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AN ABSTRACT SECOND ORDER CAUCHY PROBLEM
WITH NON-DENSELY DEFINED OPERATOR, II

Abstract. By using the theory of the extrapolation space X_; associated with an
operator A which is non-densely defined in a Banach space X, the existence and uniqueness
of solutions of the semilinear second order differential initial value problem (1) is proved.

1. Introduction

We continue the study of abstract semilinear second order initial value
problem

d*u du
— =A —
o = Aut f(tu, ), te (O]
d
u(0) = uy, d—’lZ(O) =u1, upu €X.

In (1) X is a Banach space, u is a mapping from R to X, f is a nonlinear map-
ping from Rx X x X into X. In the preceding paper [2] we have discuses the
problem of existence uniqueness and smoothness of solutions of the linear
problem corresponding to (1) when the operator A is non-densely defined.
The present paper is devoted to investigate the semilinear problem (1). Re-
call that a solution of (1) is defined as usual, as a function « : [0,T] — X
twice continuously differentiable in (0,7] and once continuously differen-
tiable in [0, T} such that w(t) € D(A) for ¢t € [0,T] and (1) holds.

Our main tools in this paper are the theory of strongly continuous co-
sine families of linear operators in a Banach space,a certain weak continuous
cosine family and some extrapolation spaces associated with a linear oper-
ator A.

1991 Mathematics Subject Classification: 34K30, 34G20.

Key words and phrases: semilinear initial value problems, extrapolation space, strongly
continuous cosine family.



294 J. Bochenek

2. Preliminaries

Let the operator A in Section 1 be closed such that its resolvent set p(A)

contains {A\%: A > w}, and

dn 2
2) |7 RO, )] <
and some M > 1, w € R.

We do not recall the definition or properties of the cosine family gener-
ated by the operator A satisfying (2). For this we refer (e.g. [1, 2, 4 and 7).
We recall only the definition and some properties of extrapolation spaces
from [2], see also [3],[5] and [6].

Let A be a closed linear operator on the Banach space X with non-empty
resolvent set p(A). We do not assume that A is densely defined. We define

(see [6])

) X7 = (X x X)/Ga,

where G4 denote the graph of the operator A. Note that G4 is a closed
linear subspace of X x X since A is closed. Let us define

(4) i: X3z —iz:=(0,z)e XL
The function (4) maps the space X onto the linear subspace iX of X L.

This allows us to identify X with iX. We also define a linear operator A~}
on X! by

(5) D(A™Y) =X,

(6) A7Y0,z) := (~2,0) for z € X.

Note that, if z € D(A) then (—z,0) = (0, Az). The operator A~! should
not be confused with the inverse of A if this inverse exists. If we identify
iX with X, we may regard A~! as a bounded linear operator X — X~ In
fact if z € D(A) then A~lz = A7(iz) := A71(0,z) = iAz = Az,s0 A"l is
an extension of A. In the space X ! it may be defined an equivalent norm
by formula

(7) [z, )l == |AR (1, A)z — R(u, Ay
for each p € p(A) and (z,y) € X~ 1.

THEOREM 1 ([6; Th.3.1.6]). The space X is dense in X1 if and only if A
is densely defined, i.e. D(A) = X.

If the operator A is closed with nonempty resolvent set, we define the
space X_; as the closure of X in the norm of X ~!. From this and Theorem
1 follows that if A is densely defined, then X_; = X 1.

Let us denote by A_; the part of A~! in X_; and by Ag the part of A

in Xy := D(A). Clearly, A_; is an extension of A.

Mn!
poc) for A\>w,neN

(A-w)
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We have the following
THEOREM 2 ([6; Prop. 3.1.9]). If A is closed and X € p(A), then
(i) D(A-1) =Xo and X —A_;:Xo— X_1 s an isomorphism
(ii) A s the part of A_; in X: if A € p(A), then A € p(A_1) and
R(\A) = RO\, A1) x.

In the sequel we shall need the following theorem which is analogous to
Theorem 3.1.10 in [6)].

THEOREM 3. Let A be a closed linear operator on X which resolvent R(A\%, A)
exists for A > w and which satisfies the inequality (2). Then:

(i) Ao generates a cosine family {Co(t);t € R} on Xo and R(\?, 4q) =
R(’\z’A)lXo
(ii) Xo is X_1 dense in X and (Xo)-1 is isomorphic to X _1,
(ili) under the identification (Xo)-1 = X-1 we have (Ag)-1 = A_;.
The proof of this theorem is given in [2].

