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O S C I L L A T O R Y P R O P E R T I E S OF T H I R D O R D E R N E U T R A L 
D E L A Y D I F F E R E N C E E Q U A T I O N S 

A b s t r a c t . Some new sufficient criteria for the oscillation of all solutions of the neutral 
difference equation 

A(cnA(dnA(2/n +Pn2/n-Jc))) + <}nf(y n — 77i J = e„ 
are obtained. Existence of nonoscillatory solution and its asymptotic behavior axe also 
discussed. Examples illustrating the results are inserted. 

1. Introduction 
Consider a third order neutral delay difference equation of the form 

(E) A(cnA(dnA(yn + PnVn-k))) + Qnf{y n—mj — cn 
where n 6 N(no) = {no, no + 1, no + 2, • • •} , no is a nonnegative integer, A is 
the forward difference operator defined by Ayn = y n + i — k and m are non-
negative integers such that k < m and the real sequences {cn} , {dn} , {pn}, 
{<7n}) {e n } and the function / satisfy the following conditions: 

OO 1 OO 1 

(Hi) {cn} and {dn} are positive real sequences such that — = 12 ~r 
n=no Cn n=no 

- oo; 
(H2) 0 < pn < 1, {pn} is nondecreasing, qn > 0 and qn ^ 0 for infinitely 

many values of n S N(no); 
(H3) / : R —• R is continuous and nondecreasing such that uf(u) > 0 for all 

u^O. 
By a solution of equation (E) we mean a real sequence {y n } that is de-

fined for n > no — m and satisfies equation (E) for all n 6 N(no). Clearly 
if yn — An for n = no — m, no — m + 1, • • •, no — 1 are given then equation 
(E) has a unique solution satisfying the above initial conditions. A solution 
of (E) is said to be oscillatory if the terms yn of the sequence {yn} are 
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neither eventually all positive nor eventually all negative and nonoscillatory 
otherwise. Most of the results established the equation (E) state that the 
solutions of equation (E) are either oscillatory or tends to zero monotoni-
cally as, n —> oo see for example [1, 6, 8, 9, 10, 11, 12], and the references 
cited therein. Motivated by this observation, in this paper we establish con-
ditions under which all solutions of equation (E) are oscillatory. Existence of 
nonoscillatory solutions and its asymptotic behavior will also be discussed. 
Examples illustrating the results are included in the text of the paper. 

2. Some preliminary lemmas 
In this section we state and prove some lemmas, which are useful in 

establishing our main results. 

LEMMA 2 .1 . Leten = 0 . If{yn} is an eventually positive solution of equation 
(E), then there are only the following two cases for n € N(no) sufficiently 
large: 

(I) zn > 0, Az n > 0, A(dnAzn) > 0; 
(II) zn > 0, Az n < 0, A{dnAzn) > 0; 

where zn = yn+ pnyn-k-

P r o o f . Let { y n } be an eventually positive solution of equation (E). Then 
there exists a n\ 6 N(no) such that yn_fc > 0 and yn~m > 0 for n > n\. 
From the definition of zn and (H2), it is clear that zn > 0 for n > rt\ 
and from equation (E), A(cn)A(dnAzn)) < 0 for n > TOI. Thus {zn},{Azn} 
and {A(dnAzn} are monotone and eventually one signed. We claim that 
there is an 712 6 N(ni) such that for n > ri2, A(dnAzn) > 0. Suppose 
A(dnAzn) < 0. Since Cn > 0, it is clear that there is an integer 713 > ri2 such 
that cn3A(dn3AzJl3) < 0. Thus for n > ns, we have 

(1) CnA{dnAzn) < cn3A{dnsAzn3) < 0. 
Dividing (1) by cn and then summing from «3 to n — 1, we obtain 

Letting n —> 00 in (2) then dnAzn —> —00 by (Hi). Thus, there is an integer 
t&4 > 713 such that for n > «4, 

Dividing (3) by dn and then summing from 714 to n — 1, we obtain 
(3) dnAzn < dniAzni < 0. 



Oscillatory properties 327 

which implies zn —> —oo as n —> oo by (Hi), a contradiction. Thus A(dnAzn) 
> 0. This completes the proof. 

LEMMA 2 .2 . Let {yn} be an eventually positive solution of equation ( E ) and 
suppose Case (I) of Lemma 2.1 holds. Then there exists an integer N G N(no) 
such that 
(4 ) yn > (1 - Vn)Zn > (1 - P)Zn, 

for n> N. 

