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NEW OSCILLATION CIRITERIA OF FIRST ORDER
DELAY DIFFERENTIAL EQUATIONS

Abstract. In this paper we shall consider the first order delay differential equations
with variable coefficients. Some new sufficient conditions for oscillation of all solutions
are obtained. Our results based on the analysis of the generalized charachterestic equa-
tion. The results partially improve some previously known results in the literature. Some
examples are considered to illustrate our main results.

1. Introduction

In recent years there has been much research activity concerning the
oscillatory behavior of solutions of delay differential equations. To a large
extent, this is due to the fact that, the delay differential equations are im-
portant in applications. New applications which involve delay differential
equations continue to arise with increasing frequency in the modelling of di-
verse phenomena in Physics [8], Biology [18], Ecology [20], Physiology [10],
and Spread of Infectious Diseases [5].

In this paper we shall consider the following first delay differential equa-
tion,

(1.1) () +Pt)z(t-1)=0, t>t
with
(hy) P(t) € C[fto, o), B*] and € (0,00)
and the more general equation,
n

(1.2) T (t)+) Pt)zt—m)=0, t>to

=1
with

2000 Mathematics Subject Classification: 34K11, 34K40.
Key words and phrases: scillation, delay differential equations.



314 I. Kubiaczyk, S. H. Saker

(hy) Pi(t) € C[[to,0), R*] and 7; € (0,00), fori=1,...,n.

By a solution of the equation (1.1) we mean a function z(¢) € C*([tg —
7), R), for some g, and satisfying the equation(1.1). Also by a solution of
Eq.(1.2) we mean a function z(¢) € C*([to—p), R) for some tg, and satisfying
the equation(1.2), where p = {maxi<i<n, 7:}. As usual a function x(t) is
called oscillatory if it has arbitrarily large zeros. Otherwise the solution is
called non-oscillatory. The equation will be called oscillatory if every solution
of this equation is oscillatory.

Many authors have considered the delay differential equation (1.1) and
established some sufficient conditions for oscillation. The first systematic
study for oscillation of all solutions of Eq.(1.1) was made by Myshkis [19].
Ladas, Lakshmikantham and Papadakis [15] obtained the well-known oscil-
lation criterion for Eq.(1.1)

t
(1.3) tlg& sup S P(s)ds > 1.
7(t)
Ladas [8] and, in 1982, Kopltadaze and Canturija [13] improved (1.3) and
proved that every solution of Eq.(1.1) oscillates if
; 1
(1.4) Jlim. inf | P(s)ds>-.
T(t) €
The conditions (1.3) and (1.4) are extended to Eq.(1.2) ( see [17], [9]). Every
solution of Eq.(1.2) oscillates if

t n
(1.5) tl_lglo supt_TS ;Pi(s)ds >1
or
(1.6) hm inf S ZP (s)ds > -

t—Tmin 1=1

It is obvious that there is a gap between the conditions (1.3) and (1.4) for
the oscillation of Eq.(1.1) when the limit,
t
tlgg t_S P(s)ds
does not exist. How to fill this gap is an interesting problem which has been
recently investigated by several authors (see [7], [4], {14], [11] and [12]).
They have established some new finite sufficient conditions for oscillation of
all solutions of Eq.(1.1) which extended and improved the conditions (1.3)
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and (1.4). The techniques that are used in {7}, [4], [24], {11] and [12] are not
applied to Eq.(1.2) to fill the gap between (1.5) and (1.6). For the oscillation
of various functional differential equations we refer to the monographs (1, 2,
3, 6,9, 17

Our aim in this paper is to analyze the generalized characteristic equa-
tions to obtain some new sufficient conditions for oscillation of all solutions
of Eqns. (1.1) and (1.2). Our results indicate that the conditions (1.3), (1.4)
and (1.5), (1.6) are no longer necessaries for oscillation of all solutions of
Eq.(1.1) and (1.2) recpectivelly. Then our results improve the results of {13],
[17] and [9], and simply for verification throughout examples than of the
results in {7], [4], [14], [11] and [12].

