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OSCILLATORY PROPERTIES OF THIRD ORDER NEUTRAL
DELAY DIFFERENCE EQUATIONS

Abstract. Some new sufficient criteria for the oscillation of all solutions of the neutral
difference equation
AlcnA(dnA(yn + PrYn—k))) + nf(Yn—m) = en

are obtained. Existence of nonoscillatory solution and its asymptotic behavior are also
discussed. Examples illustrating the results are inserted.

1. Introduction
Consider a third order neutral delay difference equation of the form

(E) A(cnA(dnA(Yn + Pr¥Yn—k))) + @ f(Yn-m) = €n

where n € N(ng) = {ng,no + 1,19 + 2, - -}, ng is a nonnegative integer, A is
the forward difference operator defined by Ay, = yn+1—¥n, K and m are non-
negative integers such that & < m and the real sequences {c,}, {dn},{Pn},
{gn}, {en} and the function f satisfy the following conditions:

x 1 x 1
(H1) {cn} and {d,} are positive real sequences such that Y —= Y} —
n=ng Cn n=ng dn

= 00;

(Hz) 0 < pp < 1, {pn} is nondecreasing, g, > 0 and ¢, # 0 for infinitely
many values of n € N(ng);

(H3) f:R — R is continuous and nondecreasing such that uwf(u) > 0 for all
u#0.

By a solution of equation (E) we mean a real sequence {y,} that is de-
fined for n > ny — m and satisfies equation (E) for all n € N(np). Clearly
if yp = Ay forn =ng—m,nyg —m+1,---,n9 — 1 are given then equation
(E) has a unique solution satisfying the above initial conditions. A solution
of (E) is said to be oscillatory if the terms y, of the sequence {y,} are
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neither eventually all positive nor eventually all negative and nonoscillatory
otherwise. Most of the results established the equation (E) state that the
solutions of equation (E) are either oscillatory or tends to zero monotoni-
cally as, n — oo see for example [1, 6, 8, 9, 10, 11, 12], and the references
cited therein. Motivated by this observation, in this paper we establish con-
ditions under which all solutions of equation (E) are oscillatory. Existence of
nonoscillatory solutions and its asymptotic behavior will also be discussed.
Examples illustrating the results are included in the text of the paper.

2. Some preliminary lemmas
In this section we state and prove some lemmas, which are useful in
establishing our main results.

LEMMA 2.1. Let e, = 0. If {yn} is an eventually positive solution of equation
(E), then there are only the following two cases for n € N(ng) sufficiently
large:

(I} 2z, >0, Azp, >0, A(dpQzy) > 0;

(II) z, >0, Az, <0, A(d,Az,) > 0;
where 2n, = Yn + PnYn—k-
Proof. Let {y,} be an eventually positive solution of equation (E). Then
there exists a n; € N(ng) such that y,_x > 0 and yp—p, > 0 for n > n;.
From the definition of 2, and (Hz), it is clear that 2z, > 0 for n > ng
and from equation (E), A(cn)A(dnAz,)) <0 for n > ny. Thus {z,},{Az,}
and {A(d,Az,} are monotone and eventually one signed. We claim that
there is an ny € N(ny) such that for n > ng, A(dpAz,) > 0. Suppose
A(dnAzy) < 0. Since ¢, > 0, it is clear that there is an integer n3 > ng such
that ¢z A(dn;Azng) < 0. Thus for n > ng, we have

(1) cnA(dnAzy) < erg Adp,Azny) < 0.

Dividing (1) by ¢, and then summing from n3 to n — 1, we obtain

n—1
1
(2) Dz ~ dngDzpy < CpgA(dnyDzng) > —.

—na Cs

s=ns
Letting n — oo in (2) then d,Az, — —oo by (Hj). Thus, there is an integer
ng4 > ng such that for n > ny,
(3) dpAzy < dnyAzn, < 0.

Dividing (3) by dp, and then summing from n4 to n — 1, we obtain
n—1 1
Zn — Zny < dn4 Z 'd_,
S

s=n4
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which implies z, — —o0 asn — 0o by (H;), a contradiction. Thus A(d,Az,)
> 0. This completes the proof.

LEMMA 2.2. Let {yn} be an eventually positive solution of equation (E) and
suppose Case (1) of Lemma 2.1 holds. Then there exists an integer N € N(ng)
such that

(4) Yn 2 (1 - pn)zn 2 (1 -;D)Zn,
forn > N.
LEMMA 2.3. Let {y,} be an eventually positive solution of equation (E)

and suppose Case (II) of Lemma 2.1 holds. Then there exists an integer
N € N(ng) such that

Zn Zn
5 k2 >
(5) Yok = T pe = T4p

2

forn> N.

