure of co in cra.
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Proof. (Step 1). Suppose that A is of Type M(c, : ¢;). Assume that f =0
on cp. Since A is reversible we have f(z) = alim, 4 z + ¢(Az) where

(10) Z [tatn| < 00.
n=1

Also f(6%) = 0. Consequently aaf +3 o> | tnank = 0. Since A is multiplica-
tive, we have af =0 for k=1,2,....
Therefore, we obtain

o0 o0
Ztnank = 0 with Z [tnmn] < oo.
n=1 n=1

But A is of type M(cy : ¢r). Hence t, =0foralln=1,2,....

That is, ¢ = 0, the zero sequence. Using this in (10), we get f = alim,4
which implies that, either ¢g = cr4, or ¢ is a maximal linear subspace
of CrA-

However ¢y # cr4. Hence ¢ is a maximal linear subspace of ¢, 4.

(Step 2). Suppose that ¢y is a maximal linear subspace of ¢, 4. Assume
that A is not of type M(cr : cr). Let

[e ]
Z [tamn| < 00, t,#O0foralln

n=1
and
(11) > tnape=0fork=1,2,...
n=1

Take f(z) = t(Az). Always lim,4 and > 5., txa} are linearly indepen-
dent, because A is ¢, - reversible. Therefore, both f and lim,4 vanish on
Co. Hence ¢ is not a maximal linear subspace of c,4. This contradicts our
present hypothesis. This contradiction shows that ¢t = 0 and so A is of type
M(cq : cn).

DEFINITION. We define P = {z : ¢4 : t(Az) = (tA)z,nt € £}. Note that
LcCP

THEOREM 12.
(i) € C P and P is closed.
(ii) If A is coregular, then P =¢.

Proof. (Step 1). Let wt € £ have the property that (tA)z exists for all z in
cra. Define f;, by ft(z) = (tA)z — t(Az). But then fi* = {z: fi(z) = 0}.
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By the Banach-Steinhaus theorem, f;, is continuous. Hence ftL is closed.
But P =) fi*. So, P is closed in ¢, 4. But always ¢ C P and consequently
t

(12) cC P

This proves (i).

(Step 2). Suppose that A is coregular. Let f € ¢} 4 satisfy that f =0 on
c. But then
(13) ft=c=c¢

where f+ = {z: f(z) = 0}.
With 1 = (1,1,1,...). We have

f(1) = alim,, 1 +t(Al) -1—203[]'(6'“ ) — aag — Ztnank]
k=1

=1
Therefore

0=f(1)=>_ f(6*) =aflimy, 1 - af] + t(Al) - (tA)1.
k=1

k=1
0 =x(f) = ax(4) +t(A1) — t(A)1.

Note that t(A1) — t(A)1 = 0. Therefore ax(A) = 0. Since A is coregular,
x(A) = 0. Hence o = 0 and so f(z) = t(Az) — (tA)xz = 0 on P. Therefore

(14) Pc ft.
From (13) and (14) we obtain
(15) Pce

From (12) and (15) we have P = €. This proves the result (ii).
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