

Teodor Bulboacă

CLASSES OF FIRST-ORDER
 DIFFERENTIAL SUPERORDINATIONS

Abstract. Let $\varphi : \mathbb{C}^2 \rightarrow \mathbb{C}$ be an analytic function in a domain $\Delta \subset \mathbb{C}^2$, let p an analytic function in the unit disc U such that $\varphi(p(z), zp'(z))$ is univalent in U and suppose that p satisfies the first-order differential superordination

$$h(z) \prec \varphi(p(z), zp'(z)).$$

In the case when $\varphi(p(z), zp'(z)) = \alpha(p(z)) + \beta(p(z))\gamma(zp'(z))$ we determine conditions on h , α , β and γ so that the above subordination implies $q(z) \prec p(z)$, where q is the *largest* function so that $q(z) \prec p(z)$ for all p functions satisfying the first-order differential superordination. The concept of differential superordination was introduced by S. S. Miller and P. T. Mocanu in [2] like a dual problem of differential subordination [1].

1. Introduction

Let denote by $H(U)$ the class of analytical functions in the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ and for $a \in \mathbb{C}$ and $n \in \mathbb{N}^*$ let

$$H[a, n] = \left\{ f \in H(U) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, z \in U \right\}.$$

If f , $F \in H(U)$ and F is univalent in U we say that the function f is *subordinate* to F , or F is *superordinate* to f , written $f(z) \prec F(z)$, if $f(0) = F(0)$ and $f(U) \subseteq F(U)$.

Let $\varphi : \mathbb{C}^3 \times \overline{U} \rightarrow \mathbb{C}$, let $h \in H(U)$ and $q \in H[a, n]$. In [2] the authors determined conditions on φ such that

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z)$$

implies $q(z) \prec p(z)$, for all p functions that satisfies the above superordination. Moreover, they found sufficient conditions so that the q function is the *largest* function with this property, called the *best subordinant* of this subordination.

1991 *Mathematics Subject Classification*: Primary 30C80; Secondary 30C45, 30A20.

Key words and phrases: differential subordination, differential superordination, convex, starlike, univalent function.

The present paper deals with the case when

$$\varphi(p(z), zp'(z)) = \alpha(p(z)) + \beta(p(z)) \gamma(zp'(z)).$$

We determine conditions on h , α , β and γ so that this subordination implies $q(z) \prec p(z)$, and we find its *best subordinant* q .

2. Preliminaries

In order to prove our main results we will need to use the next definitions and lemmas.

Let $h \in H(U)$ with $h(0) = 0$, $h'(0) \neq 0$. We say that h is a *starlike* (univalent) function if

$$\operatorname{Re} \frac{zh'(z)}{h(z)} > 0, \quad z \in U.$$

A function $h \in H(U)$ is called to be *convex* (univalent) if

$$\operatorname{Re} \frac{zh''(z)}{h'(z)} + 1 > 0, \quad z \in U.$$

We say that the function $L : U \times [0, +\infty) \rightarrow \mathbb{C}$ is a *subordination (or Loewner) chain* if $L(\cdot, t)$ is analytic and univalent in U for all $t \geq 0$, $L(z, \cdot)$ is continuously differentiable on $[0, +\infty)$ for all $z \in U$, and $L(z, s) \prec L(z, t)$ when $0 \leq s \leq t$. The following lemma gives us sufficient conditions for L to be a subordination chain.

LEMMA 2.1 ([3, p. 159]). *The function $L(z, t) = a_1(t)z + a_2(t)z^2 + \dots$, with $a_1(t) \neq 0$ for $t \geq 0$ and $\lim_{t \rightarrow +\infty} |a_1(t)| = +\infty$, is a subordination chain if*

$$(2.1) \quad \operatorname{Re} \left[z \frac{\partial L / \partial z}{\partial L / \partial t} \right] > 0, \quad z \in U, \quad t \geq 0.$$

For the next lemma that we will use to prove our result we need the following definition.

