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AN ABSTRACT SECOND ORDER CAUCHY PROBLEM 
WITH NON-DENSELY DEFINED OPERATOR, II 

Abstract. By using the theory of the extrapolation space X - i associated with an 
operator A which is non-densely defined in a Banach space X, the existence and uniqueness 
of solutions of the semilinear second order differential initial value problem (1) is proved. 

1. Introduction 
We continue the study of abstract semilinear second order initial value 

problem 

du 
u(0 ) = uo, — (0) = ui, u 0 , u i € X . 

dt 

In (1) X is a Banach space, u is a mapping from R to X, f is a nonlinear map-
ping from R x l x l into X. In the preceding paper [2] we have discuses the 
problem of existence uniqueness and smoothness of solutions of the linear 
problem corresponding to (1) when the operator A is non-densely defined. 
The present paper is devoted to investigate the semilinear problem (1). Re-
call that a solution of (1) is defined as usual, as a function u : [0,T] —> X 
twice continuously differentiate in (0, T] and once continuously differen-
t i a t e in [0, T] such that u{t) e D(A) for t € [0,T] and (1) holds. 

Our main tools in this paper are the theory of strongly continuous co-
sine families of linear operators in a Banach space,a certain weak continuous 
cosine family and some extrapolation spaces associated with a linear oper-
ator A. 
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2. Preliminaries 
Let the operator A in Section 1 be closed such that its resolvent set p(A) 

contains {A2 : A > a;}, and 

(2) I I ^ I A ^ A 2 ^ ) ] ! ! < ( A
 M ^ ) n + 1 for A > w > n G N 

and some M > 1, u € R. 
We do not recall the definition or properties of the cosine family gener-

ated by the operator A satisfying (2). For this we refer (e.g. [1, 2, 4 and 7]). 
We recall only the definition and some properties of extrapolation spaces 
from [2], see also [3],[5] and [6]. 

Let A be a closed linear operator on the Banach space X with non-empty 
resolvent set p(A). We do not assume that A is densely defined. We define 
(see [6]) 
(3) X - 1 : = ( X x X)/GA, 

where Ga denote the graph of the operator A. Note that Ga is a closed 
linear subspace of X x X since A is closed. Let us define 
(4) i:X3x-+ix:=( 0,x)eX~1. 

The function (4) maps the space X onto the linear subspace iX of X - 1 . 
This allows us to identify X with iX. We also define a linear operator A~l 

on X'1 by 

(5) D(A~l) := iX, 
(6) A_ 1(0,x) := (~x,0) for x £ X. 

Note that, if x E D{A) then {-x, 0) = (0, Ax). The operator A~l should 
not be confused with the inverse of A if this inverse exists. If we identify 
iX with X, we may regard A - 1 as a bounded linear operator X —> X~l. In 
fact if x 6 D(A) then A~xx = A~x(ix) := -i4_1(0, x) = iAx = Ax, so A'1 is 
an extension of A. In the space X - 1 it may be defined an equivalent norm 
by formula 
(7) \(x,y)\lx:=\\ARifx,A)x-R{ji,A)y\\ 
for each ¡i € p(A) and (x,y) € X - 1 . 
THEOREM 1 ([6; Th.3.1.6]). The space X is dense in X - 1 if and only if A 
is densely defined, i.e. D(A) = X. 

If the operator A is closed with nonempty resolvent set, we define the 
space X_i as the closure of X in the norm of X - 1 . From this and Theorem 
1 follows that if A is densely defined, then X_i = X - 1 . 

Let us denote by A-1 the part of A~l in X_i and by Ao the part of A 
in XQ := D(A). Clearly, A_i is an extension of A. 
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We have the following 

T H E O R E M 2 ([6; Prop. 3 . 1 . 9 ] ) . If A is closed and A € p(A), then 

(i) D(A-i) — XQ and A — A_i : Xq —> X_i is an isomorphism 
(ii) A is the part of A-i in X: if X E p(A), then X E p(A~i) and 

R(X,A) = R(X,A^)\x. 

In the sequel we shall need the following theorem which is analogous to 
Theorem 3.1.10 in [6]. 

T H E O R E M 3. Let A be a closed linear operator on X which resolvent R(X2,A) 
exists for X > u> and which satisfies the inequality (2). Then: 

(i) ylo generates a cosine family (Co(i); t E R} on XQ and R(X2,Ao) = 

(ii) Xo is X_i dense in X and (Xo)-i is isomorphic to X_i , 
(iii) under the identification (Xo)_i = X_i we have (Ao)-i = A_\. 

The proof of this theorem is given in [2]. 

