

K. Chandrasekhara Rao, T. M. Singaravel

ON MATRICES OF MAZUR TYPE ON RATE SPACES

1. Preliminaries

Mazur [6] showed that Cesáro metrices of all positive orders are of type M . Later Hill [5] established that under certain conditions the Nörlund, Hausdorff and Weighted Mean are of type M . Chandrasekhara Rao proved that the Abel and the Borel methods are also of type M . General properties of methods of type M are discussed in Wilansky's book [8]. The present paper is devoted to matrix methods of type M in respect of rate spaces and related topics.

A sequence with n -th term x_n is denoted by (x_n) or x .

Let \mathbb{C} denote the set of all complex numbers.

Let $\pi = (\pi_n)$ be a sequence of positive numbers. Let

$$m_\pi = \left\{ (x_n) : \left(\frac{x_n}{\pi_n} \right) \text{ is bounded} \right\}; \quad m = \{ \text{all bounded sequences} \};$$

$$c_\pi = \left\{ (x_n) : \lim_{n \rightarrow \infty} \frac{x_n}{\pi_n} \text{ exists} \right\}; \quad c = \{ \text{all convergent sequences} \};$$

$$c_{0\pi} = \left\{ (x_n) : \lim_{n \rightarrow \infty} \frac{x_n}{\pi_n} = 0 \right\}; \quad c_0 = \{ \text{all null sequences} \};$$

$$L = \left\{ \text{all those sequences } \{x_n\} \text{ such that } \sum_{n=1}^{\infty} |x_n| \pi_n < \infty \right\}.$$

Note that m_π , c_π and $c_{0\pi}$ are BK -spaces with the norm

$$\|x\| = \sup_{(n)} |x_n| \pi_n.$$

1991 Mathematics Subject Classification: 45A46.

Key words and phrases: Rate space, type M ($c_\pi : c_\pi$, c_π -reversible matrices, distinguished subspaces).

Also $c_{0\pi} \subset c_\pi \subset m_\pi$. All continuous linear functionals on c_π will be denoted by c_π^* .

THEOREM 1 ([3] and [4]). *$f \in c_\pi^*$ if and only if*

$$f(x) = \sum_{n=1}^{\infty} t_n x_n + \alpha \lim_{\pi} x$$

where $t_\pi = (t_n/\pi_n) \in \ell$, $\alpha \in \mathbb{C}$ and

$$\lim_{\pi} x = \lim_{n \rightarrow \infty} \frac{x_n}{\pi_n}.$$

In what follows, let $A = (a_{nk})$, $n, k = 1, 2, \dots$ be an infinite matrix with complex entries.

THEOREM 2 ([3] and [4]). *Let $c_{A\pi} = \{x : Ax \in c_\pi\}$. Then $c_{\pi A}$ is an FK-space with seminorms*

$$p_0(x) = \sup_{(n)} (1/\pi_n) \left| \sum_{k=1}^{\infty} a_{nk} x_k \right|;$$

$p_{2n}(x) = |x_n|$, $n = (1, 2, \dots)$; and

$$p_{2n-1}(x) = \sup_{(m)} \left| \sum_{k=1}^m a_{nk} x_k \right|; \quad (n = 1, 2, \dots).$$

THEOREM 3 ([3] and [4]). *$f \in c_{\pi A}^*$ if and only if*

$$f(x) = \sum_{k=1}^{\infty} \beta_k x_k + \sum_{n=1}^{\infty} t_n \sum_{k=1}^{\infty} a_{nk} x_k + \alpha \lim_{\pi A} x,$$

where $(t_n \pi_n) \in \ell$, $\alpha \in \mathbb{C}$, $(\beta_n) \in c_{\pi A}^\beta$, the β -dual of $c_{\pi A}$, and

$$\lim_{\pi A} x = \lim_{n \rightarrow \infty} (1/\pi_n) \sum_{k=1}^{\infty} a_{nk} x_k.$$

