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D I F F E R E N C E B E T W E E N W E I G H T E D I N T E G R A L M E A N S 

Abstrac t . Weighted integral means over [c, d] and [a, 6] where [c, d] C [a, 6] are com-
pared in the current work by determining bounds for their difference in terms of a variety 
of norms. The bounds are obtained and involve the behaviour of at most the first deriva-
tive. Previous work for unweighted integral means is recaptured as particular cases if the 
weights are taken to be unity. 

By a limiting shrinking of the subinterval [c, d] to a single point, weighted Ostrowski 
type inequalities are shown to be recaptured, under certain conditions as particular in-
stances of the current development. 

1. Introduction 
Let the difference between two integral means D (/; a, c, d, b) be defined 

by 

(1.1) D(f;a,c,d,b) :=Wl(f-,a,b) -Wl(f;c,d), a<c<d<b 

where 

(1.2) W ( / ; a, b) : = - L _ J f (t) dt =: 
o — a J b — a a 

Barnett et al. [2] proved the following theorem demonstrating a number of 
applications such as in probability theory, information theory and special 
means. 

THEOREM 1. Let f : [A, 6] —> R be an absolutely continuous mapping with 
the property that f G L00 [a, 6], i.e., 

H/'ll^ : = e s s sup |/'(t)| < o o . 
t£[a,6] 

Then for a < c < d < b, we have the inequality 
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inequality. 
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(1.3) \D(f-a,c,d,b)\ 
a+b _ c+d, 

2 2 

(b — a) — (d — C) 

< _ [ ( ò _ a ) _ ( d _ c ) ] 

[ (ò -a ) - (d-c ) ]||/ '|| c 

where D (/; a, c, d, b) is as defined by (1.1). 
The constant | is best possible in the first inequality and \ is best in the 

second inequality. 

Cerone and Dragomir [3] proved a number of results for bounds on (1.1) 
assuming various characteristics on the function /. They proved the follow-
ing three theorems. 

THEOREM 2. Let f : [a, b] —• R be an absolutely continuous mapping. Then 
for a < c < d < b the inequalities 

(1.4) \D(f-,a,c,d,b)\ 

< 

b — a 

(<? + !)< 
1 + 

f e Lp[a,b], l<p<oo, i + J = l; 

ll/'l 
[l/ + X + \u-X\}^, f e Li [a, 6], 

hold where (b — a) v = c — a, (b — a) p = d — c, (b — a) X = b — d. 

The following theorem assumes that / is Holder continuous. 

THEOREM 3. Assume that the mapping f : [A, b] —> R is of r — H—Holder 
type. That is, f satisfies 

(1.5) |/( i ) -/(a)|<f l "|i -a| r for all t,s e[a,b], 

where r € (0,1] and H > 0 are given. 
Then for a < c < d < b, we have the inequality 

(1.6) |L>(/;a)C>d,&)| < 
r+l (c - a) + (Ò - d) 

[(b-a)-(d-c)] (r + l ) 
•H. 

The inequality (1.6) is best in the sense that we cannot put on the right hand 
side a constant K less than 1. 

The following result holds for / of bounded variation on [a, 6]. 

THEOREM 4. Let f : [A, 6] 
ing bounds hold 

be of bounded variation on [a, b]. The follow-
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(1.7) )D(f;a,c,d,b)\ 

~b — a — (d — c) 

< 

+ c + d a + b 

(c - a)2 + (6 - d)2 

2 [(6 -a)-(d- c)] 
a 

L, 

yba(f) 

b — a ' 

for f L-Lipschitzian; 

b — a) \b — a 
c + d- (a+ b) + 

b — a 

m 

f{so); for f monotonic 

nondecreasing, 

where so = (b-aj-(d-c) an<^ Va ( / ) *s the total variation of f over [a, b}. 

The main focus of the current work is to obtain bounds for the differ-
ence of weighted integral means. Let p (x) and q (x) be two positive weight 
functions on [a, b] and [c, d] respectively with [c,d] C [a, b}. Further, let 
0 < P (b) — fap (x) dx < oo and 0 < Q (d) = ^ q (x) dx < oo, then we may 
define 

(1.8) D (p, q- / ; a, c, d, b) : = 971 (p; / ; a,b) - M {q- / ; c, d), 

where 

(1.9) M(p-f;a,b) := \aP(x)fix)dx 

P(b) ' 

Thus, specifically the current article aims at obtaining bounds on (1.8) with 
various assumptions regarding / (t) and the weight functions p (t) and q (t). 