LEMMA 2 .3 . Let {yn} be an eventually positive solution of equation ( E ) 
and suppose Case (II) of Lemma 2.1 holds. Then there exists an integer 
N £ N(n0) such that 

Zn ^ 

(5 ) Vn—k > 7 - > n . , 
1+Pn 1 +P 

for n> N. 

LEMMA 2.4. Let {yn} be an eventually solution of equation ( E ) and assume c 
that lim pn = p* E [0,1) and lim zn — c ^ 0 .Then lim yn - . n—*oo n—»00 n—>00 1 + p* 

The proof of Lemmas 2.2 to 2.4 can be found in [7] and [4]. 

LEMMA 2.5. Let {yn} be an eventually positive solution of equation ( E ) and 
suppose Case (I) of Lemma 2.1 holds. Then there exists an integer N € N(no) 
such that for n> N, 

/c\ A \ Pn—m CnA(dnAzn) (0) > j , 
tin—m 

n—l 1 
where pn — J2 

s=n0 c, -s 

Proof . From Case (I) of Lemma 2.1 and from equation (E), we have 
dnAzn > 0, CnA(dnAzn) > 0 and A{cnA{dnAzn)) < 0 for n > N. Hence 

7 a , * . v1̂ 1 csA{dsAzs) dnAzn = dNAzN + i -
s=N Cs 

> cnA(dnAzn)pn, n> N. 

Since A(cnA(dnAzn)) < 0, we have A z n - m > ^A(dnAzn)pn.m ^ ^ ^ ^ m The proof is now complete. 

REMARK 2 .1 . Clearly, the inequalities parallel to those established in Lem-
mas 2 . 1 - 2 . 5 hold for an eventually negative solution of ( E ) . 
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3. Oscillation results 
In this section we establish conditions for the oscillation of all solutions 

of equation (E). We begin with the following theorem. 

THEOREM 3.1 . Assume f(u) = u and en = 0 in equation ( E ) . Assume that 
there exist a double sequence { 7 i n , s } ,n,sE N(no) such that 

(i) Hn ,n = 0 for ne N(n0) and 7in>s > 0, for n > s € N(n0), 
(ii) A2Hn ,s = Hn,s+1 - Hn,s < 0 for n > s E N(no). 

Suppose that { / i n > s |n > s E N(no) } is a double sequence with A2Hn, s = 
—hn^^Tin^ for n > s E N(no). If there exists a positive real sequence {(pn} 
such that 

ri-1 r J .„2 1 
-1 , 9 

OO (7) lim sup — - — V 
n—>0° nino ¿^ 

U tf as-m<Ps+1 ,2 

^•Ps—m^Ps 

where 

= ( ? n ( l - P n - m ) + - A ^ O \ , 
^ "n—m 
dn-mAPr, 

Oin = 

Qt > 1 +P, 

2pn—m^n+l—m 
and 

71+771—k r t 1 / ^ 1 
w E 

t=n 1 s=n \ j=s 

then all solutions of equation (E) are oscillatory. 

P r o o f . Let {yn} be a nonoscillatory solution of equation (E). Without loss 
of generality we may assume that yn-m > 0 for n G N(iVo), where NQ is 
chosen so large that Lemmas 2.1 to 2.3 and Lemma 2.5 hold for n E N(NO). 
Case (I) : From Lemma 2.2 and equation (E), we have 

(9) A(cnA(dnAzn)) + qn( 1 - pn-m)zn-m < 0 , n e N(iV0). 

Define 
nm .a, fCnA(dnAzn) 
(10) Wn = <Pn[ H Cn-mOCn-1 

\ Zn—m y 

for n > Ni E N(iVo + m), then using Lemma 2.5, we have 

A W n < —~~yVn+l Vn+l 

+ ¥>n( ~ 9 n ( l ~ Pn-m) ~ T ^ ( - C n + i - m a « ) + A ( c „ _ m a n _ i ) } I "n-m V Vn+1 / J 

= - * n - for n E N(iVo). 
"n-m Vn+1 
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Hence for all n > N € N(iVi), we have 
n—1 n—1 ( 
E n n , s * s < n n , N w N - E m + i + u n , 

s=N s=N 
n-l 

- — E 

Ps—m, Vs iA ,2 

• vi+i } 
Ps—m <Ps 

s=N ds-m Vs+l l V 2ps-mips J 

1 n—* il r? 

