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SOME PROPERTIES OF A CLASS
OF ANALYTIC FUNCTIONS

Abstract. We give, among other results, some criteria for p-valence of functions
f(z) = 2P 4+ ap+12PT! + ... analytic in the unit disc.

1. Introduction
Let A(p) denote the class of functions of the form

(1.1) f(2) =22+ apra?t*  (peN={1,2,3,...})
k=1

which are analytic in the unit disc F = {z: |2] < 1}. Further for A > 0 and
f € A(p), we define a function Fy by
(1.2) Fy(2) = (1= ) f(2) + Azf (2).

In {11], Saitoh has derived some properties of functions in the class A(p),
and of the functions F) defined by (1.2). In fact, he proved the following
results.

THEOREM A. If f € A(p) satisfies the condition

f9(z2) p!
Re{ g }>a (0§a<(p_j)!, z € E),
then
FU=D(2) 1 (p—3+1)12a+p
Re{ zp=i+1 } (p—3+1)! 2(p—4)+3 (=€ B),

where 1 < j < p.
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THEOREM B. Let F be defined by (1.2) for A > 0 and f € A(p). If
()
F (1 -
Re )‘—(z) >« (OSa<M, z € E),
s (p—3)!
then

Re{f(j)(z)} S : (p—3)N2a+p'A (z € E),

ZP~J p—HN2— A+ Ap)
where 0 < j < p.

In the present paper, we improve the results of Saitoh[11] for functions
belonging to the class A(p), and for the functions F for 0 < A < 1 and
f € A(p). We also derive certain sufficient conditions for functions in A(p)
to be p-valent in E. Some properties of functions in A(p) are also obtained.

2. Preliminaries and main results
To establish our main results, we need the following lemmas.

LEMMA 1 [3]. Let w be non-constant analytic in E with w(0) = 0. If |w|
attains its mazimum value on the circle |z| = v < 1 at zp, then we have
zow (2) = kw(2q), where k is real and k > 1.

LEMMA 2 [10). If g is analytic in E with q(0)=1, and if v is a complez
number satisfying Re(y) > 0(y #0), a < 1, then

Re{q(2) + Nzq (2)}>a (z€E)
implies that
Re{q(2)} >a+(1-a)(2p-1) (z€E),

where p given by
1
p = p(Rey) = {(1 + tRe7)at
0
is an increasing function of Re v and (1 + Rey)/(1 + 2Rey) < p < 1. The
estimate is best possible in the sense that the bound cannot be improved.

LEMMA 3. Let f € A(p). If there exists a (p-k+1)-valent starlike function
g(z) = 2P+ 1 by 102P7%+2 4 | that satisfies

Reg )

9(2)
then f is p-valent in E.

}>0 (z€E)

We owe the above lemma to Nunokawa [6].
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For real or complex numbers a,b, and ¢(¢c # 0,—-1,—-2,...), the hyperge-
ometric series
a-b ala+1)-bb+1) ,
F(a,b;c;2) =1 -
(a,b5¢;2) l-c 2le(c+1) s
represents an analytic function in E [1, p. 556]. The following identities are
well known [1, p. 556-558].

LEMMA 4. For real or complex numbers a,b, and c(c # 0,—1,-2,...), we
have

1
21) [ -1 - t2)dt

0
= 1—‘—(b)—'lﬂ(i—i)F(a,b; ¢c; z)(Re(c) > Re(b) > 0);
ING)!
(2.2) F(a,bjc;2z) = (1 —2)7°F (a, c—b;c z—i—l->,
2.3) F<1,1;2; 626_.:- 1) _ (6z + 1)(157;(6;:-1— 1) (6 40);
and
(2.4) F(1,13; 66+1) 2(6z+1){1_ln(6zz+1)} (6 4£0).

