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GLOBAL CONTINUA OF POSITIVE SOLUTIONS
FOR SOME BOUNDARY VALUE PROBLEMS

I. Introduction

In this paper we shall apply some general results on the existence of
solutions in cone, in combining with the special properties of concave real
functions to show the existence of a continua of positive solutions for the
following differential equations

(1) "+ Xa(t)f(z) =0, 0<t<l,
(2) :c"+)\2f(a:,§:c'>=0, 0<t<1
with the boundary condition

(3) z(0) = z(1) = 0.

Boundary value problem (1)—(3) describes some phenomena in the math-
ematical sciences and has been studied by many authors (see [3] and ref-
erences therein). Boundary value problem (2)—(3) was considered by Kras-
nosel’skii for finding 2A— periodic solution of the autonomous differential
equation z” + f(z,z') = 0, arising in celestial mechanics [5]. Obtained re-
sults in our paper will extend the studying in [3], [5] on problems (1)-(3)
and (2)-(3).

Let us recall some preliminaries about ordered Banach spaces and fixed
point theorems in them. Let X be a real Banach space and K C X be a
cone (i.e K is nonempty closed convex subset such that tK C K forallt > 0
and K N(—K) = {0}). We define a partial ordering by z <y iff y—z € K.

Together with the cone K, defining an ordering in X, we consider another
cone P C K, in which we want to seek solution of the equation

4) z = F(\z),

where F': (0,00) x P — P is a completely continuous operator.
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We denote by 3 the solution set of the equation (4), that is,
Z ={(\z) € (0,00) x P| z=F(\z)},

and we set

S={zeP|INe(0,00): z=F(\z)}

If operator F is differentiable at 0 or has a homogeneous monotone mino-
rant, then the existence of an unbounded subcontinuum in > can be studied
by using general theorems of Dancer, Amann and others (1, 2]. In our work,
considered operators are not required to be either differentiable or to have a
monotone minorant and instead of the solution set 3 we shall study its pro-
jection S onto z—space. We use the following definition of Krasnosel’skii [5].

DEFINITION. We say that S is an unbounded continuous branch, emanating
from 0 if SN G # O for every bounded open subset G > 0.

The next theorem will be fundamental in this paper, it can be proved
by using the fixed point index [1, 6].

THEOREM A. Let F' : (0,00) Xx P — P be a completely continuous oper-
ator and G be a bounded open neighborhood of zero. Assume that there are
numbers A1, A2 in (0,00) and an element u € P\ {0} such that

i) px # F(A1,z) forc € PNOG and p > 1,

i) z — px # F(X,z) forz € PNOG and p > 0.

Then, SN AG # 0.

To determine values of A, for which there exist solutions in P \ {0} of
the equation (4), we can apply the following theorem of Krasnosel’skii [5].

THEOREM B. Let F(A,z) = AG(z), where G : P — P is completely
continuous and let for each x € S, A(z) be a positive number such that
(A(z),z) € 3. Assume that the set S of the equation (4) is bounded contin-
uous, emanating from 0 and either
lim supA(z) = Ao < Ao = lim inf A(z)
fil|—0 flel|—o00
or
lim supA(z) = Ao < Ag = lim inf A(z).
llzl—oo |zl —0
Then for every A € (Ao, Ao) (Tespectively, for every A € (Ao, X)) the
equation (4) has a solution in P\ {0}.

The paper is organized as follows. In Section 2 we present some properties
of concave functions and estimates for spectral radius of some linear integral
operators. These technical results will be used in Section 3 to prove the
existence of a continua of positive solutions for boundary value problems

(1)—(3) and (2)—(3).
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2. Technical lemmes

Throughout this section we denote by X = Cjg; with norm |jz| =
sup{|z(t)| : t € [0,1]}. Let X be ordered by the cone K of all nonegative
functions and let P be the cone of all concave functions ¢ € K such that
z(0) = z(1) = 0.

2.1. First we present some properties of functions from P.

LEMMA 1. 1) Every function z € P is differentiable a.e (almost everywhere)
on (0,1) and satisfies

(6) 2(t) > |zl 41 -1t), te[0,1],
(7) |z'(t)[gt(‘f(—f)t) a.e on (0,1).

2) If sequence {zn} C P converges in Cloy) to a function z, then some
subsequence {z;, } converges a.e on (0,1) to function z'.

Proof.
1) Let ||z|| = z(to) for some ty € (0,1). We have by the concavity of z that
t
z(t) > t—z(t()) for ¢t € [0, )
0

1-—t
1—-1¢p

z(t) > z(to) fort € [to,1],

so (6) follows.
It is well-known that, every concave on [0, 1] function z is differentiable
a.e on (0,1). If z is differentiable at some t € (0,1), then

z(t) > z(s) + z'(t)(t — s) for s € [0,1].
Putting s = 0 and s = 1 we obtain
2(t) 2 2/ (8)t, () 2 2/ (B)(t - 1),

which proves (7).
2) It follows from the concavity of z,, that z, is nonincreasing on its domain.
We define for n =1,2,...,and t € (0,1)

yn(t) = inf{z] (s)| s € [0,t], z,(s) exists}.