THEOREM 4 ([3] and [4]). *$A \in (c_\varrho : c_\pi)$ if and only if*

$$(1) \quad \lim_{n \rightarrow \infty} a_{nk}/\pi_n = a_k^\pi \text{ exists for all } k;$$

$$(2) \quad \lim_{n \rightarrow \infty} (1/\pi_n) \sum_{k=1}^{\infty} a_{nk} \varrho_k = a^{\pi \varrho} \text{ exists;}$$

$$(3) \quad \sum_{k=1}^{\infty} |a_{nk}| (\varrho_k/\pi_k) \leq M,$$

where M is a constant independent of n and k .

THEOREM 5 ([3] and [4]). $A \in (c_\varrho : c)$ if and only if

$$(4) \quad \lim_{n \rightarrow \infty} a_{nk} = a_k \text{ exists;}$$

$$(5) \quad \lim_{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{nk} \varrho_k = a^{\varrho 1} \text{ exists;}$$

$$(6) \quad \sum_{k=1}^{\infty} |a_{nk}| \varrho_k = O(1) \text{ for all } n.$$

DEFINITION [7]. Let $A = (a_{nk})$ and $B = (b_{nk})$, $(n, k = 1, 2, \dots)$ be sequence-to-sequence matrix transformations. Their convolution $C = A \cdot B$ is defined by $C = (c_{nk})$, where

$$c_{nk} = a_{n1}b_{n,k-1} + a_{n2}b_{n,k-2} + \dots + a_{n,k-1}b_{n1}.$$

2. Properties and Theorems

THEOREM 6. Let $A \in (c_\varrho : c)$ and $B \in (c_\varrho : c)$. Then their convolution $A \cdot B$ belongs to $(c_\varrho : c)$.

Proof. $a_{nk} \rightarrow a_k$ as $n \rightarrow \infty$, $b_{nk} \rightarrow b_k$ as $n \rightarrow \infty$. Hence $c_{nk} \rightarrow a_1 b_{k-1} + a_2 b_{k-2} + \dots + a_{k-1} b_1$. Also $\sum_{k=1}^{\infty} a_{nk} \varrho_k \rightarrow a^{\varrho 1}$ as $n \rightarrow \infty$,

$$\sum_{k=1}^{\infty} b_{nk} \varrho_k \rightarrow b^{\varrho 1} \text{ as } n \rightarrow \infty.$$

But then $\sum_{k=1}^{\infty} c_{nk} \varrho_k = (\sum_{k=1}^{\infty} a_{nk} \varrho_k)(\sum_{k=1}^{\infty} b_{nk} \varrho_k)$ and so $\sum_{k=1}^{\infty} c_{nk} \varrho_k \rightarrow a^{\varrho 1} b^{\varrho 1}$. This completes the proof.

DEFINITION. A matrix A is called c_π -reversible if for every $y \in c_\pi$, there exists a unique x such that $Ax = y$.

THEOREM 7. If A is c_π -reversible, then $c_{\pi A}$ is a Banach space with the norm

$$p_0(x) = \sup_{(n)} (1/\pi_n) \left| \sum_{k=1}^{\infty} a_{nk} x_k \right|.$$

Also, every $f \in (c_{\pi A})^*$ has a representation $f(x) = \sum_{n=1}^{\infty} t_n \sum_{k=1}^{\infty} a_{nk} x_k + \mu \lim_{\pi A} x$, where $(t_n \pi_n) \in \ell$, $\mu \in \mathbb{C}$ and $\lim_{n \rightarrow \infty} (1/\pi_n) \sum_{k=1}^{\infty} a_{nk} x_k$ exists.