LEMMA 2.4. Let {y,} be an eventually solution of equation (E) and assume
c

1+p*

that lim pn =p* € [0,1) and Jim_z, = c#0.Then lim y, =

The proof of Lemmas 2.2 to 2.4 can be found in {7] and [4].

LEMMA 2.5. Let {yn} be an eventually positive solution of equation (E) and
suppose Case (1) of Lemma 2.1 holds. Then there ezists an integer N € N(ng)
such that forn > N,

> pn——mcn,A(dnAzn)

6 Az,

( ) Zn—m 2 dom )
n-1 1

where p, = >, —.
s=n, Cs

Proof. From Case (I) of Lemma 2.1 and from equation (E), we have
dnAzy > 0, chnA(dnAzy) > 0 and A(c,A(d,AZ,)) <0 for n > N. Hence

n-1
doAzn = dyAzy + Y csA(dsAzs)

s=N
> cnA(dnAzp)pn, n > N.

CnA(dnAZn)pn—m

dn—m

Cs

Since A(c,A(dpAzy,)) <0, we have Az, >

The proof is now complete.

,forn> N.

REMARK 2.1. Clearly, the inequalities parallel to those established in Lem-
mas 2.1-2.5 hold for an eventually negative solution of (E).
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3. Oscillation results

In this section we establish conditions for the oscillation of all solutions
of equation (E). We begin with the following theorem.

THEOREM 3.1. Assume f(u) = u and e, = 0 in equation (E). Assume that
there exist a double sequence {Hyp s} ,n,s € N(ng) such that

(i) Hpn =0 forn € N(ng) and Hyp s > 0, for n > s € N(ng),
(11) Aan’s = H'n,,s+1 - Hn,s S 0 f07' n>sec N(no).
Suppose that {hns|n >s € N(ng)} is a double sequence with AgH,s =

—hn,s\/Hn,s for n > s € N(ng). If there exists a positive real sequence {¢n}
such that

n—1 2
. ds—mSO 12
7 lim sup ['H P, - ——TFstly ]=oo
where
pn—mcﬁﬂ—mai
v, = ©n Qn(l - pn—m) + d - A(cn—man—l) 3
n—m
_ dn—mASOn
o = ——————,
2pn—mCnt1-m
and
n+m—=k t 1 t 1
(8) z [ZES‘(Z;>]%>1+P,

t=n s=n j=s J

then all solutions of equation (E) are oscillatory.

Proof. Let {y,} be a nonoscillatory solution of equation (E). Without loss
of generality we may assume that y,—,, > 0 for n € N(Np), where Ny is
chosen so large that Lemmas 2.1 to 2.3 and Lemma 2.5 hold for n € N(Np).
Case (I): From Lemma 2.2 and equation (E), we have

(9) A(cnBA(dnDzn)) + an(l — Pn-m)2n-m <0, n € N(No).
Define Ald,Az)
z
(10) Wn = ¢n (‘cﬂ_"u + cn—ma'n.—1> )
Zn—-m
for n > N; € N(Np + m), then using Lemma 2.5, we have
A
Awn S Pn Wn+1
Pn+1
—m (W, 2
+ <Pn{ - Qn(l - pn——m) - Zn T ( ntl _ c'n+1—man) + A(Cn—man—l)}
n—m \ Pn+1
= g, - Brm Pn 2 forn e N(Np).