If p (t) and q (t) are of bounded variation on [a, b] and [c, d] respectively, 
then the functional, under the more general setting, 

(1.10) 

where 

(1.11) 

A (P, Q; / ; a, c, d, b) := M (P; / ; a,b) - M (Q; / ; c, d), 

will also be investigated where consequently P (t) and Q (t) are also of 
bounded variation on [a, 6] and [c, d] respectively. 

For p (t) and q (t) continuous on their respective intervals [a, b] and [c, d] 
then (1.8) - (1.9) results from (1.10) - (1.11). Only continuity is required 
since p (t) and q (t) are positive. 

It is demonstrated that a limiting approach, under suitable continuity 
assumptions, produces an identity for the weighted Ostrowski functional 
from which bounds may be obtained. 
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2. Some analytic inequalities from identities 
Prior to obtaining bounds on (1.8) it is useful to demonstrate the validity 

of an identity involving the kernel K : [a, b] —> R defined by 

(P(t) 

(2.1) Kit) := 

P(b)> 

P(t) Q(t) 
P(b) Q(dY 
P(t) 
P(b) - 1 , 

a <t < c; 

c<t <d\ 

d <t <b, 

where the weight functions p : [a, 6] —* M+ and q : [c, d] —+ R+ are such 
that 0 < P{b) = \b

ap(t)dt < oo and 0 < Q (d) = \d
cq{t)dt < oo with 

[c,d] c [a, 6], 

Lemma 1. Let / : [a, £>] R be of bounded variation on [a, 6]. Further, let 
p : [a, 6] —> R+ and q : [c, d\ —> R+, [c, d] C [a, 6] be positive weight functions 
of bounded variation and P{t) = \t

ap(x)dx, Q(t) = fcq{x)dx, t E [a,6] 
and t 6 [c, d] respectively. Then, 

b 
(2.2) ~\K(t) df (t) = A (P, Q- / ; a, c, d, b), 

a 
where K(t) is the kernel function as defined by (2.1) and A (P, Q; / ; a, c, d, b) 
by (1.10). 

P r o o f . We start with 

and using integration by parts of the Riemann-Stieltjes integrals, we get 

U (t) df (t) = ^ f - ^ j / (t) dP (t) 

p(t) Q(t)\f..jd _ \ f . . ( d m _ dQ(t)\ + 
P(b) Q(d), 

+ P(t) 
P(b) - 1 ) / ( * ) \f(t)dP(t). 

Now, using the fact that P (a) = Q (c) = 0 and some simple algebra, the 
identity (2.2) results. • 
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R e m a r k 1. For p (t) and q (t) continuous then dP (t) = p (t) dt and dQ (t) = 
q (t) dt and so from (2.2) the identity 

(2.3) Ü K (t) df (t) = D (p, q\ /; a, c, d, b), 

holds, where K (t) and D (p,q-, f;a,c,d,b) are as defined by (2.1) and (1.8) 
respectively. 

Further, for / (•) absolutely continuous on [a, 6] then df (t) = /' (i) dt. 

The following well known lemmas will prove useful and are stated here 
for lucidity. 

L e m m a 2. Let g,ti : [n,ii] -> R be such that g is continuous and v is of 
bounded variation on [a, 6]. Then the Riemann-Stieltjes integral ^ g (t) dv (t) 
exists and is such that 

(2.4) \g(t)dv(t) < sup \g(t)\\/(v), 
te[a,&] a 

where Va (v) ¿he total variation of v on [a, 6]. 

L e m m a 3. Let g,v : [a, b] —> R be such that g is Riemann integrable on [o, 6] 
and v is L-Lipschitzian on [a, 6]. Then 

(2.5) \g(t)dv(t) <L\\g(t)\dt 

with v is L-Lipschitzian if it satisfies 

|v(x) — t;(y)| < L\x-y\ 

for all x, y 6 [a, b]. 

L e m m a 4. Let g, v : [a, b] —* M be such that g is Riemann-integrable on [a, b] 
and v is monotonic nondecreasing on [o, b]. Then 

(2.6) \g(t)dv{t) < i \9(t)\dv(t). 

It should be noted that if v is nonincreasing then — v is nondecreasing. 