THEOREM 4 ([6. Th.3.1.11 and 2, Th.7}). Under the assumptions of Theorem
3, the cosine family {Co(t) : t € R} generated by Ap on Xy ertends to a
cosine family {C-1(t);t € R} on X_;1 whose generator is the operator A_.
Let A be a closed linear operator on a Banach space X with non-empty
resolvent set p(A), satisfying to (2).
We denote

(8) X® = (X0)® :={z* € X*: Alim IAR(N, A)Y*z* — z*|| =0
—00
(cf. [6, Lemma 3.1.12]). Since the restriction of R(\, A)* to X§ form the
resolvent of some densely defined operator on Xéa, then we define
AS X9 — X§
such that R(), AY) := R(A, A)*|x$. From this and from (2) follows that the
operator AOO is the generator of a cosine family on XéD . This cosine family

we denote by {CP(t) : t € R} and the statement is that C{(t) = C3(t)|xS.
We define

(9) XO* .= {z®* € XO*: R(\, A®*)z®* € j X},

where the map j is the natural embedding of X into X©*.
The subspace X©* C X©* is closed and C®*(t) invariant. If the operator
A satisfies the inequality (2) and is non-densely defined we define

(10) XP* = (Xo)®*.
We have the following
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PROPOSITION 1 ([6, Prop. 4.3.1)). If A is the generator of the cosine family
{C(t),t € R} on the space X, then

(11) X = {z®% € X©* . lim |CO* (£)z®* — z°%|| = 0}.

If A satisfies (2) and is non-densely defined, then
(12) X c XP*

and this inclusion is continuous.

3. Existence and uniqueness of solutions of problem (1)

Following [6,Ch.4] we shall use the space X5 to obtain a method of
solving the problem (1) for an arbitrary operator A satisfying (2). The basic
idea of this method comes from [6;Ch.4]. For a given operator A satisfying
(2) we use that X C XP* (see(12)) and first we study the problem (1) in
the space Xéax. Solutions to this problem which lie in X are likely to be
also solutions to the problem (1) (cf.[2] and [6,Ch.4]).

We have

LEMMA 1 ([2, Lemma 1]). If:

1° A: X D D(A) — X is a linear operator satisfying (2),
20 f:[0,T) — X is continuous,
then s — C_1(t — 8)f(s) is Bochner integrable in X_; and the mapping
¢
(13) [0,T] >t — v(t):= SC_l(t — 8)f(s)ds is a norm continuous Xy
0

valued function such that

(14) lo@lxe < Ml Fllogory,xox)

where Xo = D(A),M := sup{||Co(t)|| : t € [0,T]}, {Co(t),t € R} is a
cosine family generated by Ag and {C_1(t);t € R} is a cosine family on
X_1 which is an extension of the cosine family {Co(t); t € R} (cf. Th.4).

Now we turn to study the problem (1). We recall the following

DEFINITION 1. A function u : [0, T] — Xj is said to be a (classical) solution
of the problem (1) if:
(i) w € C*([0,T]) N C2((0, 7)),
(ii) u(0) = up and v'(0) = u1,
(iii) u"(t) = Au(t) + f(t,u(t),u'(t)) for t € (0,T).

Now we shall prove
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THEOREM 5. If:

19 A: X > D(A) — X is a closed linear non-densely defined operator
satisfying (2),

20 £:[0,7) x Xo x Xo — X is continuous,

3% ug,u1 € Xy

then every classical solution of problem (1) is a solution of the following
integral equation

t
(16)  u(t) = Co(t)uo + So(t)uy + [ S_1(t — 5) £ (s, u(s),w'(s))ds,

0
where Sp(t)z = SZ Co(s)zds fort € R,z € Xy and by extending the family
{So(t) : t € R} on the space X_1 we get {S_1(t) :t € R}.

Proof. According to [6.Ch.4] and [2,Th.11), we first study the following
problem in X_;

(17) { % = A—lu + f(t7u7u,(t))) te (0>T]a

u(0) = ug, v'(0) = u;.
Since A_; is the generator of the cosine family {C_;(¢);t € R} on X_; and
the function f : [0,7] x X X Xo — X which is continuous is also continuous
as f : [0,T) x Xo X Xo — X_1, standard arguments of cosine function theory
(see e.g.[7]), show that every classical solution of (17) must be a solution of
the following integral equation

o+

(18) u(t) = C_1(t)uo + S—1(t)us + S S_1(t — 8)f(s,u(s),u'(s))ds.