dn-m Ppy1



Oscillatory properties 329

Hence for all n > N € N(NV; ), we have

n—1 n—1
Z H'n,s\ps < Hn,NWN - Z { AV % s) Wsi1+ Ha, sps = (ps Ws+1}

s=N 5= N ds—m (ps'*'l
B oder 2 2
= HnNWN - Z Pom 903 {Ws+1 Hn,s+ n_gﬂm}
ds—m <P5+1 Ps—mPs
1 de-mely B2
o= Ps—m®Ps e
Thus, for all n € N(N), we obtain
n—1
1d
Z [Hn,s\l’s - _3__7_Tl_£si1_h2 ] < Hn,NWN;
=N 4 ps—m@s
which implies for n > Ny
n—1 2
1ds—
Z {Hn,s\lls - Zs_m—(piﬂhi,s:l < Hn,leNl < Hn,nolell'
s=N; Ps—mPs
Therefore,
= 1ds—m‘P§+1 2
Z Hn,s\I’s - Z——hn,s
s=ng Ps—mPs
Ni—-1
1d
< Z [Hn,s\ps h 4sm—(ps+1'h’2 :| + Hn,nolWNll
s=ng Ps—mPs
Ni1—-1
S Hnyno Z |qls| +Hn1nOIWNlI
s=ng
Ny;—-1
= Hamo 3 Bl +Vml},
s=ng
for all n € N(ng). The latter gives
n—1 d (P Ni-1
lim sup > [Hn,s\ps— Ml p2 ] > W]+ [Whyl,
n—0oo N0 g=ng 4ps _mps s=no

which contradicts with condition (7).
Case (II): Let s € N(np) be fixed and summing the equations (E) from s
to n — 1, we obtain

n—1

cnA(dnAzn) — csA(dsDzs) + > @ye-m =0,

t=s
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or . o
~A(dpAzp) + — Z 9tYt-m < 0.
Cn t=n

Summing again from s to n and rearranging, we obtain

o0 t 1
d.Az, + Z ( Z C_>Qtyt—m <0.

t=n ‘s=n S
A final summation of the last inequality divided by d,, from s to n gives
00 t t
1 1
>, [Z d—(z __‘)]Qtyt—m < zp.
t=n “s=n =S j=s CJ
In view of (5), the last inequality implies
n+m—k o ¢t t
1 <Z 1 )] Zttb—m
XX o) e <
= [s=n ds = G 1+p
Since {2z} is decreasing, we obtain

> (T h)asren

t=n s=n % j=s
which contradicts with (8). This completes the proof of the theorem.

REMARK 3.1. Let p, = 0 in the equation (E), then Theorem 3.1 improves
Theorem 1 of Graef and Thandapani (3] in the sense that we do not require
that Ac, > 0 for n € N(ngp).

We have used a general class of double sequence {H, s} as the parame-
ter sequence in Theorem 3.1. By choosing various specific double sequence
{H, s} we can derive several oscillation criteria.

First, let us consider a double sequence {H, s} defined by

{Ha,s} = (n— s)*, n>seNmnp),

where A > 1 is a constant. Then H,, = 0 for n € N(ng) , Hps > 0 for
n > s € N(ng) and AyHps < 0 for n > s € N(ng). Thus, we have the
following corollary.

COROLLARY 3.2. In addition to the condition (8) assume that

Z ((TL A2ds-m‘)"§+1(n - s)}‘_2\ = o0,
4ps—mPs /

lim sup X
n—00 — Ny ) s=mo

for some A > 1. Then every solution of (E) is oscillatory.
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ExAMPLE 3.1. Consider the following neutral delay difference equation

1 4n + 10
(E1) A3 (yn + ‘z‘yn—l) + 5
Let A = 2 and ¢, = 1. Then all conditions of Corollary 3.2 are satisfied and
therefore every solution (E;) is oscillatory. In fact {y,} = {(—1)"n} is such
a solution of equation (E;).

Yn—2=0, n2>3.

Next, consider the double sequence {H,, ;}defined by

n+1\*
Hn,s: (10g3+1) , nZsEN(no),

where A > 1 is a constant. Then H,, = 0 for n € N(ng),Hns > 0 for
n > s € N(ng) and AgHp,s < 0 for n > s € N(ng). Then, we have the
corollary.

COROLLARY 3.3. In addition to the condition (8) assume that

A-2
2 2 1
n+1)’\\p _AsmPip (log %) oo,

n—1
lim supllog(n+1)]~* (lo
Jim supllog(n+1)] Y-, |(log =5 o

S=ng

for some A > 1. Then every solution of the equation (E) is oscillatory.

REMARK 3.2. Let —= () > M > 0 for u # 0 and e, = 0 in the equation (E).
Then with suitable modlﬁcations in the condition (8), that is
n+m—k t t
1 1 1

> (S (E5)]es 52

t=n s=n 5 \j=g Cj
the conclusion of Theorem 3.1 holds.

Next theorem deals with the oscillation of (E) when f satisfies the con-

dition
(11) f(u) = f(v) = g(u, v)(u - v) for u # v and g(u,v) > p,
for some p > 0.

THEOREM 3.4. In additior. to the condition (11) assume that p, = p and

en = 0 in (E). If there exists a positive nondecreasing sequence {p,} such
that

(12) i [@pn + Pn+1(gn — @)] = 00

n=ng

for every a > 0 and

e 3[R g(25)] -
=n s=n =S
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then all solutions of the equation (E) are oscillatory.