Pi-m^i 

Thus, for all n e N(JV), we obtain 
n- l 
E 
s=N 

which implies for n> N\ 
n- l 

w f _ 1 ds-mfl+i u2 
Hn'S S 4 ps_mVps ^ J 

E 
s=Ni 

Therefore, 

4 ps-mVs 
'n.s 

n- l 

E 
s=no 

Wi-1 
< E 

s=no 

TV ^ _ 
4 Ps-m<Ps 

j . 1 2 
ttn.s^s - T nr 4 Ps-m<Ps n'S 

iVi-1 

s=n o 
• JVi-1 

s=no 
for all n 6 N(no). The latter gives 

n - l 

= ftn>no E 1^.1 + lWjVxl , 
^ Q=r>r\ ' 

lim sup 
tin,no s = 

E 
s=n o 

ds-mlPs+1 ^2 

4 Ps-m<Ps n'S 

Ni-1 
< E I^.i + I V ^ I , 

s=n o 

which contradicts with condition (7). 
Case ( I I ) : Let s € N(no) be fixed and summing the equations (E) from s 
to n — 1, we obtain 

n- l 
CnA(dnAzn) - csA(dsAzs) + E ItVt-m = 0 , 

t=s 
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or 
1 

-A(dnAzn) + — J2 QtVt-m < 0. 
^ t=n 

Summing again from s t on and rearranging, we obtain 

i=n * s=n Cg ' 

A final summation of the last inequality divided by dn from s to n gives 

which contradicts with (8). This completes the proof of the theorem. 

REMARK 3.1. Let pn = 0 in the equation (E), then Theorem 3.1 improves 
Theorem 1 of Graef and Thandapani [3] in the sense that we do not require 
that ACn > 0 for n € N(n0). 

We have used a general class of double sequence {Hn,s} as the parame-
ter sequence in Theorem 3.1. By choosing various specific double sequence 
{Wn,s} we can derive several oscillation criteria. 

First, let us consider a double sequence { 'Kn j } defined by 

where A > 1 is a constant. Then Hn,n = 0 for n G N(no) , Wn>s > 0 for 
n > s € N(no) and A2Hn,s < 0 for n > s 6 N(no). Thus, we have the 
following corollary. 

COROLLARY 3.2. In addition to the condition (8) assume that 

In view of (5), the last inequality implies 

Since {zn} is decreasing, we obtain 

{Hn,s} = (n - s )\ n > s € N ( n 0 ) , 

= 00, 

for some X > 1. Then every solution of (E) is oscillatory. 
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EXAMPLE 3.1. Consider the following neutral delay difference equation 

(Ex) A 3 ( y n + ^Vn- i j + = 0, n > 3. 

Let A = 2 and ipn = 1. Then all conditions of Corollary 3.2 are satisfied and 
therefore every solution (E i ) is oscillatory. In fact {yn} = { (— l ) n n } is such 
a solution of equation (Ei ) . 

Next, consider the double sequence {HniS }defined by 

Un,s = > n>seN(n0), 

where A > 1 is a constant. Then 7~Ln>n = 0 for n € N(no ), > 0 for 
n > s € N(no) and A2fin,s < 0 for n > s € N(no). Then, we have the 
corollary. 

COROLLARY 3.3. In addition to the condition (8) assume that 

71—1 
Um sup[log(n+l) ]-A £ 

s=no 

l o g ^ Y ^ -
^ds-m^s+l 

A-2H 

4 Ps-mVs 
= 00, 

for some A > 1. Then every solution of the equation (E) is oscillatory. 

REMARK 3.2. Le t 
u 

> M > 0 for « ^ 0 and en = 0 in the equation (E). 

Then with suitable modifications in the condition (8), that is 

1 +p 

t=n Ls=n s x j=s 3 
Qt< 

M ' 

the conclusion of Theorem 3.1 holds. 

Next theorem deals with the oscillation of (E) when / satisfies the con-
dition 

(11) f(u) — f(v) = g(u, v)(u — v) for u ^ v and g(u, v) > ¡x, 

for some fx > 0. 

THEOREM 3.4. In addition to the condition (11) assume that pn = p and 

en = 0 in (E). If there exists a positive nondecreasing sequence {</?«} such 

that 

(12) [aipn + <Pn+i{qn ~ a)] = cxo 

ri—ti 0 
for every a > 0 and 

n+m — k r t 1 • t -IV 
(13) „limsup £ • E ï ( E ^ ) 

t—n s=n s V J = S 3 ' 

= oo, 
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then all solutions of the equation ( E ) are oscillatory. 

Proof . Let {yn} be a nonoscillatory solution of the equation (E). Without 
loss of generality we may assume that yn-m > 0 for n € N(iV),iV > no, 
where N is chosen so large that Lemmas 2.1 to 2.2 and Lemma 2.5 hold for 
n € N(N). 

Case (I): From Lemma 2.2 and (11), the equation (E) implies that 

(14) A(cnA{dnAzn)) + qnf{( 1 - p)zn-m) < 0, n € N(JV). 

