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GLOBAL CONTINUA OF POSITIVE SOLUTIONS 
FOR SOME BOUNDARY VALUE PROBLEMS 

I. Introduction 
In this paper we shall apply some general results on the existence of 

solutions in cone, in combining with the special properties of concave real 
functions to show the existence of a continua of positive solutions for the 
following differential equations 

Boundary value problem (l)-(3) describes some phenomena in the math-
ematical sciences and has been studied by many authors (see [3] and ref-
erences therein). Boundary value problem (2)-(3) was considered by Kras-
nosel'skii for finding 2A— periodic solution of the autonomous differential 
equation x" + f(x,x') = 0, arising in celestial mechanics [5]. Obtained re-
sults in our paper will extend the studying in [3], [5] on problems (l)-(3) 

Let us recall some preliminaries about ordered Banach spaces and fixed 
point theorems in them. Let X be a real Banach space and K C X be a 
cone (i.e K is nonempty closed convex subset such that tK C K for all t > 0 
and K fl (—K) = {0}). We define a partial ordering by x < y iff y — x G K. 

Together with the cone K , defining an ordering in X, we consider another 
cone P C K, in which we want to seek solution of the equation 

(1) 

(2) 

2(0) = 2(1) = 0. 

and (2)-(3). 

x = ,F(A, 2), 

—• P is a completely continuous operator. 



304 N. B. H u y , T . D. T h a n h 

We denote by £ the solution set of the equation (4), that is, 

£ = {(A, x) € (0,oo) x P | x = F(A,x)}, 

and we set 
S = { z e P | 3A € (0, oo) : x = F{A,x)}. 

If operator F is differentiate at 0 or has a homogeneous monotone mino-
rant, then the existence of an unbounded subcontinuum in Ŷ  can be studied 
by using general theorems of Dancer, Amann and others [1, 2], In our work, 
considered operators are not required to be either differentiable or to have a 
monotone minorant and instead of the solution set £ we shall study its pro-
jection S onto a;—space. We use the following definition of Krasnosel'skii [5]. 

DEFINITION . We say that S is an unbounded continuous branch, emanating 
from 0 if 5 fl dG ^ 0 for every bounded open subset G 3 0. 

The next theorem will be fundamental in this paper, it can be proved 
by using the fixed point index [1, 6]. 

THEOREM A . Let F : (0 , oo) x P —• P be a completely continuous oper-
ator and G be a bounded open neighborhood of zero. Assume that there are 
numbers Ai, A2 in (0,oo) and an element u £ P \ {0} such that 

i) jix / F(Ai, x) for x 6 P fl dG and n>l, 
ii) x — fix F(X2, x) for x 6 P fl dG and ¡j, > 0. 
Then, S n dG ^ 0 . 

To determine values of A, for which there exist solutions in P \ {0} of 
the equation (4), we can apply the following theorem of Krasnosel'skii [5]. 

THEOREM B . Let F(X,x) = AG(x), where G : P —> P is completely 
continuous and let for each x E S, A(x) be a positive number such that 
(X(x),x) G Assume that the set S of the equation (4) is bounded contin-
uous, emanating from 0 and either 

lim sup A(x) = An < Aqo = lim infA(x) 
IMHO K | | z |Hoo 

or 
lim sup A(x) = A«, < Ao = lim infA(x). 

||i||—»00 ||i||—>0 

Then for every A <E (Ao, Aqq) (respectively, for every A G (Aqq, AO)) the 
equation (4) has a solution in P\ {0}. 

The paper is organized as follows. In Section 2 we present some properties 
of concave functions and estimates for spectral radius of some linear integral 
operators. These technical results will be used in Section 3 to prove the 
existence of a continua of positive solutions for boundary value problems 
(l)-(3) and (2)-(3). 
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2. Technical lemmes 
Throughout this section we denote by X = C[o,i] with norm ||x|| = 

sup{|x(i)| : t 6 [0,1]}. Let X be ordered by the cone K of all nonegative 
functions and let P be the cone of all concave functions x E K such that 
s(0) - z( l ) = 0. 