T H E O R E M 4 ([6. Th.3.1.11 and 2, Th.7]). Under the assumptions of Theorem 
3, the cosine family {Co(i) : t G M} generated by AQ on XQ extends to a 
cosine family { C _ i ( i ) ; i E M } on X-\ whose generator is the operator A-\. 

Let A be a closed linear operator on a Banach space X with non-empty 
resolvent set p(A), satisfying to (2). 

We denote 

(8) X0
G = (X0)& := {x* E X* : lim ||Ai?(A, A)*x* - x*|| = 0 A—>oo 

(cf. [6, Lemma 3.1.12]). Since the restriction of i?(A,A)* to X® form the 
resolvent of some densely defined operator on XQ , then we define 

40 . yO . y© 

such that R(X, A^) R(A, A)*|x®. From this and from (2) follows that the 
operator A® is the generator of a cosine family on X®. This cosine family 
we denote by {C$(t):tE M] and the statement is that C^(t) = Q(i)|x® • 
We define 

(9) X ° x := {x°* € X°* : R(A, A°*)x°* € jX}, 

where the map j is the natural embedding of X into X®*. 
The subspace X 0 X C X 0 * is closed and C°*(t) invariant. If the operator 

A satisfies the inequality (2) and is non-densely defined we define 

(10) X®x : = ( X O ) 0 X . 

We have the following 
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PROPOSITION 1 ([6, Prop. 4.3.1]). If A is the generator of the cosine family 
{C(t),t G R} on the space X, then 

(11) X = {xQx G X 0 X : l i m | | C 0 x ( i ) x 0 x - z 0 x | | = 0}. 

If A satisfies (2) and is non-densely defined, then 

(12) X C XO
0X 

and this inclusion is continuous. 

3. Existence and uniqueness of solutions of problem (1) 
Following [6,Ch.4] we shall use the space X 0 X to obtain a method of 

solving the problem (1) for an arbitrary operator A satisfying (2). The basic 
idea of this method comes from [6;Ch.4], For a given operator A satisfying 
(2) we use that X c X®x (see(12)) and first we study the problem (1) in 
the space X 0 x . Solutions to this problem which lie in Xq are likely to be 
also solutions to the problem (1) (of.[2] and [6,Ch.4]). 

We have 

LEMMA 1 ([2, Lemma 1]). If: 

I o A : X D D(A) —y X is a linear operator satisfying (2), 
2° / : [0, T] —> X is continuous, 

then s —> C-i(t — s)f(s) is Bochner integrable in and the mapping 
t 

(13) [0, T] 3 t —• v(t) := ^ C-i(t — s)f(s)ds is a norm continuous Xq 
o 

valued function such that 

(14) I N < ) I I X O < M Í | I / I I C M . * O 0 X ) ' 

where X0 := ~D(A),M := sup{||C0(í)|| : t € [0,r]}, {C0(t),t € R} is a 
cosine family generated by Aq and {C_i(í) ; í € R} is a cosine family on 
X_i which is an extension of the cosine family (Co(í); t G R} (cf. Th.4). 

Now we turn to study the problem (1). We recall the following 

DEFINITION 1. A function u : [0, T] —> X0 is said to be a (classical) solution 
of the problem (1) if: 

« « G C H M J N C ^ C O . R ] ) , 
(ii) u(0) = uo and u'(0) = u\, 

(iii) u"{t) = Au(t) + f(t,u(t),u'{t)) for t G (0, T]. 

Now we shall prove 
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THEOREM 5. I f : 

1° A : X D D(A) —> X is a closed linear non-densely defined operator 
satisfying (2), 

2° / : [0, T] x X 0 x —• X is continuous, 
3° u0,ui 6 X0 

then every classical solution of problem (1) is a solution of the following 
integral equation 

t 
(16) u(t) = Co(t)uo + So(t)ui + \S-i{t - s)f(s,u{s),u'{s))ds, 

0 

where So(t)x := F CO(s)xds for t E R,x E Xq and by extending the family 
{S0(t) ••teM] on the space X-i we get {<S_i(t) : t G R}. 

P r o o f . According to [6.Ch.4] and [2,Th.ll], we first study the following 
problem in 

(17) ( = A ~ l U + f & u > t 6 (°> 
\ U(0) = UQ, U'(0) = u\. 

Since A-i is the generator of the cosine family {C_i ( i ) ; i £ R} on and 
the function / : [0, T] x XQ X XQ —» X which is continuous is also continuous 
as / : [0, T] x XQ X XQ —> standard arguments of cosine function theory 
(see e.g.[7]), show that every classical solution of (17) must be a solution of 
the following integral equation 

t 
(18) u{t) = C-i(t)u0 + <S_i(£)ui + J 5_i ( t - s)f{s, u(s),u'(s))ds. 

o 
But since u0,ui € Xo and C_i(i)|x0 = Co(t) and 5_i(i)|x0 = So(t), for 
t 6 R, we obtain that the equations (16) and (18) are identical, and so every 
classical solution of (17) is a solution of (16). 