T h e o r e m 5. Let f : [a, b] —> M be of bounded variation on [a, 6]. Further, let 
the weight functions p : [a, 6] —» R+ and g : [c, d] —> R+ also be of bounded 
variation with [c, d] C [a, b]. Then the following bounds hold 
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(2.7) P(b)\A(P,Q-,f;a,c,d,b)\ 

1 f d, | 1/ \L) | UO 

f e Loo [a, b]; 

l c
a P ( t ) d t + Q ^ \ d

c \ e ( t ) \ d t 
+ \b

d(P(b)-P(t))dt\ H/'IU, 

dt 

< 

where 

(2 .8) 

+ fi(P(6) - P(t))0di]* ll/'IU, / ' € La [a, 6], a > 1, I + ± = 1; 

m a x ( c ) > o f e » P (6) - ^ (d)} ll/'lli - / ' e Li [a, 6]; 

max | P ( c ) , g^y, P (b) - P (d ) | \Jb
a ( / ' ) , / ' of bounded variation 

[raP(t)dt + ^\d
c\e(t)\dt 

+ $5 ( p (b) - p (0) / ' L-Lipschitzian, 

?aP(t)df(t) + ^ld
c\e(t)\df(t) 

+ fy (P (b) — P (t)) df (t), f is monotonic nondecreasing, 

0(t) : = Q(d) P (t) — P (b)Q (t), te(c,d), 
7 = ess sup 16 (i) | . 

te[c,d] 

Further, the Lebesgue norms ||-|| are defined in the usual way as 

b 

and 

Nla:=(!lM*)r<a)° for heLa[a,b], a > 1, ^ + ^ = 1 

:= ess sup \h (i)| for h € Loo [a, 6]. 
t£[a,6] 

P r o o f . We start by assuming that / is absolutely continuous, then from 
Remark 1 and identity (2.2) we have 

b 
A (P,Q-,f;a,c,d,b) = -\K(t) f (t)dt, 

and so 

(2.9) \A(P,Q;f;a, c, d, 6)| = K (t) f' (t) dt <\\K(t)\\f(t)\dt. 
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so that 

(2.10) 

\\K(t)\\r(t)\dt<\\K(t)\dt-\\f\ 

+ (P(b)-P(t))dt, 

where 0 (t) is as given by (2.8). 
For the second inequality in (2.7) we utilise Holder's integral inequality 

from (2.9) to give 

\K(t)f'(t)dt <{\\K(t)fdt 

f 6 La[a,b], a > 1, - + \ = 1. 
a p 

From (2.1) we have 
b 

(2.11) P13 {b)\\K {t)f dt 
a 

= i (t) dt + j \0 {t)f dt + | (P (b) - P (t)f dt 

and so the second inequality in (2.7) results. 
The third inequality in (2.7) is obtained from (2.9) for /' 6 L\ [a, 6] 

b 
\K(t)f'(t)dt <ess sup W l - H / ' ^ , 
a t€[a,6] 

where \K {t)\ is nondecreasing over [a, c] and nonincreasing over [d,b] and 
so 

(2.12) ess sup \K(t)\ = m a x i p ( c ) , 7 ^ - , P ( b ) - P ( d ) ) , 
te[o,6] { Q{d) ) 

where 7 = ess sup 10 (i)| with 8 (t) as defined in (2.8). 
t e M 

The fourth inequality follows directly from (2.4) by associating K (t) 
with g (t) and / (t) with v (t) while making use of (2.12). The fifth follows 
from (2.5) and (2.10) while making the same associations. 
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Finally, for the sixth inequality, utilising (2.6) gives 

(2.13) \ K ( t ) d f ( t ) < \ \ K ( t ) \ d f ( t ) , 

where from (2.1) 

(2.14) P (b) 51K (t)| df ( t ) = \ P ( t ) df ( t ) + ^ j \9 0 t ) \ d f (t) 

b 

+ \ ( P ( b ) - P ( t ) ) d f ( t ) , 

d 

and hence the theorem is proved. • 

REMARK 2. In (2.7) the integrals over [a, c] and [d,b] may be further de-
veloped, however, as for the integrals over [c,d], more explicit knowledge 
regarding the weight functions p (t) and q (t) is required in order to deter-
mine the location of the zeros of 6 (t). In particular, 

(2.15) 

and 

(2.16) 

\ P { t ) d t = { t - c ) P { t ) - \ ( t - c ) d f { t ) 
a J a a 

c 

= \ ( c - t ) d P ( t ) = cP (c) - v ( P ; a , c) 
a 

b 

\ ( P ( b ) - P ( t ) ) d t 

with 

(2.17) 

= ( t - d ) ( P ( b ) - P ( t ) ) + \ { t - d ) d P ( t ) 

= \ ( t - d ) d P ( t ) = v ( P ; d, b) - d ( P (Ò) - P ( d ) ) , 

d. 