2.1. First we present some properties of functions from P. 

LEMMA 1.1) Every function x € P is differentiable a.e (almost everywhere) 
on (0,1) and satisfies 

(6) x{t) > ||z||.t(l - t ) , t 6 [0,1], 

(7) a.e on (0,1). 

2) If sequence { x n } C P converges in C[o,i] to a function x, then some 
subsequence {£nfc} converges a.e on (0,1) to function x'. 

Proof . 
1) Let ||x|| = x(to) for some to £ (0,1). We have by the concavity of x that 

x(t)>—x(t0) for t € [0, t0] 
to 

x(t) > i — i a ( i 0 ) for t € [t0,1], 
1 — to 

so (6) follows. 
It is well-known that, every concave on [0,1] function x is differentiable 

a.e on (0,1). If x is differentiable at some t € (0,1), then 

x(t) > x(s) + x'{t)(t - s) for s <E [0,1]. 

Putting s = 0 and s = 1 we obtain 

x(t) > x'{t)t, x(t) > x'(t)(t - 1), 

which proves (7). 
2) It follows from the concavity of xn that x'n is nonincreasing on its domain. 
We define for n = 1 , 2 , . . . , and t € (0,1) 

yn(t) = inf{x^(s)| s e [0,f], exists}. 

The sequence {yn} of nonincreasing functions is uniformly bounded on 
every interval [a, 6] C (0,1) by (7). Hence, some subsequence is convergent 
at every t G [a, 6]. Using the argument on diagonal sequence, we conclude 
that some subsequence {ynk} converges to a function y at every t € (0,1). 
Since yn(t) = x'n(t) a.e. on (0,1), we have lima4fc(i) = y(t) a.e. on (0,1). It 
remains to show that y(t) = x'(t) a.e on (0,1). Consider a fixed but arbitrary 
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[s,t] C (0,1), we have by absolute continuity of xnk that [7] 
t 

Xnk{t) - Xnk{s) = \x'nk{u)du. 
s 

By letting k —> oo we get by the Dominated Convergence Theorem 
t 

x(t) — x(s) = Jy(u)du. 
s 

Thus, x'(t) — y(t) a.e on (0,1). The lemma is proved. 

2.2. Now we will obtain some estimates for the spectral radius of linear 
integral operators. 

Let G : [0,1] x [0,1] —> R be the Green's function for the boundary 
value problem — x — 0 in (0,1), x(0) = x ( l ) = 0, so that 

„ / \ f i ( l - s) if 0 < t < s < 1 
8) G(i , s ) = < - - -

\ s ( l — i) if 0 < s < i < 1. 

Assume a : [0,1] —> [0, oo) is a continuous function, not vanishing 
identically on [0,1] and define a£ : [0,1] —> [0,oo) such that a£(t) = a(t) on 
(e, 1 — e), ae(t) = 0 on [0, e] U [1 — e, 1]. Consider the following linear integral 
operators 

l 
(9) Bx(t) = j G{t, s)a(s)x(s)ds, 

o 
l 

(10) Bex{t) = \ G(t, s)ae(s)x(s)ds, 
o 

and denote by r(B),r(B£) the spectral radius of B, Be. 

L E M M A 2 . 

1) l i r r i r (B e ) = r(B). e—»0 
2) r(B) is an eigenvalue of B with an eigenfunction from P. 
3) If ax < Bex for some x € P \ {0} then a < r(BE). 

If B£X < (3x for some x G P \ {0} then r(Be) < ¡3. 
The analogous assertions are valid also for operator B. 

P r o o f . Assertion 1) follows from lim Be = B in L(X) and that the operator 
e—»0 

A i—> r(A) from L(X) to K is continuous. 
It can be verified that 

i ( l - t ) a ( l - a ) < G ( t , s ) < i ( l - i ) on [0,1] x [0,1]. 
From these inequalities we easily prove that operator B is uo—bounded 

and operator Be is UQ—bounded above in the sense of [5, 6], where UQ (t) = 
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¿(1 — t). Therefore, assertions 2) and 3) of the lemma are consequences of 
general results on positive uo—bounded linear operators in ordered Banach 
spaces [5, 6]. 