THEOREM 8. We have $\chi(f) = \mu \chi(A)$ where

$$\chi(f) = f(1^*) - \sum_{k=1}^{\infty} f(\delta^k),$$

$$\chi(A) = a^\pi - \sum_{k=1}^{\infty} a_k^\pi \text{ with } a_k^\pi = \lim_{n \rightarrow \infty} \frac{a_{nk}}{\pi_n}$$

and

$$a^\pi = \lim_{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{a_{nk}}{\pi_n}.$$

Proof. We have that $f \in (c_{A\pi})^*$ has the representation

$$(7) \quad f(x) = \sum_{n=1}^{\infty} t_n \sum_{k=1}^{\infty} a_{nk} x_k + \mu \lim_{\pi A} x.$$

Take $x = \delta^k$, with $\delta^k = (0, \dots, 1, 0, \dots)$, 1 in the k^{th} place and zeros elsewhere. Then we have

$$\sum_{k=1}^{\infty} f(\delta^k) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} t_n a_{nk} + \mu \sum_{n=1}^{\infty} a_n^\pi.$$

Take $1^* = (1, 1, 1, \dots)$ in place of the sequence $x = x_k$ in (7).

We obtain

$$f(1^*) = \sum_{n=1}^{\infty} t_n \sum_{k=1}^{\infty} a_{nk} + \mu a^\pi.$$

Hence $f(1^*) - \sum_{k=1}^{\infty} f(\delta^k) = \mu(a^\pi - \sum_{k=1}^{\infty} a_k^\pi)$ which implies $\chi(f) = \mu \chi(A)$, where $\chi(A) = a^\pi - \sum_{k=1}^{\infty} a_k^\pi$. This establishes the result.

THEOREM 9. Let $f \in c_{\pi A}^*$. Then for $x \in c_{\pi A}$

$$f(x) - \sum_{k=1}^{\infty} x_k f(\delta^k) = \alpha \wedge (x) + t(Ax) - (tA)x,$$

where

$$\wedge(x) = \lim_{\pi A} x - \sum_{k=1}^{\infty} a_k^\pi x_k$$

for $x \in I = \{x \in c_{\pi A} : \sum_{k=1}^{\infty} a_k^\pi x_k \text{ converges}\}$.

Proof. Take $x = \delta^k$ in (7). Then we have

$$(8) \quad f(\delta^k) = \beta_k + \sum_{n=1}^{\infty} t_n a_{nk} + \alpha a_k^\pi.$$

Hence $\beta_k = f(\delta^k) - \sum_{n=1}^{\infty} t_n a_{nk} - \alpha a_k^{\pi}$. Using this in (8) we obtain

$$\begin{aligned} f(x) &= \sum_{k=1}^{\infty} [f(\delta^k) - \sum_{n=1}^{\infty} t_n a_{nk} + \alpha a_k^{\pi}] x_k \\ &+ \sum_{n=1}^{\infty} t_n \sum_{k=1}^{\infty} a_{nk} x_k + \alpha \lim_{\pi A} x. \end{aligned}$$

Therefore

$$f(x) - \sum_{k=1}^{\infty} x_k f(\delta^k) = \alpha \wedge (x) + t(Ax) - (tA)x.$$

Hence the result is proved.

DEFINITION. We define

$$L = \left\{ x \in c_{\pi A} : (tA)x = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} t_n a_{nk} x_k \text{ exists} \right\}.$$

We recall $I = \{x \in c_{\pi A} : \sum_{k=1}^{\infty} a_k^{\pi} x_k \text{ converges}\}$.

We define $F = \{x \in c_{\pi A} : \sum_{k=1}^{\infty} x_k f(\delta^k) \text{ converges for all } f \in c_{\pi A}^*\}$.

THEOREM 10. If c_0 is not dense in L , then $L = I$. Consequently $L = F$ and $L \neq W$.