REMARK. Putting z = }(§ # 0) in the identities in (2.3) and (2.4), we get

F(l, 1;2; %) = 2ln2;F(1, 1; 3; %) = 4(1 — In2).
We now prove

THEOREM 1. If f € A(p) satisfies the condition
1

(2.5) Re{(l—/\)(%z)u+ NAUC )(f("‘l,)(Z))”_ }>a (z € E)

Zp—i+1l \  Zp—j+l

for some p >0, A>0 and a < (1 4+ Ap—34))@!/(p—7+ 1)#, then
FO-D () *

.« p! # a
>[1+,\(p—j)+{((p_j+1)u) T+ 2o ])}(2/) 1)] (z € E),
where 1< j<p, p= F(11ﬂMP__J_l+1 1)/2 and

D+ ul+Ap—NH{2A+p(l+Ap-j)}<p< 1.
The estimate is best possible in the sense that bound cannot be improved.
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Proof. Consider the function q defined in E by
— + 1 | (j_l) z

p! zp—itl

n
}, 1<j5<p.

We choose the principal branch in (2.7) so that q is analytic with ¢(0) = 1.
Differentiating both sides in (2.7) followed by a simple calculation, we get

(1- ,\){i(j_"l)_(fl}“ 519 { FE-D(z) }u—l

2p—i+1 2P—3J 2p—i+1

= —L— ’ -9 z A 2q (2
(o=} @ {ae+ e @)

Using the hypothesis (2.5) in the above equality, we obtain

, ((p—j +1)!>ya
Rl + S O > Gy ¢¢P
from which it follows by Lemma 2

w{ 1209)

2p—i+1

e {(55m) —eafeey] cen

where 1 < j<p and pis given by
1 -1
p=] {1+mm*<?m} dt.
0
Now, by change of variable and with the aid of the identities (2.1) and (2.2),
we get

ay 1 )
p:lKL+§p—]»Suﬂﬁ¥:m_%L+w_wu

0
=F<1’ u(1+/\)fp—j));u(1+/\A(p—j)) +1;_1>
1 pl+AMp—4) 1

We, further, note that
A+ p(l+ AP - ) ;
S <p<l, 1<j<p
22+ p(L+ Alp - 7))
This completes the proof of Theorem 1. The estimate in (2.6) is best possible
as the bound in Lemma 2 is so.
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Setting 4 = A =1 in Theorem 1, we get the following result.
COROLLARY 1. If f € A(p) satisfies

Re{f(j)(%)} >« <a< p!‘ ; zeE)
2P~ (p - 3)!
then

W E=C)

2p—i+l

a p! o }
> . + - - ; 2p—1 } z € E),
[p—1+1 {@-J+1ﬂ p—J+1( )| FeB)
where1 < j <p, p=F(1,1,p—5+2;3)/2 and (p—j+2)/(p—j+3) < p< 1.
The estimate is best possible in the sense that the bound cannot be improved.

COROLLARY 2. If f € A(p) satisfies
ﬂ”&)} p!(1 - 2p)
Re{ = > > , zeF
7 |7 -pei-p P
where 2 < j < p and p is defined as in Corollary 1, then f is p-valent in E.

Proof. Putting o = {p!(1 - 2p)}/{(p—j7)2(1 - p)} in Corollary 1, we

get
Re{w} >0 (z€E)

2p—3+1
for 2 < j7 < p. Or, equivalently,

e { 2fU1(z)

e }>0 (2<j<p;, z€E).

Since 2P~9+2 is (p-j+2)-valently starlike in E, in view of Lemma 3, the

function f is p-valent in E. This proves Corollary 2.

REMARKS 1. Since for uy = A =1,
p—J+2 .
—_— <1, 1<j5<
T3P <j<p

we deduce that

a p! a } (
: + . - — 2p—-1)>
(p—j+1) {@—J+1ﬂ p—j+1 ( )

Thus Corollary 1 improves Theorem A of Saitosh [11].

p—7+ 1)2a+p!
2(p—-3j)+3

2. Putting j = p in Corollary 2 and using the fact that F(1,1;2; %) =
21n2, we have the following result which was also obtained by Nunokawa

[7].
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If f € A(p) satisfies the condition

Re{f®(2)} > ;i(;—f;:—gp! (€ E)

for p > 2, then f is p-valent in E.