The sequence {yn} of nonincreasing functions is uniformly bounded on
every interval [a,b] C (0,1) by (7). Hence, some subsequence is convergent
at every t € [a,b]. Using the argument on diagonal sequence, we conclude
that some subsequence {yn, } converges to a function y at every t € (0,1).
Since yn(t) = z;,(t) a.e. on (0, 1), we have limz;,_ (t) = y(t) a.e. on (0,1). It
remains to show that y(¢) = z'(¢) a.e on (0, 1). Consider a fixed but arbitrary
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[s,t} C (0,1), we have by absolute continuity of z,, that [7]
t
T (1) = T (5) = | 2%, (w)d.
s
By letting k — oo we get by the Dominated Convergence Theorem
¢

z(t) — z(s) = Sy(u)du.

S

Thus, z'(t) = y(t) a.e on (0,1). The lemma is proved.

2.2. Now we will obtain some estimates for the spectral radius of linear
integral operators.

Let G : [0,1] x [0,1] — R be the Green’s function for the boundary
value problem ~z = 0 in (0,1), z(0) = z(1) = 0, so that

t(1-5)if0<t<s<1
s(1-t)if0<s<t<1l.

(8) Gt s) = {

Assume a : [0,1] — [0,00) is a continuous function, not vanishing
identically on [0, 1] and define a. : [0,1] — [0, o0) such that a.(t) = a(t) on
(e,1—¢€), ac(t) =0 on [0,e]U[1 —¢,1]. Consider the following linear integral
operators

1
(9) Bz(t) = SG(t, s)a(s)z(s)ds,

0

1

(10) Bez(t) = SG(t, s)ae(s)z(s)ds,

0
and denote by 7(B),r(Bc) the spectral radius of B, B,.
LEMMA 2.

1) lin(l) r(B;) = r(B).
e—
2) r(B) is an eigenvalue of B with an eigenfunction from P.
3) If az < Bz for some z € P\ {0} then a < r(Bg).
If B.x < Bz for some z € P\ {0} then r(B.) <.
The analogous assertions are valid also for operator B.

Proof. Assertion 1) follows from hn(l) B, = B in L(X) and that the operator
£ —

A r— 7(A) from L(X) to R is continuous.
It can be verified that
t(l—1t)s(1-3s) <G(ts)<t(l—-t) on [0,1] x[0,1].
From these inequalities we easily prove that operator B is ug—bounded
and operator B, is ug—bounded above in the sense of [5, 6], where ug(t) =
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t(1 — t). Therefore, assertions 2) and 3) of the lemma are consequences of
general results on positive up—bounded linear operators in ordered Banach
spaces [5, 6].

3. Global continua of positive solutions for boundary value prob-
lems
In this section we still keep definitions of X, K and P as in the section 2.

3.1. First we study boundary value problem (1)—(3) under following hy-
potheses:

(A) f:[0,00) — [0,00) is continuous and does not vanish identically on
any subinterval,

(B) a:[0,1] — [0, 00) is continuous and a(t) does not vanish identically,

/(z) f(z)

(C) fo = lim %) and foo = lim =—— exist (can be equal to co) and
z—0 T T—00 I
f 0 7é f 00"

These conditions are the same as in [3] with a difference that we allow
function a to be zero on a set of positive measure. We shall prove that the
problem (1)—(3) has a global continua of positive solutions and that the set
of X's, for which (1)-(3) has positive solutions, contains an explicit interval.
This interval is larger than the interval, obtained in [3].

The boundary value problem (1)—(3) is equivalent to the eigenvalue prob-

lem
1

(11) z(t) = A{ G(t, s)a(s) f[z(s))ds,
0

where, function G is defined in (8). If we denote by F' the operator in the
right-hand side of (11) then F : P — P is completely continuous.

THEOREM 1. Assume that conditions (A), (B) are satisfied. Then the set S
from (5) for equation (11) is an unbounded continuous branch, emanating
from 0.

Proof. Let G be a bounded open subset containing 0. We set
m = inf{||z]| | z € PNIG}, M =sup{||F(z)||| x € PNIG}.

If pz = AFz for 4 > 0, A > 0 and z € PN JG then um < AM. Hence,
the condition i) in the theorem A will be satisfied if A; is sufficiently small.
Now, we shall show that condition ii) in the theorem A holds for suffi-
ciently large A2 and u(t) = ¢(1~t). To do this, we suppose the contradiction
that
Tn — ppt = AFz,, n=12...

for z, € PN AG, pnp > 0 and A\, — 00 as n — 00.



308 N. B. Huy, T. D. Thanh

From inequality (7), sequence {z] } is uniformly bounded on every in-
terval [a,b] C (0,1). Therefore, we can use the Ascoli’s theorem to take
from sequence {z} a subsequence, still denoted by {z,}, which converges
at every point t € (0,1) to some continuous on (0, 1) function z such that
z(t) > mt(1 —t) on (0,1). Passing to the limit in inequality

1
28 > Fa, = |G(t, 5)a(s) f(zals))ds
n 0

by the Fatou Lemma, we get

1
0> [G(t, s)a(s)f(z(s))ds
0

which contradicts with the condition (A).
Thus, the equation (11) has a solution on P N JG by the theorem A.
Theorem is proved.