0
But since ug,u; € Xo and C_(t)|x, = Co(t) and S_1(t)|x, = So(t), for
t € R, we obtain that the equations (16) and (18) are identical, and so every
classical solution of (17) is a solution of (16).

On the other hand every classical solution of (1) is a classical solution of
(17). This implies that every classical solution of (1) is a solution of (16).
DEFINITION 2. Every function v € C*([0, T], Xo) which satisfies the integral
equation (16) is said to be a mild solution of the problem (1).

THEOREM 6. Let the assumptions 1° and 2° of Theorem 5 hold. Suppose
that there exists L > 0 such that

£ty y) — F(E u,0)l| < Llllz — ull + lly — v]) for t € [0,T), z,y,u,v € Xo.

Then for any up € Ey and u1 € Xo there exists exactly one solution of the
integral equation (16) belonging to C*([0,T], Xo), where

Eo := {z € Xo : Co(t)z is once continuously differentiable in t}.
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Proof. Note first that since f : [0,T] x Xg x Xo — X is continuous the
map f : [0,T] — X is also continuous, where f(t) := f(¢, u(t), v (t)) for
t € [0,T] and u € C([0,T], Xo)-A necessary condition that the solution of
(18) be of class C?! is that ug € Ey and u; € Xp. From this, by Lemma 1,
the mappings:
¢
0,T]5¢t— SC’_l(t — 8)f(s,u(s),u'(s))ds and

0
t

0,T) 5t — | S_1(t — 5)f(s,u(s),u'(s))ds
0
are norm continuous X -valued functions.
Therefore the mapping G, defined by

¢
(19) (Gu)(¢) := Co(t)uo+80(t)u1+s S_1(t—3)f(s,u(s),v'(s))ds, t € [0, T},
0
is a mapping from C([0,T], Xo) into itself.
Now a standard contraction mapping argument (cf. e.g. [1, Th. 4]) shows
that G has a unique fixed point u, which is obviously a mild solution of (1).

On the other hand, every mild solution of (1) is a fixed point of G. Therefore
4 is unique.

THEOREM 7. Suppose that

1 A: X D D(A) — X is a closed linear non-densely defined operator
satisfying (2),

20 £:[0,T) x Xo x Xo — X is of class C!,

3% ug € D(A) N Ey, u; € Ey,

40 Aug + f(O, ug, U1) € Xy,
then any u € C([0,T], Xo), which is a solution of the equation (16), is a
classical solution of problem (1).

Proof. At first we prove that, under the assumptions of this theorem, each
solution of (16) is twice continuously differentiable in (0, T]. Indeed, u sat-
isfying (16), by definition, u € C1({0, T}, Xo).

Differentiating (16) we get

v(t) == u'(t) = AoSo(t)ug + Co(t)uy + S C_1(t — 8)f(s,u(s),v(s))ds
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and so
t

( ) AoSo(t)Uo + C() Ul + S C_ 1 t -8 u(t - S) (t — s))ds.

Let t,t + h € (0, T}, where ¢ is ﬁxed and h # 0. We have
’U(t +h) — ’U(t) = Ao[So(t + h) — So(t)]’lto + [Co(t +h) — Co(t)]ul
t+h

+ S C1()[f(t+h—s,ut+h—s),v(t+h—s))ds
0

- SC_l(s)f(t —s,u(t — s),v(t — s))ds.

Since Ay is the part of A we get

AolSo(t + h) — Sot)]uo = A[So(t + h) — So(t)]uo
h
= [S_1(t+ h) — S_1(t)] Aue = | C_1(t + 5) Auods,
0
[Co(t + h) - Co(t)]u1 = hAoSO(t)’u,l + w1 (t, h)h
and so
h

v(t+ k) —v(t) = [ C_1(t+ s)Auods + [AgSo(t)ur + wi(t, )]k

t+h
+ | CLis)ft+ h—s,u(t + h—s),v(t+h - s))ds
0

¢
- SC_l(s)f(t — s,u(t — s),v(t — s))ds.
0
From this we obtain after some rearrangements
h

fCoi(t+ 5)[Auo + £(0,u0,u1)]ds
0

+ AOSO(t)’U.l + wy (t, h)

Lot +h) - v(t)] =

20) -

&=

C_1(t = 8)[f(s+ h,u(s+ h),v(s+ h) — f(s,u(s),v(s))]ds
(

S|

+

C_1(t+ s)[f(h — s,u(h — s),v(h —s)) — f(0,up,u1)]ds.