3. Global continua of positive solutions for boundary value prob-
lems 

In this section we still keep definitions of X, K and P as in the section 2. 

3.1. First we study boundary value problem (l)-(3) under following hy-
potheses: 
(A) / : [0, oo) —> [0, oo) is continuous and does not vanish identically on 
any subinterval, 
(B) a : [0,1] —> [0, oo) is continuous and a(t) does not vanish identically, 

fix) fix) (C) /o = lim and /oo = lim exist (can be equal to oo) and 
I—>0 X x-+oo x 

fo / /oo-
These conditions are the same as in [3] with a difference that we allow 

function a to be zero on a set of positive measure. We shall prove that the 
problem (l)-(3) has a global continua of positive solutions and that the set 
of A s, for which (l)-(3) has positive solutions, contains an explicit interval. 
This interval is larger than the interval, obtained in [3]. 

The boundary value problem (l)-(3) is equivalent to the eigenvalue prob-
lem 

l 
(11) x(t) = A j G(t, s)a(s)f[x(s)]ds, 

o 
where, function G is defined in (8). If we denote by F the operator in the 
right-hand side of (11) then F : P —> P is completely continuous. 
THEOREM 1. Assume that conditions (A), (B) are satisfied. Then the set S 
from (5) for equation (11) is an unbounded continuous branch, emanating 
from 0. 

Proof . Let G be a bounded open subset containing 0. We set 

m = inf{||®|| | xePn dG}, M = sup{||F(x)|| | x 6 P n dG}. 

If fix = A Fx for /x > 0, A > 0 and i g P f l dG then fim < AM. Hence, 
the condition i) in the theorem A will be satisfied if Ai is sufficiently small. 

Now, we shall show that condition ii) in the theorem A holds for suffi-
ciently large A2 and u(t) = t(l — t). To do this, we suppose the contradiction 
that 

Xn /in^ L AjiFXn, 71 — 1 ,2 , . . . 

for xn G P fl dG, (J.n> 0 and An —> 00 as n —> 00. 
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From inequality (7), sequence {x'n} is uniformly bounded on every in-
terval [a, 6] C (0,1). Therefore, we can use the Ascoli's theorem to take 
from sequence {xn} a subsequence, still denoted by {xn}, which converges 
at every point t € (0,1) to some continuous on (0,1) function x such that 
x(t) > mt(l — t) on (0,1). Passing to the limit in inequality 

x (t) 1 

> Fxn = j G(t, s)a(s) f (xn(s))ds 
An 0 

by the Fatou Lemma, we get 
l 

0 > \ G(t,s)a(s)f(x(s))ds, 
o 

which contradicts with the condition (A). 
Thus, the equation (11) has a solution on P fl dG by the theorem A. 

Theorem is proved. 
T H E O R E M 2 . Assume that conditions (A), (B) and (C) are satisfied and let 
Ai be the smallest eigenvalue of the following boundary value problem 

x" + Aa(t)x = 0 in (0,1), as(0) = x(l) = 0. 
Then for each A satisfying 

• / A l J A l Al I 
m m I A ' f c / 1 A ' S J ' 

there exists at least one solution of (11) in P\ {0}. 
Here we impose that Ai/0 = oo, Ai/oo = 0. 