In the sequel, when we write a functional inequality we will assume that
it holds for all sufficiently large values of ¢.

2. Main results

In this Section we establish some oscillation criteria for oscillation of Eq.
(1.1) and Eq. (1.2).

THEOREM 2.1. Assume that (h; ) holds,

t+7
(2.1) 0<d< lim inf | P(s)ds,
t
and
e} t+7
(h3) SP(t)ln( | P(s)ds—+—1)dt:oo.
to t

Then every solution of Fq. (1.1) oscillates.

Proof. Assume for the sake of contradiction, that the equation (1.1) has
an eventually positive solution x(t). Let A(t) = —z (t)(t), then A(t) is non-
negative and continuous and there exists t; > to such that z(t1) > Oand
z(t) = z(t1)exp(— St (s)ds). Furthermore, A(t) satisfies the generalized
characteristic equa.tlon

i
A(t) = P(t) exp( { ,\(s)ds).
t—71
As one can show that
In(r + 1)

(2.2) e >z + -

for all real z and r > 0.
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Let A(t)={"" P(s)ds, then

At) = P(t) exp [ﬁfl(t) [ Als)ds].

t—T1
By using (2.2) we find that,

t

AWAE) — P(t) | As)ds > P(t)[In(A(t) + 1)),

Then for N > T, i
N N t N

(2.3) [ at) Ayt - | P(t) | As)dsdt > | P(t)In(A(t) + 1))dt.
T T t—7 T

By interchanging the order of integration, we find that

N t N-—r t47
SP(t)( | )\(s)ds)dtz ! A(t)( i P(s)ds)dt.
T t—T1 T t
Hence
N N-r t+r
24)  [rDARd - | /\(t)( | P(s)ds)dt
T T t . N t
> [ MA@t — | P@) | As)dsdt.
T T t—1
From (2.3) and (2.4), it follows that
N N—-1 t+T N
25) [Ar®A@dt—- | A(t)( i P(s)ds)dtzSP(t)[ln(A(t)-i-l)]dt.
T T t T

Since z(t) is positive and decreasing, then integrating (1.1) from ¢ to t + 7,
we get
t+7
z(t+7)—z(t)+ S P(s)z(s —7)ds =0,
t
which gives
t+r t+T
z(t) > | P(s)z(t—r)ds > a(t) | P(s)ds
t t

and hence
t4T

| P(s)yas < 1.
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Thus, we have

(2.6) d< A(Y) = thrP(s)ds <1
Combining (2.5) and (2.6), we find
N T N
[amAmat+ | A@)A@)dt > | P()[In(A(t) + D)]de.
T N-—T1 T
Hence
N N
| M@t > | P()n(A(t) + 1)]dt
N-—1 T
w2 -7) IilP(t)[ln(A(t) +1))dt
z(N) ~ 2
In view of (h3)
im w—(t—_L) =00
(2.7) Jim == 0

Because of d < SIJ’T P(s)ds there exists a sequence {tx}, tx — 00 as k — 0o
and there exists (x € (tk,tx + 7) for every k such that

C d tet+T d
(2.8) S P(s)ds > - and X P(s)ds > =.
12> 2 ' ™ 2

By integrating the both sides of (1.1) over the intervals (¢, (] and [(k, tx+7],
we have

C
(2.9) (Ck) — z(te) + | P(s)z(s — r)ds =0
and
tr+T1
(2.10) ot +7) —2(G) + | P(s)z(s —7)ds =0.
Cr

From (2.8), (2.9) and (2.10) we have,

—z(t) + gz(ck ~-7)<0 and —z({)+ gz(tk) <0.