S

+

i
S
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From the assumption on f we have
(21)  f(s+ hyu(s+ h),v(s+ h)) — f(s,u(s),v(s))
= Z_,]:(s’ u(s + h),v(s + h))h + wa(s, h)h
+ %(s, u(s),v(s + h))u'(s)h + ws(s, h)h
+ 2L 5,06), (5o + 1) = (61 + wals, W,

where ||lw;(s,h)|| — 0 when A — 0 for ¢ = 1,...,4, uniformly in s € [0,T.
We employ the following notation:

B(s) := %g(s,u(s),v(s)),
g(t) = C()(t):llo + AOSO(t)U]_

i
3} 3}
+{Coalt~ N (s, u(s),0(9) + X (s, (s ()]s
p 0s ou
where zg := Aug + f(0,up,u1) € Xo.

By Lemma 1, g € C([0,T], X ). Moreover, the function F(t,w) := B(t)w
is continuous in t, and satisfies the Lipschitz condition in w uniformly in
t,since the mapping [0,7] > t — B(t) € B(X) is continuous. Let w €
C([0,T],X) be a solution of

¢
w(t) = g(t) + | C_1(t — 5)B(s)w(s)ds.
0

The existence of such a solution follows from the assumptions on F, g and
from Lemma 1. Denoting by

(22) wn(t) = A o(t + b) — o(t)] — w(t)
we obtain from (20)—(22)
(23) wn(t) =wi(t,h)

h
+ 2§+ 9)F(h = ),u(h = 5),v(h — 5)) — 1(0,(0),0(0))}ds
0

+{cai-s) [%];—(s, u(s + h), v(s + h)) — %—‘Z—(s,u(s), o(s))|ds
0 .

+ SC._l(t - s)[g—ﬁ(s,u(s), v(s+ h)) — %g(s,u(s),v(s))]u'(s)ds
0
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+{C_1(t = 5)lwa(s, h) + ws(s, k) + wa(s, h)lds
0
h

+ [ § Ca(t+ 5)(Auo + £(0,u0,1))ds — Co(t)ao
0

+{C_1(t - 5)B(s)wn(s)ds.
0

Since the inclusion X C X((,Dx is continuous, by assumption 2°, we see
that all integrands are weak* - continuous X((,D* - valued functions.

Hence the integrals, in (23), can be interpreted as weak *- integrals in
X$*. Therefore,by inequality (14) in Lemma 1, the first four integrals on
the right side of (23) tend to zero as A — 0 in the norm of X§*, hence in
X. Let us remark that

h
1
iinb ”—}; SC’_l(t + s)(Aug + f(0,ug,u1))ds — Co(t):vOH =0
0
in X because Aug + f(0,ug,u1) = zo € Xo.

From this and from definition and properties of w;(t, h), for i = 1,...,4,

it follows that the norm of each one of the six first terms on the right hand of

the equality (23) tends to zero as h — 0. Therefore from (23), by Gronwall’s
inequality, we have

(24) ’llin%) wp(t) = 0 in norm of Xj.

The equality (24) means that there exists v'(t) = v"(¢t) and u" (t) = w(t)
for t € (0, 7). Since w € C([0,T}, X) so u € C?((0,T), X).

Now we may to differentiate twice the equality (16) in X_;. This and
(24) show that

w'(t) = A_yu(t) + (¢, u(t), v'(2))

for t € (0,T). It remains to show that u(t) € D(A) for ¢t € (0, T]. But since
u(t) € Xy and u is twice differentiable in X we get that u/(t) € Xg and that
u”(t) belongs to X. We obtain

A_ju(t) =d" () - f(t,ut),v' () € X.

Since A is the part of A_; in X, it follows that u(t) € D(A), which
completes the proof.
As a consequence of Theorems 6 and 7 we get

THEOREM 8. Under the assumptions of Theorem 7 the problem (1) has a
unique classical solution which is the unique solution of the integral equation

(16).
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REMARK. In this paper and in the previous paper [2] we study the Cauchy
problem for the second order equation directly using the theory of the oper-
ator cosine function generated by the operator A. In my opinion this method
is natural.

It is known the other (standard) method to reduce the second order
equation to a system of first order equations.Unfortunately this method
needs an additional assumptions on the operator A (see for example [7,
Prop. 2.7]).
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