THEOREM 2. Assume that conditions (A), (B) and (C) are satisfied and let
A1 be the smallest eigenvalue of the following boundary value problem
"+ Xa(t)z=0 in(0,1), =z(0)==z(1)=0.
Then for each A satisfying
A1 M AL M
min {7} <A <max {2, 24},

there exists at least one solution of (11) in P\ {0}.

Here we impose that A1 /0 = o0, A1 /o0 = 0.

Proof. We provide the argument only for the case fy < fo. The case
foo < fo is treated in a completely similar way. We will prove that

A1
12 lim inf A(xz) > —
(12) llz||—0 (=) 2 fo
(13) lim sup M(z) < )‘—
l|lz]|—0 00

Then, the assertion of the theorem will follow from Theorem B.
Consider a number m such that m < A1/ fo and choose a positive number
T so that f(z) < Mz/mforz<r. Ifz €S, 2#0, ||z| <r, then

z = Mz)Fz <(%MB,

where B is the linear operator, defined in (9). Hence, by using Lemma 2 we

have m/A(z)A1 < r(B). Taking account that r(B) = 1/A; we get A(z) > m

Thus ||liumoinf A(z) > m. Since m can be arbitrarily closed to A;/fp, then
Zl|—

(12) is proved.
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To prove (13) we consider arbitrary numbers m, k such that A\;/fe <
m < k and choose r satisfying f(z) > A1z/m for z > r. Then we choose by
Lemma 2 a number ¢ > 0 so small that

(14) r(Be) > %T(B) = k—T/’\‘—l

If z € 8, ||z]| > r/€? then we have from (6)

z(t) > ||z|t(1 —t) > ||z||e? >r fort€e,1—¢].
Hence,

z(t) = Mz) \ G(t, 5)a(s) f(z(s))ds

Z )\(:B) /\(:12)/\1

Be(2),

Ot = Qe =

G(t, s)as(s)—i%z(s)ds =

where function a. and operator B, are defined in section 2.2. Applying
Lemma 2 we have

(15) =

Mo = "Be)

Combining (14) and (15) we get A(z) < k. Since k can be arbitrarily
close to A1/ feo, then (13) is established. This completes the proof.

3.2. Now we consider boundary value problem (2)—(3). This problem arises
when we want to find a 2\—periodic solution of the autonomous differential
equation

(16) y'+f(%y)=0.

Indeed, if we assume that the function f : R x R — R is odd on y then
by a solution (A, z) of (2)—(3) we can construct by [5] a 2A—periodic solution
of (16) as follows. We first extend z on [-1,0] by setting z(t) = —z(-t),
then we periodically extend z to obtain a 2A—periodic function on R. Now,
the function y(t) = z(t/A) will be a 2A—periodic solution for (16).

To study (2)-(3) we impose the following hypothesis
(A) f:[0,00) x R —> [0,00) is continuous such that

9(z) < f(@a') < h@)(1 + 1),
where r € (0,1), the functions h, g are nonegative continuous and g does
not vanish identically on any interval.

We reduce problem (2)—(3) to the following integro-differential equation

1
1
(17) z(t) = /\2SG(t,s)f[m(s),Xm'(s)]ds,
0
where G is Green’s function from (8).
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We denote by F(A,z) the operator in right-hand side in (17). From the
upper restriction for f in the hypothesis (A) and the inequality (7) we see
that the operator F is acting from (0, 00) x P into P and takes every subset
[a,b] x {z € P, |z|| < r} into relatively compact subset. It follows easily
from Lemma 1 and Dominated Convergence Theorem that, if a sequence
(An,Zn) converges to (A, z) € (0,00) x P, then a subsequence of {F(\n, z,)}
converges to F'(A, z). Hence, F is continuous.

THEOREM 3. Assume that the condition (A) is satisfied. Then the equation

(17) has an unbounded continuous branch of positive solutions, emanating
from 0.

Proof. Consider an arbitrary bounded open subset G 5 0. Arguing as in the
proof of Theorem 1 we see that the condition ii) in Theorem A is satisfied for
equation (17) if A is sufficiently large. To verify the condition i) in Theorem
A we assume that pyz = F(A,z) for some z € PNOG, p > 0, > 0.

From the upper restriction for f and (7) we have

1 LT
u||az||<A20§h ) (1+ 520 as

1

C.|

||$HT AT
( FI=s) ds,

where C' = sup{h(z(¢))| z € PNAG}. Since inf{||zl|| z € PNIG} > 0, we
conclude that p < 1 if A sufficiently small.

Thus, by using Theorem A we see that the equation (17) has a solution
on PN OG. The Theorem is proved.

REMARK. The paper [4] has proved the existence of a global continua of posi-
tive solutions for problem (2)-(3) under hypothesis, different from (A), when
the upper restriction for f is weaker, but the lower restriction is stronger
than those assumed in (A).
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