Proof. For $x \in L$, we have $t(Ax) = (tA)x$. Consequently $f \in c_{\pi A}^*$, we have

$$(9) \quad f(x) - \sum_{k=1}^{\infty} x_k f(\delta^k) = \alpha \wedge (x).$$

If $f = 0$ on c_0 then $f(\delta^k) = 0$. Hence (9) reduces to $f(x) = \alpha \wedge (x)$. If $f \neq 0$ on L , then $\alpha \neq 0$. So, $x \in I$. Thus $L \subset I$. But always $I \subset L$. Hence $L = I$. Now $F = L \cap I$. Hence $F = L$ since $I = L$. Therefore $f = \mu \wedge$ and $\wedge \neq O$ on L .

This means that

$$L \not\subset \wedge^{\perp} = \{x \in c_{\pi A} : \wedge(x) = O\}.$$

But $W = F \cap \wedge^{\perp} = L \cap \wedge^{\perp}$. Since $L \not\subset \wedge^{\perp}$, we get $L \neq W$.

This proves the result.

DEFINITION. Let $A \in (c_{\pi} : c_{\pi})$. Then $A = (a_{nk})$, $n, k = 1, 2, \dots$, is said to be of type $M(c_{\pi} : c_{\pi})$ if $\sum_{n=1}^{\infty} t_n a_{nk} = 0$, $\sum_{n=1}^{\infty} |t_n \pi_n| < \infty$ imply that $t_n = 0$ for all n .

THEOREM 11. Let A belong to $(c_{\pi} : c_{\pi})$. Let A be c_{π} -reversible and multiplicative. Then A is of type $M(c_{\pi} : c_{\pi})$ if and only if \bar{c}_0 is a maximal subspace of $c_{\pi A}$. Here \bar{c}_0 is the closure of c_0 in $c_{\pi A}$.

Proof. (Step 1). Suppose that A is of Type $M(c_\pi : c_\pi)$. Assume that $f = 0$ on c_0 . Since A is reversible we have $f(x) = \alpha \lim_{\pi A} x + t(Ax)$ where

$$(10) \quad \sum_{n=1}^{\infty} |t_n \pi_n| < \infty.$$

Also $f(\delta^k) = 0$. Consequently $\alpha a_k^\pi + \sum_{n=1}^{\infty} t_n a_{nk} = 0$. Since A is multiplicative, we have $a_k^\pi = 0$ for $k = 1, 2, \dots$

Therefore, we obtain

$$\sum_{n=1}^{\infty} t_n a_{nk} = 0 \text{ with } \sum_{n=1}^{\infty} |t_n \pi_n| < \infty.$$

But A is of type $M(c_\pi : c_\pi)$. Hence $t_n = 0$ for all $n = 1, 2, \dots$

That is, $t = 0$, the zero sequence. Using this in (10), we get $f = \alpha \lim_{\pi A}$ which implies that, either $\bar{c}_0 = c_{\pi A}$, or \bar{c}_0 is a maximal linear subspace of $c_{\pi A}$.

However $\bar{c}_0 \neq c_{\pi A}$. Hence \bar{c}_0 is a maximal linear subspace of $c_{\pi A}$.

(Step 2). Suppose that \bar{c}_0 is a maximal linear subspace of $c_{\pi A}$. Assume that A is not of type $M(c_\pi : c_\pi)$. Let

$$\sum_{n=1}^{\infty} |t_n \pi_n| < \infty, \quad t_n \neq 0 \text{ for all } n$$

and

$$(11) \quad \sum_{n=1}^{\infty} t_n a_{nk} = 0 \text{ for } k = 1, 2, \dots$$

Take $f(x) = t(Ax)$. Always $\lim_{\pi A}$ and $\sum_{k=1}^{\infty} t_k a_k^\pi$ are linearly independent, because A is c_π - reversible. Therefore, both f and $\lim_{\pi A}$ vanish on \bar{c}_0 . Hence \bar{c}_0 is not a maximal linear subspace of $c_{\pi A}$. This contradicts our present hypothesis. This contradiction shows that $t = 0$ and so A is of type $M(c_\pi : c_\pi)$.