THEOREM 2. If f € A(p) satisfies the condition (2.5) for p > 0,A > 0 and
a<{(I+Alp-)EW}H((p-5+1))*, 1<j<p, then
where

{f—;;)sz)}“/z > (@——iﬁ)mﬁ (z € B),
(2.9)

g = AP+ VRN + duallp — 5 + DD @D+ Nelp — ) + 1)}
2D {p+ Mp(p - 4) + 1)} '

Proof. Suppose f € A(p) satisfies (2.5) and let us put
@10 {@=irDFOV@V 141 -26)u()
: P! =i+l - 1—w(z)

where 3 is defined by (2.9). We choose the principal branch in (2.10) so that
w is analytic in E with w(0) = 0. On differentiating the expression in (2.10)
followed by some simple transformations, we get

(2.11)  (1- A){f_:;%ﬁ}“ +/\f;>—(;) (fii:?)ff)>p—1

_f " iy 1+ (1-28)w(z)?
(o) ee-» (Pl
AA1-8)  1+(1-26) w(z) 2w (2) ]

11+ Ap - 5)) 1 —w(2) (1—w(2)?]

Suppose that there exists a point zg € E such that

(z € B),

MAT|5|<|z)W(2)] = w(20)| =1 (w(z0) # 1)

]

Then, by using Lemma 1 and writing w(2p) = €*’, we have

Re [(1 - ,\){M}“ s /\f(j) (0) { FU=1)(z0) }#—1}

— —IT1 —
zg j+1 z(l)’ j+ z(l)’ J
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{(p J+1)'} (H)‘(p_j))Re[{li(ll—;_jf)ewr

N1-Pk {1+ (1— 2ﬁ)ei0} et ]
u(1+ /\(p 7)) 1-eb (1-e®)?

426(1 - B)k

1

IA

IA

} (L+Mp—ﬂﬂﬂ?— A —F) }

{ (p— J+1)' p(1+ A(p - 7))

= a (by using (2.9)),

+
—_1 2 —
{ J+1 } 1+ J)){ﬂ +u(1+/\(p—j))( 4sin2%)

}
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which is a contradiction to the hypothesis (2.5). Thus, |w(z)| < 1 for all

z € E and from (2.10), we conclude that

(j-1) B/2 I p/2

where 1 < j < p. This completes the proof of Theorem 2.
Taking 4 = A = 1 in Theorem 2, we obtain

COROLLARY 3. If f € A(p) satisfies

f9() P
5P} ety sem)

then
fUN(z)
rely Gt |
{ P! }%¢+WA¢V+¢@—j+mMa
(p—j+1) p2(p—j+2)

where1 < 3 < p.
With j = p, Corollary 3 yields
COROLLARY 4. If f € A(p) satisfies
Re{fP(2)} >a (a<p!, z€E),

R%J?i?z} w+¢@?¥ﬁ§ (z € E).

then

(z €

E),
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THEOREM 3. If f € A(p) satisfies the condition

fO0  f9  p
(2.12) ’,3 porme e R T (p—j+ 1)

B+vp-j+1))

p! .
< ——={8+ —7+2 z€E
P 1)!{ﬂ Yp—-7i+2)} ( )
for some 3>0,7>0, B+ >0, then
99 !

(z € B),

- - < ;
P73+l (p—j+ 1) " (p—j+1)!
where 1 < 7 <p.

Proof. Let (2.12) be satisfied and let us put

P-j+1)! fU-D(z)
p' 2p—i+1

(2.13) =1+w(z).

Then w is analytic in F with w(0) = 0. Making differentiation in (2.13)
followed by some simple transformation in the resulting equation, we get
fO% _ _ o
=i (p-j+1)
Using the above the equation and (2.13), we deduce that

G-1)(4 0) (4
e1) [P - =i )

p!
C(p-j+ 1)
Suppose that there exists a point 25 € F such that

{(p—j+ 1A +w(z)+ 2w (2)}

{(B+(p -5 +1))w(z) + 72w (2)}.