Sor=(3)

Then
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which contradicts (2.7), and this completes the present proof. Therefore,
every solution of Eq.(1.1) oscillates. m

ExAMPLE 2.1. Consider the delay differential equation

(2.11) z (t) + l((\/é-i- l)E + cost)a:(t - g) =0, t>0

P(t) = (CF+ ) +mﬂ)>0 for t >0

and
t t
1 2
SW s)ds—Z( Sﬂ( >;r—+coss)ds
-3 t—-3
1 1 .
= Z(ﬁ+ — +sint + cost).
e
It is clear that
t
lim inf | P(s)ds < =
t—o00 t—-’21
and
t
hm sup S s)ds < 1.

Then the conditions (1.3) and (1.4) do not hold, but one can prove by
Theorem 2.1 that every solution of Eq. (2.11) oscillates.

ExAMPLE 2.2. Consider the delay differential equation

0.6 T
2.12 "(t +—2a+costm<t——>=0, t>0
e1) 20+ — (-3
where a = —————)-ﬁf)%ie_ﬁl)
P(t) = —ﬂ—@a—{—cost) >0 fort>0
arm +v2 -
and
t t 06
P(s)ds = ———— (20 + cos s)ds.
-7 -7
Hence

¢ ¢
1
tlim inf S P(s)ds = -, lim sup S P(s)ds = 0.6.
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This shows that (1.3) and (1.4) are failed to apply on the Eq. (2.12), but
one can see by Theorem 2.1 that every solution of Eq. (2.12) oscillates.

EXAMPLE 2.3. Consider the delay differential equation

1 1
1 "t e — -1 = t>
(2.13) x()+<e+(t+1)>z(t ) =0, >0
P(t) = 1+ ! fort >0
T \e  (t+1) -
and
; Lo 1 t+1 1
| P(s)yds= | (—+ 1)ds:10g—t——+—.
21 1 e s+ e
Hence

lim inf S P(s)ds =

t—o00
t—1

Then the condition (1.3) is failed to apply on the Eq. (2.13), but one can
see that for T > 1

1
=

781 (t"gl ) :§ t+2 1
P(t)In P(s)ds+1)dt = ( )1 <ln——+ +1>dt
" " 1 t+1 t+1
T
1
ZS— (t+ )dt—»oo as T — oo.
e t+1

Then by Theorem 2.1 every solutlon of Eq. (2.13) oscillates.

ExXAMPLE 2.4. Consider the delay differential equation

1 1
(2.14) z'(t) + % <1 -3 cost)a:(t —-2m)=0, t>0.
Clearly, for t> 0,
t ¢ 1
lim inf X S —(1——-c0s( ))ds<—
t— o0 8 €
t—27
and
( 01 1
lim sup S P(s)ds = S 1— =cos(s) )ds < 1.
t—00 8e 2
t—27 —-2m
Also

t+2m th2m 1 1
0 < lim inf P(s)ds = lim inf —(1-= ds < =.
Jim in § (s)ds Jim in § 8@( 5 cos(s)) s < =
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But one can prove easily that

t+2m

OSOP(t)[ln{ | Pls)ds+1}]at=

and then every solution of Eq.(2.14) oscillates. For instance

1+2cos t

sint — cost + 1%;3 cos?t

z(t) =

is such a solution.

In the following Theorems we give an infinite integral sufficient conditions
for oscillation of all solutions of Eq. (1.2).

THEOREM 2.2. Assume that, (hy) holds 7, = max{~;}, fori=1,...,n
n t+7;
0<d< }E& 1nf; § Pi(s)ds
and

(ha) S?: i P;(t)In ( i St+T' Pi(s)ds + 1)dt =
i=1

Then every solution of Eq. (1.2} oscillates.

Proof. Assume for the sake of contradiction, that Eq.(1.2) has an even-
tually positive solution x(t). Let A(t) = —z'(¢)(¢), then A(¢) is a non-
negative and continuous, and there exists t; > to with z(¢;) > 0 such that
z(t) = z(t1)exp (- S A(8)ds). Furthermore, A(t) satisfies the generalized
characteristic equatlon

n t

(2.15) A(t)zZPi(t)exp( ! A(s)ds).