Proof. Let {yn} be a nonoscillatory solution of the equation (E). Without
loss of generality we may assume that y,_,, > 0 for n € N(N),N > ny,
where N is chosen so large that Lemmas 2.1 to 2.2 and Lemma 2.5 hold for
n € N(N).

Case (I): From Lemma 2.2 and (11), the equation (E) implies that

(14) AlenA(dnAzn)) + gnf((1 = P)2n-m) <0, n € N(N).

Define

cnA(dnAzy) o
(L=p)zn-m) "

Then W, is eventually positive and using(14) we have
cnA(dnAzy)
AW, < — +
[ (CE P
cyA(d,Az,)
S _ q N N N

(= D)

= —@Pn+1gn + alpp,
cyA(dyAzy)
f((l _p)ZN—m)

we obtain

n > N.

Wn=f

n

where a =

> 0 is a constant. Summing the last inequality,

n-1

Z (apn + Onsi1(gn — ) < Wy,
s=N

which contradicts with the condition (12) as n — oo.
Case (II): Summing the equation (E) three times, we obtain

> |2 (X 5)]es ) <2
t=n ts=n % \j=g G5
Now, from Lemma 2.3, we obtain
n+m—k t t
(22w ()
- —afl =) < z.
tgﬁ ngds jz;scy' “\1+p "

Since {2z} is decreasing and f is nondecreasing, we have

) n+§:—k[idls<i%>]qtﬁ ﬁ_ﬁ
1+p

t=n s=n ij=s
Clearly {z,} approaches a finite nonnegative number as n — oo. In view of
the condition (13) and using (15) we have Jim 2, >0 what is impossible.
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If lim 2, =0, then
n—oo

. Zn . 1 14p

lim ————— = <

n—oo f( Zn ) n—0o0 g( 2n zn—H) i)
1+p 1+p’ 1+p

a contradiction with (13). This completes the proof of the theorem.

< 00,

EXAMPLE 3.2. The difference equation

1 1
€)  A(na(n8(va+ Fum1) ) ) + 40 (4o + vo2) =0,

satisfies all conditions of Theorem 3.4 for ¢, = 1. Hence all solutions of (E3)
are oscillatory.

THEOREM 3.5. In addition to conditions (11), (12) and (13) assume that
{pn} is decreasing such that nlLrgo pn = 0 and there exists an oscillatory

sequence {h,} such that
(16) A(enA(dpAhy)) = en,Ji_{Igo hn =0.

Then every solution of equation (E) is either oscillatory or tends to zero
monotonically as n — oo.

Proof. Suppose that there is a nonoscillatory solution {y,} such that {y,}
is eventually positive and nhngo Yn # 0. Consider the function z,, = 2z, — h,.

Then z, > y, > 0 and z,, > 0 eventually. If {z,, } is eventually negative then
Zn < hp, which contradicts with oscillatory character of {h,}. Also from
equation (E), A(e,A(dpAz,)) < 0. Thus {z,}, {Az,} and {A(d,Az,)}
are monotone and eventually one signed. Proceeding as in Lemma 2.1, it
follows that there is an n; € N(ng) such that for n € N(ny), A(dpAzy) > 0
and A(cpA(dnAzy)) < 0.

Let {Az,} be eventually positive. Then since {z,} is eventually positive
and increasing and h, — 0 and p, — 0 as n — o0, it follows that there is
an integer ny > n; and A € (0,1) such that y,_pm > AZp—p, for n € N(ny).
Moreover, f is nondecreasing and hence

f(yn—m) > f()\mn—m)
for n € N(ny). Define

Wy, = a2

" 0%
then W > 0 for n € N(n3) and satisfies the inequality
anA(dnzAxnz)

AW, < - .
n = Qn()on+1 + f(Aznz_m) Son
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Summing the last inequality from ns to n — 1, we obtain

n—1
Z (Bon + ont1(gn — B)) < Wh,
s=ngz
where g = G”ZA(dmAm"Z), a contradiction with (12). Thus {Az,} has to
f(Azny—m)

be eventually negative. In that case lim T, = ¢ > 0. Since lingo h, =0 and

nll»rgo pn = 0, we have hm Yn = C. Summmg the equation (E) three times

we obtain o .
(17) ; [gi(;é)]Qtf(yt—m) < Zn.