MAT|z|< || [0(2)| = [w(20)]| =1  (w(20) # 1).
Then by writing w(zp) = ¥ and using Lemma 1, (2.14) yields

G-1) ©)
sl Jp_jﬁzf) TR Jp(?) B+ylp—j+1)
20 20

p! i@
ml(ﬁ+’¥(§0 j+1))e” +k, €
> G;%ﬁ{ﬂﬂ(p i+2)}

which is a contradiction to (2.12). Therefore, |w(z)| < 1 for all z € E.
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This implies that
9z o | P
it (p=g+ DN (P-4 D)
This proves the theorem.

(2 € E).

COROLLARY 5. If f € A(p) satisfies the condition (2.12) for 2 < j < p, then
f is p-valent in E.

Proof. From (2.13) and the inequality |w(z)| < 1 for z € E, which was
shown in the proof of Theorem 3, it follows that

1970(z)
RG{W >0 (Z € E),
where 2 < j < p. Or, equivalently

Re{ zf(j—l)(z)

2 s0 esispien

By using the same argument as in Corollary 2, we conclude that f is p-valent
in E.
Putting j = p, =0 and v = 1 in Corollary 5, we have

COROLLARY 6. If f € A(p) satisfies
1fP(z) -l <2(p!) (2 € E)
for p > 2, then f is p-valent in E.

We note that the above result was also obtained by Nunokawa, Kwon
and Cho {8].

THEOREM 4. Let Fy be defined by (1.2) for A > 0 and f € A(p). If

0, _
(2.15) Re{%#} >a(a<p!(+p_)‘—;_)!ﬂ; z€E>
then
(2.16)

e e e s (e ese) L L)

where 0 < 7 < p, p is given by
lFl,l;l"'—>‘-ﬂ;l, A>0
(2.17) p={i( i 3) 220
2 =

and (14+AX)/(1+ A+ Ap) < p < 1. The estimate in (2.16) is best possible
in the sense that the bound cannot be improved.
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Proof. Consider the function F) defined in E by

Fa(z2) = (1= Nf(2) + Azf (z)  (A20, f € Ap)).
Differentiating F, we get
(218)  FO(2)=(1-2+2)fD() +r2f0(z), 0<j<p.
Let us put
p—4)! FY)

e1) o= o<j<pzen,
Then ¢ is analytic in F with ¢(0) = 1. Making differentiation in (2.19), we
obtain
=D [P O
zq (z) = p prp s el (el ) e o

from which it follows that

G+ (4 ! '
9Tz __# {0 = )a(2) + 24 (2)}-

2p=i=1 " (p— )
By using the above expression and (2.19) in (2.18), we deduce that

FO(z)  pl(1-A+ by :
(2.20) ;‘p_(j) - 2! =7 r) {Q(Z) + T+l (Z)}~

Hence by (2.15), (2.20) yields

L o s)a
RC{Q(Z) + ‘1—_)\_+A—p - 2q (Z)} > m (Z S E)

which in view of Lemma 2 implies that

()
Re{f—(iz}

zP—J

> a + p! e
1-A+2Xp (=g 1=X+Xp
where 0 < 5 < p, pisgiven by
1 -1
p=§(1+tr‘1‘ﬂ‘—A r) dt
0
and(1 4+ Ap)/(1 + XA + Ap) < p < 1. By following the lines of proof as in
Theorem 1, we can show that
p= {%—F(l,l;—elf\)‘ ;% , A>0

L A=0.

b -] cen

Hence the theorem is proved.
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The estimate in (2.16) is best possible as the bound in Lemma 2 is best
possible.

COROLLARY 7. Let Fy be defined by (1.2) for A > 0 and f € A(p). If
RC{FER;)} p!(1+ X+ Ap)(1 - 2p)
ZP (p—)'2(1-p)
where 1 < j < p and p is given by (2.17), then f is p-valent in E.
Proof. Setting a = {p!(1 — A+ Ap)(1 - 2p)}/{(p— 7)'2(1 — p)} in Theorem

3, we get
Re{fm} >0 (z€E)

zp—j

(2 € E),

for 1 € j < p. Or, equivalently

Re{zf“Nz)

zP—j+1

}>0 (z € E).