DEFINITION. We define $P = \{x : c_{\pi A} : t(Ax) = (tA)x, \pi t \in \ell\}$. Note that $L \subset P$.

THEOREM 12.

- (i) $\bar{c} \subset P$ and P is closed.
- (ii) If A is coregular, then $P = \bar{c}$.

Proof. (Step 1). Let $\pi t \in \ell$ have the property that $(tA)x$ exists for all x in $c_{\pi A}$. Define f_t , by $f_t(x) = (tA)x - t(Ax)$. But then $f_t^\perp = \{x : f_t(x) = 0\}$.

By the Banach–Steinhaus theorem, f_t , is continuous. Hence f_t^\perp is closed. But $P = \bigcap_t f_t^\perp$. So, P is closed in $c_{\pi A}$. But always $c \subset P$ and consequently

$$(12) \quad \bar{c} \subset P.$$

This proves (i).

(Step 2). Suppose that A is coregular. Let $f \in c_{\pi A}^*$ satisfy that $f = 0$ on c . But then

$$(13) \quad f^\perp = c = \bar{c}$$

where $f^\perp = \{x : f(x) = 0\}$.

With $1 = (1, 1, 1, \dots)$. We have

$$f(1) = \alpha \lim_{\pi A} 1 + t(A1) + \sum_{k=1}^{\infty} \left[f(\delta^k) - \alpha a_k^\pi - \sum_{n=1}^{\infty} t_n a_{nk} \right] 1.$$

Therefore

$$0 = f(1) - \sum_{k=1}^{\infty} f(\delta^k) = \alpha [\lim_{\pi A} 1 - \sum_{k=1}^{\infty} a_k^\pi] + t(A1) - (tA)1.$$

$$0 = \chi(f) = \alpha \chi(A) + t(A1) - t(A)1.$$

Note that $t(A1) - t(A)1 = 0$. Therefore $\alpha \chi(A) = 0$. Since A is coregular, $\chi(A) = 0$. Hence $\alpha = 0$ and so $f(x) = t(Ax) - (tA)x = 0$ on P . Therefore

$$(14) \quad P \subset f^\perp.$$

From (13) and (14) we obtain

$$(15) \quad P \subset \bar{c}.$$

From (12) and (15) we have $P = \bar{c}$. This proves the result (ii).

References

- [1] K. Chandrasekhara Rao, *Continuous matrices of type M*, Math. Japon., 16 (1971), 45–49.
- [2] K. Chandrasekhara Rao and T. M. Singaravel, *Some transformations of type M*, Tamkang J. Math., Volume 32, Number 1, Spring 2001, 27–31.
- [3] E. Jüriimäe, *Matrix mappings between rate-spaces and spaces with speed*, Acta Comm. Univ. Tartu., 970 (1994), 29–52.
- [4] E. Jüriimäe, *Properties of domains of mappings on rate spaces and spaces with speed*, Acta Comm. Univ. Tartu., 970 (1994), 53–64.
- [5] J. D. Hill, *On perfect methods of summability*, Duke Math J., 3 (1937), 702–714.
- [6] S. Mazur, *Anwendung der Theorie der operationen bei der Untersuchung der Toeplitzschen Limitierungsverfahren*, Studia Math., 2 (1930), 40–50.

- [7] P. Vermes, *Convolution of summability Methods*, J. D'Anal. Math., 2(1952), 160–177.
- [8] A. Wilansky, *Summability Through Functional Analysis*, North-Holland, Amsterdam, 1984.

K. Chandrasekhara Rao
DEPARTMENT OF MATHEMATICS
MOHAMED SATHAK ENGINEERING COLLEGE
KILAKARAI - 623 806, INDIA
and

T. M. Singaravel
DIRECTORATE OF DISTANCE EDUCATION
ANNAMALAI UNIVERSITY
ANNAMALAI NAGAR - 608 002, INDIA

Received April 30, 2001; revised version August 23, 2001.