P roo f . We provide the argument only for the case /o < /oo- The case 
/oo < /o is treated in a completely similar way. We will prove that 

(12) lim i n f A ( x ) > ^ , 
NI->o /o 

(13) lim s u P A ( x ) < ^ - . 
IMI-+0 Joo 

Then, the assertion of the theorem will follow from Theorem B. 
Consider a number m such that m < X\/fo and choose a positive number 

r so that f(x) < A ix /m for x < r. If x € S, x ± 0, ||x|| < r, then 

x = A(x)Fx < 
m 

where B is the linear operator, defined in (9). Hence, by using Lemma 2 we 
have m/A(x)Ai < r(B). Taking account that r(B) = 1/Ai we get A(x) > m. 
Thus lim inf A(x) > m. Since m can be arbitrarily closed to A1//0, then 

IMI-o 
(12) is proved. 
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To prove (13) we consider arbitrary numbers m, k such that X\/foo < 
m < k and choose r satisfying f(x) > \\xjvn for x > r. Then we choose by 
Lemma 2 a number e > 0 so small that 

If x 6 S, ||a;|| > r/e2 then we have from (6) 

x(t) > ||x||t(l - t) > ||x||e2 >r for t e [e, 1 - e]. 

Hence, 
l 

x(t) = X(x) J G{t, s)a(s) f (x(s))ds 
o 

> A ( x ) \ Git, s)ae{s)—x(s)ds = 
Q m m 

where function as and operator Be are defined in section 2.2. Applying 
Lemma 2 we have 

Combining (14) and (15) we get A(x) < k. Since k can be arbitrarily 
close to Xi/foo, then (13) is established. This completes the proof. 

3.2. Now we consider boundary value problem (2)-(3). This problem arises 
when we want to find a 2A—periodic solution of the autonomous differential 
equation 

(16) y" + f{y, y) — 0. 
Indeed, if we assume that the function / : R x E —> K is odd on y then 

by a solution (A, x) of (2)-(3) we can construct by [5] a 2A—periodic solution 
of (16) as follows. We first extend x on [—1,0] by setting x(t) = —x(—t), 
then we periodically extend x to obtain a 2A—periodic function on R. Now, 
the function y(t) — x(t/A) will be a 2A—periodic solution for (16). 

To study (2)-(3) we impose the following hypothesis 
(A) / : [0, oo) x R —> [0, oo) is continuous such that 

9(x)<f{x,x')<h(x)( l + | x f ) , 

where r £ (0,1), the functions h,g are nonegative continuous and g does 
not vanish identically on any interval. 

We reduce problem (2)-(3) to the following integro-differential equation 
i i 

( 1 7 ) x(t) = A2 J G(t, s)f[x{s), —x'(s)]ds, 

o A 

where G is Green's function from (8). 
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We denote by F(A, x) the operator in right-hand side in (17). From the 
upper restriction for / in the hypothesis (A) and the inequality (7) we see 
that the operator F is acting from (0, oo) x P into P and takes every subset 
[a, 6] x {x E P, ||x|| < r } into relatively compact subset. It follows easily 
from Lemma 1 and Dominated Convergence Theorem that, if a sequence 
(An, %n) converges to (A, x) 6 (0, oo) x P, then a subsequence of {F(An , xn)\ 
converges to F(X,x). Hence, F is continuous. 

THEOREM 3. Assume that the condition (A) is satisfied. Then the equation 
(17) has an unbounded continuous branch of positive solutions, emanating 
from 0. 

Proof . Consider an arbitrary bounded open subset G 3 0. Arguing as in the 
proof of Theorem 1 we see that the condition ii) in Theorem A is satisfied for 
equation (17) if A2 is sufficiently large. To verify the condition i) in Theorem 
A we assume that fix = F(A, x) for some x E P fl dG, ¡J, > 0, A > 0. 

From the upper restriction for / and (7) we have 

where C = swp{h(x(t)) \ x € PndG}. Since inf{||x|| | x € P n d G } > 0, we 
conclude that /x < 1 if A sufficiently small. 

Thus, by using Theorem A we see that the equation (17) has a solution 
on P fl dG. The Theorem is proved. 

REMARK. The paper [4] has proved the existence of a global continua of posi-
tive solutions for problem (2)-(3) under hypothesis, different from (A), when 
the upper restriction for / is weaker, but the lower restriction is stronger 
than those assumed in (A). 
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