Define 
CnAidnAZn) 

Wn - -TT- r rtfin, U>N. 
/ ( ( I -P)Zn-m) 

Then Wn is eventually positive and using(14) we have 

A1A, . . cnA(dnAzn) AWn < -iPn+lQn + -JTT-i \ \A(pn 
/ ( ( I -P)Zn-m) 

cNA(dNAzN) 
< ~Vn+\<ln-J77\ \ zA<pn 

f ( { l - p ) z N _ J 

= -<Pn+lQn + OiA(pn, 

where a = ^M ĵv ) > q js a c o n s tan t . Summing the last inequality, 
f { ( l - p ) z N _ J 

we obtain 
n—1 

(aiPn + Vn+l(<?n - a)) < W N , 
s=N 

which contradicts with the condition (12) as n —> oo. 
Case (II): Summing the equation (E) three times, we obtain 

OO r t •» y t * 

E 
t=n L s=n ^ j=s 

Now, from Lemma 2.3, we obtain 
n+m—k 

Qtf{yt —m ) < 

11:iidhM^)^ t=n s=n s v j=s
 ] ' 

Since {zn} is decreasing and / is nondecreasing, we have 
n+m—k r t -i * t i \ • 

(«) E Es(E^) i=n L s=n s x j=s 3 ' J 
ft < 

/ 
,1+Py 

Clearly {zn} approaches a finite nonnegative number as n —» oo. In view of 
the condition (13) and using (15) we have lim zn > 0 what is impossible. 
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If lim zn = 0, then n—>00 

r r 1 ^ 1+P ^ lim — r- = lim —-. T- < < 00, n^oo / Zn \ n-+oo / Zn Zn+1 \ ^ 
U + p / ^ U + p ' l + p / 

a contradiction with (13). This completes the proof of the theorem. 

EXAMPLE 3.2. The difference equation 

(E2) A (nA (nA (yn + ¿2/n-i) ) ) + 4 n3 (y%_2 + yn_2) = 0, 

satisfies all conditions of Theorem 3.4 for <pn = 1. Hence all solutions of (E2) 
are oscillatory. 

THEOREM 3.5. In addition to conditions (11), (12) and (13) assume that 
{pn\ is decreasing such that lim pn = 0 and there exists an oscillatory 

n—»00 
sequence {hn} such that 

(16) A(cnA(<inAhn)) = en, lim hn = 0. 
n—>00 

Then every solution of equation (E) is either oscillatory or tends to zero 
monotonically as n —» 00. 
Proof . Suppose that there is a nonoscillatory solution {y n } such that {yn} 
is eventually positive and lim yn 0. Consider the function xn = zn — hn. n—>oo 
Then zn > yn > 0 and xn > 0 eventually. If { x n } is eventually negative then 
zn < hn, which contradicts with oscillatory character of {/in} . Also from 
equation (E), A(c„A(iinAxn)) < 0. Thus {xn}, { A z n } and {A(d n Az n ) } 
are monotone and eventually one signed. Proceeding as in Lemma 2.1, it 
follows that there is an n\ G N(no) such that for n 6 N(ni), A(dnAxn) > 0 
and A{cnA(dnAxn)) < 0. 

Let { A x n } be eventually positive. Then since {x„} is eventually positive 
and increasing and hn —> 0 and pn —» 0 as n —> 00, it follows that there is 
an integer n2 > n\ and A € (0,1) such that yn-m > Axn_m for n 6 N(n2). 
Moreover, / is nondecreasing and hence 

fiVn —m 

for n € N(n2). Define 
w _ cnA(dnAxn) ^ 

/ (Ax n _ m ) 
then W > 0 for n 6 N(n2) and satisfies the inequality 

AV,, ^ . Cn2A(dn2Axn2) 
A W n < -qn<Pn+1 + — 7 7 7 r - V n -
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Summing the last inequality from to n — 1, we obtain 
n—1 
E (P<Pn + Vn+1 fan ~ P)) < Wn2 s—r12 

Cn A (dn Ax/i ) 
where (3 = —2 "2 a contradiction with (12). Thus {Axn} has to 

7 \^xn2—m) 
be eventually negative. In that case lim xn — c > 0. Since lim hn = 0 and n—> oo n—>oo 
lim pn = 0, we have lim yn = c. Summing the equation (E) three times 

n—• oo n—»oo 
we obtain 

OO r t 1 / t 

( " > E £ ¿ - ( 5 : ? t=n L s=n a« V j=s
 C1 

From (13) and (17), we see that lim inf yn = 0. By Lemma 1 of [5], we 
n—too 

conclude that c = 0. This completes the proof. 