DEFINITION 2.1 ([2]). We denote by Q the set of functions h that are analytic and injective on $\overline{U} \setminus E(h)$, where

$$E(h) = \left\{ \zeta \in \partial U : \lim_{z \rightarrow \zeta} h(z) = \infty \right\},$$

and such that $h'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(h)$.

LEMMA 2.2 ([2, Theorem 7]). *Let $q \in H[a, 1]$, let $\varphi : \mathbb{C}^2 \rightarrow \mathbb{C}$ and set $\varphi(q(z), zq'(z)) \equiv h(z)$. If $L(z, t) = \varphi(q(z), tzq'(z))$ is a subordination chain and $p \in H[a, 1] \cap Q$, then*

$$h(z) \prec \varphi(p(z), zp'(z)) \quad \Rightarrow \quad q(z) \prec p(z).$$

Furthermore, if $\varphi(q(z), zq'(z)) = h(z)$ has a univalent solution $q \in Q$, then q is the best subordinant.

3. Main results

THEOREM 3.1. *Let q be a convex (univalent) function in the unit disc U , let $\alpha, \beta \in H(D)$, where $D \supset q(U)$ is a domain, and let $\gamma \in H(\mathbb{C})$. Suppose that*

$$(3.1) \quad \operatorname{Re} \frac{\alpha'(q(z)) + \beta'(q(z)) \gamma(tzq'(z))}{\beta(q(z)) \gamma'(tzq'(z))} > 0, \quad \forall z \in U \text{ and } \forall t \geq 0.$$

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subset D$, and $\alpha(p(z)) + \beta(p(z)) \gamma(zp'(z))$ is univalent in U , then

$$\begin{aligned} \alpha(q(z)) + \beta(q(z)) \gamma(zq'(z)) &= h(z) \prec \alpha(p(z)) + \beta(p(z)) \gamma(zp'(z)) \\ &\Rightarrow q(z) \prec p(z), \end{aligned}$$

and q is the best subordinant.

Proof. Setting $\varphi(p(z), zp'(z)) = \alpha(p(z)) + \beta(p(z)) \gamma(zp'(z))$, by the assumption we have $h(z) \prec \varphi(p(z), zp'(z))$ and $\varphi(p(z), zp'(z))$ is univalent in U .

If we let

$$L(z, t) = \alpha(q(z)) + \beta(q(z)) \gamma(tzq'(z)) = a_1(t)z + \dots,$$

then

$$\frac{\partial L(0, t)}{\partial z} = \beta(q(0))\gamma'(0)q'(0) \left[t + \frac{\alpha'(q(0)) + \beta'(q(0))\gamma(0)}{\beta(q(0))\gamma'(0)} \right].$$

From the univalence of q we have $q'(0) \neq 0$ and by using (3.1) for $z = 0$ we deduce that

$$a_1(t) = \frac{\partial L(0, t)}{\partial z} \neq 0, \quad \forall t \geq 0, \quad \text{and} \quad \lim_{t \rightarrow +\infty} |a_1(t)| = +\infty.$$

A simple computation shows that

$$\operatorname{Re} \left[z \frac{\partial L / \partial z}{\partial L / \partial t} \right] = \operatorname{Re} \left[\frac{\alpha'(q(z)) + \beta'(q(z)) \gamma(tzq'(z))}{\beta(q(z)) \gamma'(tzq'(z))} + t \left(1 + \frac{zq''(z)}{q'(z)} \right) \right].$$

According to (3.1) and using the fact that q is a convex (univalent) function in U we obtain

$$\operatorname{Re} \left[z \frac{\partial L / \partial z}{\partial L / \partial t} \right] > 0, \quad z \in U, \quad t \geq 0,$$

and by Lemma 2.1 we conclude that L is a subordination chain. Now, applying Lemma 2.2 we obtain our result. ■