On the other hand every classical solution of (1) is a classical solution of 
(17). This implies that every classical solution of (1) is a solution of (16). 

DEFINITION 2 . Every function u e C 1 ( [ 0 , T ] , X0) which satisfies the integral 
equation (16) is said to be a mild solution of the problem (1). 

THEOREM 6. Let the assumptions 1° and 2° of Theorem 5 hold. Suppose 
that there exists L > 0 such that 

|| f{t, x, y) - f(t, u, u)|| < L(\\x - u|| + ||y - «||) for t G [0, T], x, y,u,v € X0. 

Then for any UQ 6 EQ and u\ G XQ there exists exactly one solution of the 
integral equation (16) belonging to C1([0,T],Xo), where 

Eo := {x € Xo : Co(t)x is once continuously differentiate in i} . 
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P r o o f . Note first that since / : [0,T] x X0 x X0 —> X is continuous the 
map / : [0, T] —> X is also continuous, where f ( t ) f(t,u(t),u'(t)) for 
t G [0, T] and u G C1([0, T], X0).A necessary condition that the solution of 
(18) be of class C 1 is that UQ G EQ and U\ G XQ. Prom this, by Lemma 1, 
the mappings: 

t 
[0, T] \ C-iit - s)f(s,u(s),u'{s))ds and 

o 
t 

[0,T] s)f(s,u{s),u'(s))ds 
o 

are norm continuous Xo -valued functions. 
Therefore the mapping G, defined by 

t 
( 1 9 ) (Gu)(t) := Co(t)uo+So(t)u1+\S-1(t-s)f(s,u(s),u'{s))ds, t G [ 0 , T ] , 

o 

is a mapping from C1([0, T], XQ) into itself. 
Now a standard contraction mapping argument (cf. e.g. [1, Th. 4]) shows 

that G has a unique fixed point u, which is obviously a mild solution of (1). 
On the other hand, every mild solution of (1) is a fixed point of G. Therefore 
u is unique. 

THEOREM 7 . Suppose that 

1° A : X D D(A) —> X is a closed linear non-densely defined operator 
satisfying (2), 

2° / : [ 0 , T ] x I o x I o ^ i is of class C \ 
3 ° n 0 e D(A) D E0, UL G E0, 

4° AUQ + / (0 , uo, ui) eX0: 

then any u G C ' 1 ( [ 0 , T], XQ), which is a solution of the equation (16), is a 
classical solution of problem (1). 

P r o o f . At first we prove that, under the assumptions of this theorem, each 
solution of (16) is twice continuously differentiable in (0, T]. Indeed, u sat-
isfying (16), by definition, u G (^([O.Tj.Xo). 

Differentiating (16) we get 

t 

v{t) := u'(t) = A0S0{t)u0 + C 0 ( i ) n i + J C _ i ( i - s)f(s, u{s),v(s))ds 
o 
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and so 
t 

v(t) = A0S0(t)u0 + C0(t)ui + J C _ i ( s ) / ( i - s, u{t - s),v(t - s))ds. 
0 

Let t,t + h e (0, T], where t is fixed and h ^ 0. We have 

v(t + h)~ v(t) = A0[S0(t + h)~ S0(t)]u0 + [C0(t + h) - C0(i)]«i 
t+h 

+ 5 c - i (s)[/(t + h — s, u(t + h — s), v(t + h — s))ds 
o 

t 

- \ C-i(s)f(t - s, u{t - s),v(t - s))ds. 
0 

Since A0 is the part of A we get 

Ao[«So(i + h)- So(t)]uo = ¿[S0(i + h)~ S0{t)]u0 

h 

= [5_i(t + h)~ S_i(i)]Au0 = J C_i(t + s)Au0ds, 
o 

[C0(t + ti)~ C0(i)]ui - hA0So(t)Ul + u!(t, h)h 

and so 
h 

v(t + h)~ v(t) = \ C-i(t + s)Au0ds + [A050(i)ui + wi(i, h)]h 
o 

t+h 
+ 5 C- i(s)f(t + h — 5, u(t + h — s), v(t + h — s))ds 

o 
t 

- \ C _ i ( s ) / ( i - a, u(t - s),v(t - s))ds. 
0 

From this we obtain after some rearrangements 

1 1 h 

(20) ~[v(t + h) - v(t)} = - j C _ i ( i + s)[j4uo + /(0,uo,ui)]«fe 
o 

+ AoS0(t)ui+u1(t,h) 

t 

+ i \ C_i( t - s)[f(s + h, u{s + h),v(s + h)~ f{s, u{s), v{s))]ds 
ho 

1 h 

+ - \ C_i ( i + s)[f{h - s, u{h - s), v{h - s)) - / (0 , uq, ui)]ds. 
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From the assumption on f we have 