EXAMPLE 3.3. The difference equation 

(E3) A ( (n + 1) A ( (n + 1) A (yn + ¿ y „ _ i ) ) ) + n4 + yn_3) 

(—l)n + 1(8n3 + 24 n2 + 18 n + 1) 
= 7—TT\ ' n - 1> n(n + 1) 

f ( - lVM 
satisfies all conditions of Theorem 3.5 with <pn — 1 and {hn} — < -—— >. 

Hence every solution of the equation (E3) is either oscillatory or tends to 
zero monotonically as n —> 00. 

Finally, we obtain a sufficient condition for the existence and asymptotic 
behavior of nonoscillatory solutions of (E). We do not require qn > 0 for 

n - i 1 n—1 1 
n G N(no) here. Let An, Bn and Cn be defined by An = J2 — ! C ~r 

s=no Cs s=no &S 
n~l As and Cn = J2 -t~-
s=no ds 

THEOREM 3.6. Let a > 0 be a constant such that dn> a for all n € N(no). 
Suppose that 

00 
(18) | Cn+1 + Ai+l#n+l | en+i < 00 

n=no 
and 

00 
(19) ^ I Cn+1 + An,+lBn+i \ \qn\ < OO. 

n=no 

Then equation (E) has a nonoscillatory solution {yn} such that {zn} ap-
proaches a nonzero limit. 
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Proof . Let c > 0 and let N G N(no) be so large that from (18) and (19) we 
have 

°° c(l - p) 
Y I Cn+1 + An+iBn+i | |en| < — , 

n=N 

°° c( 1 - p) 
I Cn+l + Ai+l^n+1 | Wn < "^TTc^T 

and 
No = N - m > no-

Let BN0 be the linear space of all real sequences y = {yn}^LWQ such that 
||y|| = sup |yn|. It is not difficult to see that B̂ •„ endowed with this norm 

n>N0 

is a Banach space. Consider the set 

S = jy G BNO : < 2/n < 5c for n > AT and yn = yN for N0 < n < i v j 

and define an operator T : S —• B^0 by 

{oo 

( 3 + 2 p ) c - PnVn—k ~ £ K{s, n ) q s f ( y s - m ) - es) f o r n > TV; 

(•Ty)N, S _ n N 0 < n < N , 

where K(s,n) = Cs+1 — Cn + As+\Bn — .As+i,Bs+i . Clearly, <S is a bounded 
closed and convex subset of BN0-First, we will show that T maps S into itself. For y G S we have 

and 

Ty-n < 3 + 2p+ \ < 5c. 

Thus TS C S. 
Next we let y = {yn} G S and for each i = 1,2,3, • • •, let yl = {yjj} be a 

sequence in S such that lim — y|| = 0. Then a straightforward argument 
i—*oo 

using the continuity of / shows that lim | |(7V)n — (Ty)n\\ = 0. Hence T is i—»oo 
continuous. 

Finally, in order to apply Schauder Fixed Point Theorem, we need to 
show that TS is relatively compact. In view of a result of Cheng and Patula 
[2], it suffices to show that TS is uniformly Cauchy. To this end, let y = 
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{yn} e S and observe that for any j > n> N, we have 

|Tyj - Tyn| < \pjVj-k ~ PnVn-k\ 
00 

+ ICa+1 + As+iBa+i\ (|g4| /(5c) + |es|) 
s = n 

1 - p 
< 10PC + —T^C. 

¿i 

From the hypothesis, it is clear that for a given e > 0, there exists an integer 
N\ 6 N(N) such that for all j > n> Ni, we have | T yj -Tyn \ < e. Then 
TS is uniformly Cauchy and so TS is relatively compact. Therefore, by 
Schauder Fixed Point Theorem, there is a fixed point y £ S. It is clear that 
V — {l/n} is a nonoscillatory solution of equation (E) and has the required 
asymptotic property. 

Combining Theorem 3.6 with Lemma 2.4, we have the following corol-
lary: 

COROLLARY 3.7. Assume that the conditions of Lemma 2.4 and Theorem 
3.6 are satisfied. Then equation (E) has a nonoscillatory solution that ap-
proaches a nonzero limit. 

EXAMPLE 3.4. Consider the neutral difference equation 

(E4) A 2 ( n 3 A ( y n + i y n _ 1 ) ) + ( - i r 3 - " ^ _ m = ( - i r + 1 2 - " , n > 1 

where 7 is the ratio of odd positive integers and m is a positive integer. All 
conditions of Corollary 3.7 are satisfied so the equation (E4) has a nonoscil-
latory solution that approaches a nonzero limit. 
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