V (P; d,b) = \ tdP ( t ) . 

C O R O L L A R Y 1 . Let / : [o , 6] —» R be absolutely continuous on [ a , b], then for 

a < c < d < b and p : [ a , b] —• M + continuous, with 0 < P(b) = ^ p ( i ) d t < o o 

the inequalities 

(2.18) K(p-,a,b)\D{p,p-,f;a,c,d,b)\ 

= 21 (p; a, b) | m (p; / ; a, b) - Tt (p; / ; c, d)| 
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B i l l / ' I L , / ' e i o o M ; 

/' £ La [o, f>], a> l . I + i =1; 

BooWf'h, / ' e L i M ; 

BQO Va (/') > f °f bounded variation 

B\L, f'is L-Lipschitzian 

Bm < m (a , c) / (a ) + m (d, b) / (6) 

m (a , c ) + m (d, 6) 

m (c, d ) 

hold where 

f ( c ) > /' monotonic nondecreasing 

b b 

(2 .19 ) a (p; a,b) = P {b) = \p (t) dt = m (a , 6 ) , M ( o , 6 ) = J i p ( t ) d t , 
a a 

(2 .20) <j>{t) = A(p-c,d)A(p-,a,t)-A{p;a,b)A{p;c,t), te[c,d}-, 

(2 .21 ) f f c = J P? (t) dt + - J - ^ \ \9 (t) f d t + \ [P (b) - P ( t ) f dt 

(2 .22) BX = cm (a , c) - M (a , c ) + m M + <" (*> b ) 
m (c , d) 

x [M (c, t*) — M (t*,d) + dm (t*, d) - cm (c, t*)] 

+M (d, b) - dm (d, b), with <f>{t*) = 0, 

(2 .23) BQO = m a x | m ( o , c ) , m(d, 6 ) | , 

(2 .24) = - \P (t) f (t) dt - + • \P (t) f (t) dt 

a 171 Vc'a) c 

b 

+ \ p ( t ) f ( t ) d t 

d 

and Va(h) is the total variation of h over [a, 6]. 

P r o o f . P r o m L e m m a 1 a n d T h e o r e m 5, l e t q (t) = p(t). D e f i n e a n e w k e r n e l 

f o r t h i s s p e c i f i c q ( t ) t h e n f r o m (2 .1 ) w e o b t a i n 
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(2.25) «(*) : = 

f g(p;o,<) 
a(p;o ,6) ' 

a(p;o,6) 21 (p;c,d) 
2 t ( p ; M ) - 2 l ( p ; a , ò ) 

t e [a, c], 

, t e (c, d) 

2l(p;a,6) 
, t e [d,&]. 

We also note Remark 1 as exemplified by (2.3) so that D(p, q\ / ; a, c, d, b) 
for p, q continuous satisfy the same identity as A(P, Q\ / ; a, c, d, b) for p, q of 
bounded variation. 

Now, we shall investigate the behaviour of k (t). 
We note that n(a) = n (b) = 0 and k (i) is continuous at c and d. Further, 

from (2.20), 

0 (c) = 21 (p; c, d) a (p; a, c) > 0 and 
4> (d) = 21 (p; c, d) [21 (p; a, d) - 01 (p; a, 6)] < 0 

and so there is at least one point t* € (c, d) such that </>(f*) = 0. For p(f) 
continuous 

</>'(t) = p (t) [21 (p; a, d) - «(p; a, b)} < 0 

and so there is only one point t* such that (¡> (t*) = 0 and t* € (c, d). 
It should be noted that <f>{t) in (2.20) is equivalent to 9 (t) of (2.8) 

with q(t) = p(t) and Q (d) = \^p(t)dt. We thus need to determine the 
expressions in (2.7) in an explicit form. 