From (13) and (17), we see that hm infy, = 0. By Lemma 1 of [5], we
conclude that ¢ = 0. This completes the proof.

EXAMPLE 3.3. The difference equation

€) A((+ DA+ DA (30 + 1) ) )+ (shos +v0s)

_ (=1)™*}(8n% + 24n? + 18n + 1)
- n(n+1)

21,

_1\n
satisfies all conditions of Theorem 3.5 with ¢, = 1 and {h,} = {( ;) } .

Hence every solution of the equation (E3) is either oscillatory or tends to
zero monotonically as n — 00.

Finally, we obtain a sufficient condition for the existence and asymptotic
behavior of nonoscillatory solutions of (E). We do not require gn > 0 for

n-1 ]
n € N(ng) here. Let A, B, and C, be defined by A, = E B,= 3 -—
$=no s §=n9 ds
n—1 A,
d Cr, —
an RO

THEOREM 3.6. Let a > 0 be a constant such that dy, > & for all n € N(ng).
Suppose that

[o o]
(18) > |Cnt1+ Ans1Bni1lens1 < 00
n=ng
and
[o ¢}
(19) > 1Cnt1 + Ans1Bri1] |gal < 0.
n=ng

Then equation (E) has a nonoscillatory solution {yn,} such that {z,} ap-
proaches a nonzero limit.
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Proof. Let ¢ > 0 and let N € N(ng) be so large that from (18) and (19) we
have

> c(l~-
> 1Cat1 + Ans1Brya llen] < (—4—1)),
n=N

S c(1-p)
ngN |Cnt1 + Ant1Bny1llgn < 1f(50)

and
N0=N—m2n0.

Let By, be the linear space of all real sequences y = {yn},e N, Such that
llul| = sup |yn|- It is not difficult to see that By, endowed with this norm
n>Ng

is a Banach space. Consider the set
1_
S= {yGBNo : (Tp)cs% < 5cforn > N and y, = yn for Ny §n<N}

and define an operator 7 : S — By, by

s=n

(Ty)n, No<n<N,

where K(s,n) = Cs41 — Cp + As41Bn — As4+1Bs4+1 . Clearly, S is a bounded
closed and convex subset of By,.

(Ty)n { (3 + 2p)c — Pryn—k — % K(s,n)qsf(ys—m) —es) forn > N;

First, we will show that 7 maps & into itself. For y € S we have

1-p\ _ (1-p)e
2)Z 2

Tyan(3+2p—5P—

and
1~
Tyn < c<3 +2p+ —2—1)) < 5c.

Thus 7S C S.

Next we let y = {yn} € S and for each i = 1,2,3, -, let y'={y.} bea
sequence in S such that lim ||y* —y|| = 0. Then a straightforward argument

1—00
using the continuity of f shows that lim ||(7¥*)n — (T9)nl] = 0. Hence 7 is
1—00

continuous.

Finally, in order to apply Schauder Fixed Point Theorem, we need to
show that 7S is relatively compact. In view of a result of Cheng and Patula
[2], it suffices to show that 7§ is uniformly Cauchy. To this end, let y =
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{yn} € S and observe that for any j > n > N, we have
|Tyj - Tyn‘ < |pjyj—k —pnyn—kl

o
+ Z |Cs+1 + As+lBs+1| (IQSl f(5c) + |es|)
$=n
]_ —
< 10pc + —2

C.

From the hypothesis, it is clear that for a given € > 0, there exists an integer
Nj € N(N) such that for all j > n > Ni, we have |Ty; — Tyn| < €. Then
7S is uniformly Cauchy and so 7§ is relatively compact. Therefore, by
Schauder Fixed Point Theorem, there is a fixed point y € S. It is clear that
y = {yn} is a nonoscillatory solution of equation (E) and has the required
asymptotic property.

Combining Theorem 3.6 with Lemma 2.4, we have the following corol-
lary:

COROLLARY 3.7. Assume that the conditions of Lemma 2.4 and Theorem
3.6 are satisfied. Then equation (E) has a nonoscillatory solution that ap-
proaches a nonzero limit.

ExXAMPLE 3.4. Consider the neutral difference equation
1
(Eq) A? (n3A<yn + Zyn—l)) + (=13 "y, = (=)™ n>1

where 7 is the ratio of odd positive integers and m is a positive integer. All
conditions of Corollary 3.7 are satisfied so the equation (E4) has a nonoscil-
latory solution that approaches a nonzero limit.
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