Since 2P79*! is (p — j + 1)-valently starlike in E, by using Lemma 3 we
conclude that f is p-valent in E.
Putting j = 0 in Theorem 4, we get

COROLLARY 8. Let Fy be defined by (1.2) for A > 0 and f € A(p). If
F
Re{——';—iz—)} >a (a<l—XA+Xp; z€ E),
then

Re{f—z(j—)} > [ﬁTer {1— (1_—;‘;\;)}(2,;— 1)] (z € E)

where p is given by (2.17). The result is best possible.
Taking j = 1 in Theorem 4, we have
COROLLARY 9. Let Fy be defined by (1.2) for A > 0 and f € A(p). If
FI
Re{;;é?} >a (a<p(l-X+Ap); z€ E),

then

f(2) o a
R S % lgp-1
e{zi"l > 1—/\+/\p+ P (I1-X+Ap) (20—1) (z € B),
where p is given by (2.17). The result is best possible.
REMARKS 1. Since (1 4+ Ap)/(1 4+ A+ Ap) < p < 1, we have

" { pl o }> (p—7)2a+p'A
1-x+dp - 1-2+2p) = -2 =>+)
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for 0 < j < pand 0 < A < 1. Thus, Theorem 4 is an improvement of
Theorem B for 0 < A <1.

2. In view of the above remark, Corollary 8 and Corollary 9 improve
the corresponding results obtained by Owa and Nunokawa [9] for p=1 and
0<A<1.

Finallay, we prove

THEOREM 5. If f € A(p) satisfies

(2.21) Re{ f;’)_(j)} >a (a< ﬁ, z € E),
then
F(J)( ) P!
(2.22) Re { gy }> [a-l-{m—a}(.?p—l)} (z € E),
where 0 < j <p, p=F(1,1 n+p+1;%—)/2 and Fy, 1s given by
(2.23) Fo(z) = “z“’ §t"-1 f(H)dt (neN).
0

The estimate in (2.22) is best possible in the sense that the bound cannot be
improved.

Proof. On differentiating F.,, we obtain
224)  2FIM(2)+ (n+)FP(2) = (n+p)fP(2), 0<j<p.
Consider the function p defined in E by

(2.25) o) = <p ) ()

2p—J
Then q is analytic in E with ¢(0) = 1. Again, differentiating the expression
in (2.25) and using (2.24) in the resulting equation, we get
F9(2) p! 2q (2)
©) _ P g+ 2L
2= (p—j)! n+p
Now, using the hypothesis (2.21) in the above expression, we get
2q (2) } (p—j)a
z)+ > z€E
re{aa)+ 2L > 222 (ze)
which in view of Lemma 2 implies that

Re{F'(Lj)_(fz)}>[a+{ P —a}(Zp—l)] (z € E),

2P=3 (p—3)

where 0 < j <p pis given by
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1 -1
p=\ (1 + tT> dt

0
and (n+p+1)/(n+p+ 2) < p < 1. By using the same technique as in
Theorem 1, it is easily seen that p = F(1,1,n+p+1; %)/2 This proves the
assertion (2.22).

The estimate in (2.22) is best possible as the bound in Lemma 2 is so.

COROLLARY 10. If f € A(p) satisfies

f9(z) p!(1 - 2p)
ZP~ (p—35)2(1-p)
where 0 < j<pand p=F(l,1;n+p+1, %)/2, then
FP(2)
Re{—zﬁ—} >0 (neN; zekE).
The result is best possible.

Re{ (z € E),

Setting n = p = j = 1 in Corollary 10 and using fact that F(1,1;3;3) =
4(1 — In2), we derive the following result.

COROLLARY 11. If f € A(p) satisfies the condition

' 4(1n 2) -3
Re{f (Z)} > m ~ —0.29439 (Z € E),
then Re{F,(z)} > 0 and hence univalent in E, where F} is given by
2 z
R = 2 f)at
%9

REMARK. We note that the above result improves an earlier known result
l; 1 ’
Re{f (2)} > ~31 implies Re{F,(z)} >0 (z€E) [4].
Further, it is of special interest as it gives an example of non-univalent
function whose Libera transform is univalent.

Acknowledgements. The authors are thankful to the referee for helpful
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