Taking $\beta(w) = 1$ in the above Theorem we get the next corollary:

COROLLARY 3.1. Let q be a convex (univalent) function in the unit disc U , $\alpha \in H(D)$, where $D \supset q(U)$ is a domain, and let $\gamma \in H(\mathbb{C})$. Suppose that

$$\operatorname{Re} \frac{\alpha'(q(z))}{\gamma'(tzq'(z))} > 0, \quad \forall z \in U \text{ and } \forall t \geq 0.$$

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subset D$, and $\alpha(p(z)) + \gamma(zp'(z))$ is univalent in U , then

$$\alpha(q(z)) + \gamma(zq'(z)) \prec \alpha(p(z)) + \gamma(zp'(z)) \Rightarrow q(z) \prec p(z),$$

and q is the best subordinant.

For the particular case when $\gamma(w) = w$, using a similar proof as in Theorem 3.1 we obtain:

COROLLARY 3.2. Let q be a univalent function in the unit disc U and let α , $\beta \in H(D)$, where $D \supset q(U)$ is a domain. Suppose that

$$(i) \operatorname{Re} \frac{\alpha'(q(z))}{\beta(q(z))} > 0, \quad \forall z \in U,$$

(ii) $Q(z) = zq'(z)\beta(q(z))$ is a starlike (univalent) function in U .

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subset D$, and $\alpha(p(z)) + zp'(z)\beta(p(z))$ is univalent in U , then

$$\alpha(q(z)) + zq'(z)\beta(q(z)) \prec \alpha(p(z)) + zp'(z)\beta(p(z)) \Rightarrow q(z) \prec p(z),$$

and q is the best subordinant.

For the case $\beta(w) = 1$, using the fact that the function $Q(z) = zq'(z)$ is starlike (univalent) in U if and only if q is convex (univalent) in U , Corollary 3.2 becomes:

COROLLARY 3.3. Let q be a convex (univalent) function in the unit disc U and let $\alpha \in H(D)$, where $D \supset q(U)$ is a domain. Suppose that

$$(3.2) \quad \operatorname{Re} \alpha'(q(z)) > 0, \quad \forall z \in U.$$

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subset D$, and $\alpha(p(z)) + zp'(z)$ is univalent in U , then

$$\alpha(q(z)) + zq'(z) \prec \alpha(p(z)) + zp'(z) \Rightarrow q(z) \prec p(z),$$

and q is the best subordinant.

Next we will give some particular cases of the above results obtained for appropriate choices of the q , α and β functions.

EXAMPLE 3.1. [2, Theorem 8] Let q be a convex (univalent) function in the unit disc U and let $\gamma \in \mathbb{C}$, with $\operatorname{Re} \gamma > 0$. If $p \in H[q(0), 1] \cap Q$ and

$p(z) + \frac{zp'(z)}{\gamma}$ is univalent in U , then

$$q(z) + \frac{zq'(z)}{\gamma} \prec p(z) + \frac{zp'(z)}{\gamma} \Rightarrow q(z) \prec p(z),$$

and q is the best subordinant.

Proof. Taking $\alpha(w) = w$ and $\beta(w) = 1/\gamma$, $\operatorname{Re} \gamma > 0$, in Corollary 3.2, condition (i) holds if $\operatorname{Re} \gamma > 0$ and (ii) holds if and only if q is a convex (univalent) function in U . ■

EXAMPLE 3.2. Let q be a convex (univalent) function in the unit disc U and suppose that

$$(3.3) \quad |\operatorname{Im} q(z)| < \frac{\pi}{2}, \quad z \in U.$$

If $p \in H[q(0), 1] \cap Q$ and $e^{p(z)} + zp'(z)$ is univalent in U , then

$$e^{q(z)} + zq'(z) \prec e^{p(z)} + zp'(z) \Rightarrow q(z) \prec p(z),$$

and q is the best subordinant.