(21) f(s + h, u(s + h), v(s + h)) - f(s, u(s), v(s)) 

= — (s, u(s + h), v(s + h))h + W2(s, h)h 
OS 

+ -r-(s , u(s), v(s + h))u'(s)h + u>3(s, h)h 
ou ^ y 

+ —(s,u(s),v(s))[v(s + h) - v(s)} + Ui(s,h)h, 
ov 

where ||wi(s, h)\\ —> 0 when h —> 0 for i = 1 , . . . , 4 , uniformly in 5 € [0,T]. 
We employ the following notation: 

g(t) := C0(t)x0 + AQSo(t)Ul 

+ j C—i(i - s)[^-s(s, u(s), v(s)) + u(s))u'(s)}ds 

where xo : = AUQ + /(0,UQ,UI) € Xo-
By Lemma 1, g € C([0, T ] , X ) . Moreover, the function F(t,w) := 

is continuous in t, and satisfies the Lipschitz condition in w uniformly in 
t,since the mapping [0, T] 3 i ^ B(t) £ -B(X) is continuous. Let w 6 
C{[0,T],X) be a solution of 

t 
w{t) = g(t) + \ C_i(i - s)B{s)w(s)ds. 

o 
The existence of such a solution follows from the assumptions on F, g and 
from Lemma 1. Denoting by 

(22) wh(t) := h'^vit + h)- u(i)] - w(t), 

we obtain from (20)-(22) 

(23) wh(t) = u1(t,h) 

1 h 
+ -\C-1(t + s)[f(h - s),u{h - s), v(h - s)) - /(0, u(0), v(0))]ds 

ho 

+ 5 C _ i ( i - s ) ^(s,u{s + h),v(s + h)) - s,u(s),v(s)) ds 

+ jc_i(i - s)[^(s,u{s),v(s + h)) - ^ ( s , u ( s ) , v ( s ) ) K ( s ) i i s 
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+ J C_i(i - s)[u>2(s, h) + v3(s, h) + u>i(s,h)}ds 
o 

1 h 

+ [- i C-i(t + s)(.Au0 + f(0,uo,ui))ds- C0(t)x0] 
ho 

t 
+ \C-i(t - s)B{s)wh{s)ds. 

o 
Since the inclusion X C X® x is continuous, by assumption 2°, we see 

that all integrands are weak* - continuous X^* - valued functions. 
Hence the integrals, in (23), can be interpreted as weak *- integrals in 

X®*. Therefore,by inequality (14) in Lemma 1, the first four integrals on 
the right side of (23) tend to zero as h —> 0 in the norm of X®*, hence in 
X . Let us remark that 

111 h 
lim - (C_i ( i + s ) ( M ) + /(0,uo,ui))ds-Co(i)xo = 0 
h—>o II n J 

o 
in Xo because AUQ + /(0, uo,ui) = XQ € Xo-

From this and from definition and properties of LJi(t, h), for i = 1 , . . . , 4, 
it follows that the norm of each one of the six first terms on the right hand of 
the equality (23) tends to zero as h —> 0. Therefore from (23), by Gronwall's 
inequality, we have 

(24) lim Wh(t) = 0 in norm of Xo. 
h—>0 

The equality (24) means that there exists v'(t) = u"(t) and u"(t) = w(t) 
for t € (0,T], Since w e C([0,T},X) so u 6 C 2 ( (0 ,T] ,X) . 

Now we may to differentiate twice the equality (16) in X _ i . This and 
(24) show that 

u"{t) = A-Mt) + f(t, u(t), u'(t)) 
for t € (0, T]. It remains to show that u(t) E D(A) for t G (0,T]. But since 
u(t) G Xo and u is twice differentiate in X we get that u'(t) € Xo and that 
u"(t) belongs to X . We obtain 

A-lU{t) = u"(t) - f(t,u(t),u'(t)) 6 X. 

Since A is the part of A_i in X , it follows that u(t) 6 D(A), which 
completes the proof. 

As a consequence of Theorems 6 and 7 we get 
T H E O R E M 8. Under the assumptions of Theorem 7 the problem ( 1 ) has a 
unique classical solution which is the unique solution of the integral equation 
(16). 
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REMARK. In this paper and in the previous paper [2] we study the Cauchy 
problem for the second order equation directly using the theory of the oper-
ator cosine function generated by the operator A. In my opinion this method 
is natural. 

It is known the other (standard) method to reduce the second order 
equation to a system of first order equations.Unfortunately this method 
needs an additional assumptions on the operator A (see for example [7, 
Prop. 2.7.]). 
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