1,:1 t—n

Define B(t)=3_ St+T' P.(s)ds, and using (2.2) we find that

It
—

Then for N > T,
N n N t N n

(216) { AO)B®)dt—>_ | P(t) | Ms)dsdt > | > Pi(t)[ln(B()+1))dt.
T i=1T t—T; T i=1
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By interchanging the order of integration, we find that

N n t n N-—T; t+7;
DA dsdt>Z g t) | Pi(s)dsdt.
T i=1 t—T1; t
Also as we choose 7, > 7; for i = 1,...,n, then
n N-v t N—1, n ot+7
@) Y ,\(t)( | Pi(s)ds)dtz I 20X | P(s)ds)de
i=1l T t—T1; T =1 t
From (2.16) and (2.17) we have,
N N-1, n t+7;
(218) | AB(t)(t)dt — S | Pi(s)dsat
T i=1 t
N n
> | )" Pi(t)In(B(t) + 1))dt.
T i=1
Hence
N T n t4T; N n
{aBt)®ydat+ | A | Pis)dsdt > | Y Pi(t)In(B(t) + 1))t
T N—1, i=1 t T i=1
and therefore
N T N n
219)  [A@B@®dt+ | A > { Y P(t)[In(B(t) + 1)]dt.
T N—T, T i=1

On the other hand, as in Theorem 2.1 one can prove that

n t+T7;

(2.20) Bit)=Y_ | P(s)as<1.

=1 ¢
Then by (2.19) and (2.20), we find that

N N n
| awydt > | > P(t)n(B(t) + 1))dt
N—1, T i=1
or

N n

In - 1/ x( _ T") > | Y P(t)In(B(t) + 1)]dt.
T i=1

In view of (hy) we have

(2.21) lim =" = oo
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However from Eq. (1.2) we have

(2.22) z'(t) + Po(t)z(t — ) < 0,t > to.
As in Theorem 2.1 one can prove that from Eq.(2.22)
lim inf M < oo

e a(h)

which contradicts (2.21) and this completes the present proof. Therefore,
every solution of Eq. (1.2) oscillates. m

ExXAMPLE 2.5: Consider the equation
1 1
(2.23) z'(t) + ge-(l + cot s)z(t — ) + m(l +sint)z(t—27) =0, t>0.

It is clear that
¢
lim inf S (P1(s) + Pz(s))ds
t—o0 g
0 (1 1
= tlirgo inf _5,, (55(1 + coss) + 1—56(1 + sin s)> ds

.. 2r 2 2
lim inf §+—smt———cost

t—o00 3e 15e
1 1
- V2 -.
= 15a — (67 — v26) < S

This shows that (1.6) does not hold. Also

¢
tlim sup S (P1(s) + Pa(s))ds < 1.
t—m
Then (1.5) does not hold. But one can prove by Theorem 2.2 that every
solution of Eq.(2.23) oscillates.
Note that the results in Theorems 2.1 and 2.2 can be extended to the
equation

(2.24) ( (t) (t)) + R(t)y(t — 1) =0,t > to,

where 7(t), P(t) € C[[to, ), R*] and 7 € (0,00), and to the more general
equation,

(2.25) (—yt) +ZR y(t —7;) = 0, > to,
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where 7(t), P;(t)€ C[[to,00), Rt] and 7; € (0,00), for i = 1,...,n, by using
the transformation

one can reduce Eq. (2.24) and (2.25) to the Eq. (1.1) and Eq. (1.2) respec-
tively with P(t)=R(t)r(t-7) and P;(t) =R;(t)r(t-7;) and we obtain some
sufficient conditions for oscillation of all solutions of (2.24) and (2.25).
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