Proof. Considering in Corollary 3.3 the case $\alpha(w) = e^w$, then condition (3.2) becomes

$$\operatorname{Re} \alpha'(q(z)) = e^{\operatorname{Re} q(z)} \cos(\operatorname{Im} q(z)) > 0, \quad z \in U,$$

that is equivalent with (3.3). ■

REMARK 3.1. Taking $q(z) = \lambda z$, $|\lambda| \leq \pi/2$ in Example 3.2 we have the next result:

If $p \in H[0, 1] \cap Q$ such that $e^{p(z)} + zp'(z)$ is univalent in U and $|\lambda| \leq \pi/2$, then

$$e^{\lambda z} + \lambda z \prec e^{p(z)} + zp'(z) \Rightarrow \lambda z \prec p(z),$$

and λz is the best subordinant.

EXAMPLE 3.3. Let q be a convex (univalent) function in the unit disc U and suppose that

$$(3.4) \quad \operatorname{Re} q(z) > \beta, \quad z \in U.$$

If $p \in H[q(0), 1] \cap Q$ and $\frac{p^2(z)}{2} - \beta p(z) + zp'(z)$ is univalent in U , then

$$\frac{q^2(z)}{2} - \beta q(z) + zq'(z) \prec \frac{p^2(z)}{2} - \beta p(z) + zp'(z) \Rightarrow q(z) \prec p(z),$$

and q is the best subordinant.

Proof. If we consider in Corollary 3.3 the case $\alpha(w) = \frac{w^2}{2} - \beta w$, then we may easily see that (3.2) is equivalent with (3.4). ■

REMARK 3.2. 1. The function $q(z) = e^{\lambda z}$ is convex (univalent) in U if and only if $|\lambda| \leq 1$, and under this assumption $\operatorname{Re} q(z) > 0$, $z \in U$. Using the result of Example 3.3 for this choice we obtain:

If $p \in H[1, 1] \cap Q$ such that $\frac{p^2(z)}{2} + zp'(z)$ is univalent in U and $|\lambda| \leq 1$, then

$$\frac{e^{2\lambda z}}{2} + \lambda z e^{\lambda z} \prec \frac{p^2(z)}{2} + zp'(z) \Rightarrow e^{\lambda z} \prec p(z),$$

and $e^{\lambda z}$ is the best subordinant.

2. The function $q(z) = \frac{1 + (2\beta - 1)z}{1 + z}$, $\beta < 1$, is convex (univalent) in U and $\operatorname{Re} q(z) > \beta$, $z \in U$. Hence, by using Example 3.3 we have:

If $p \in H[1, 1] \cap Q$ such that $\frac{p^2(z)}{2} - \beta p(z) + zp'(z)$ is univalent in U and $\beta < 1$, then

$$\begin{aligned} \frac{1 - 2\beta - 2(2\beta^2 - 4\beta + 3)z + (1 - 2\beta)z^2}{2(1 + z)^2} &\prec \frac{p^2(z)}{2} - \beta p(z) + zp'(z) \\ &\Rightarrow \frac{1 + (2\beta - 1)z}{1 + z} \prec p(z), \end{aligned}$$

and $\frac{1 + (2\beta - 1)z}{1 + z}$ is the best subordinant.

References

- [1] S. S. Miller and P. T. Mocanu, *Differential Subordinations. Theory and Applications*, Dekker, New York, 1999
- [2] —, *Subordinants of differential superordinants*, to appear in Proc. Amer. Math. Soc.
- [3] Ch. Pommerenke, *Univalent Functions*, Vanderhoeck and Ruprecht, Göttingen, 1975.

DEPARTMENT OF FUNCTION THEORY
 FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
 BABEŞ-BOLYAI UNIVERSITY
 3400 CLUJ-NAPOCA, ROMANIA
 E-mail: bulboaca@math.ubbcluj.ro

Received April 4, 2001.