We note from (2.15) and (2.16) that 

(2 .26) J P (t) dt = cP (c) - M (a, c) = cm (a, c) - M (a, c), 

(2.27) j (P (b) - P (t)) dt = M (d,b) — d • (P (b) - P (d)) 

d = M (d, b) — dm (d, b), 

where we have used (2.19). 
Further, from (2.20) and the above behaviour of 4> (t) 

(2 .28) 

and 

ess sup \<f>(t)\ = max{</>(c), —0(d)} 

= - i m - m + 10(c)+mw 
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d f d 
(2.29) \\4>(t)\dt= \<p (t) dt-\<t> (t) dt. 

c c t* 
Now, integration by parts gives 

t* t* 
\<j)(t)dt= - J (t — c) 4>' (t) dt 
c c 

t* t* 1 
- 5 tp (t) dt + c J p (i) dt [21 (p; c, d) - 21 (p; a, 6)] 

C C J 
= [cm (c, t*)-M (c, i*)] [21 (p; c, d) - 2i (p; a, 6)] 

d d 
-\(f>(t)dt= - \(t-d)<t>' (t) dt 

t* t* 

d -, 
= \ ( t - d ) p (t) di [21 (p; c, d) - 21 (p; a, 6)] 

•r 
= [M (t*,d) + dm (t*,d)\ [21 (p; c, d) - 21 (p; a, 6)]. 

Hence from (2.26) we obtain 

d 
(2.30) \\(f>{t)\dt 

261 

and 

= [M (c, t*)-M(t*,d) + dm {t*,d) - cm (c, i*)] [21 (p; c, d) - 21 (p; a, 6)] 
= [M (c, t*) — M (t*,d) + dm (t*, d) - cm (c, t*)} [m (a, c) + m (d, 6)]. 

Combining (2.26), (2.27) and (2.30) gives from the first and fifth in-
equalities of (2.7) the respective inequalities in (2.18) with B\ as given by 
(2.22). The second inequality in (2.18) is obtained from the corresponding 
inequality in (2.7) for specifically q(t) = p(t). 

Further, from (2.28) and the third and fourth inequalities in (2.7) gives 
the respective inequalities in (2.18) where B ^ is as given in (2.23) and of 
course q(t) = p (i). 

Now for the final inequality. From the last inequality in (2.7) with q (t) = 
p (t) so that 6 (t) — <f> (t) and P (b) — m (a, b), Q(d) — m (c, d) we have on 
integrating by parts 

(2.31) \P(t)df(t) = P(c)f(c)-\p(t)f(t)dt 
a a 

c 
= m (a, c) / (c) — j p (t) f (t) dt, 
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( 2 - 3 2 ) ! 1 H t ) h i f ' [ t ) = ^ h ) { ( i ) d f ( t ) -1 *(t) d f ( i ) } 
and 

b b 
(2.33) j [P (b) - P (t)} df (t) = (P (b) -P(d))f(d) + \p (t) f (t) dt 

d d 
b 

= m{d,b)f(d) + \p(t)f(t)dt. 
d 

Using the fact from (2.20) that 

(2.34) <j>' (t) = p (t) [m (c, d)-m (a, 6)] = -p ( t ) [m (a, c)+m (d, 6)] 

then 
t* t* 
j 4> (t) df (t) = -4> (c)/(c) - J <f>' ( t ) f (t) dt 
c c 

— —m (c, d) m (a, c) f (c) 
t* 

- [m (a, c) + m (d, 6)] \p{t)f (t) dt 
c 

and 
d d 

- J <f>(t)df{t) = -<t>(d)f(d)-[rn(a,c) + m(d,b)}\p(t)f(t)dt 
f t* 

-- —m (c, d) m (d, b) f (d) 
d 

- [m (a, c) + m (d, b)\ \p(t)f (t) dt. 
t* 

Thus, 

( 2 > 3 5 ) ^J){^<l,{t)dnt)~l'i>{t)df{t)} 
= - m (a, c) f (c) — m (d, b) / (d) - + m ( d , b ) J ^ 

m (c, d) J
c 

Combining (2.31), (2.32), (2.33) into the final inequality of (2.7) gives (2.24) 
upon using (2.35). The upper bound on the final inequality in (2.18) is ob-
tained on noting that for h ( t) > 0, w (a, b) = \bah (t) dt and / (t) monotonic 
nondecreasing then 

b 
-\h(t)f (t) dt < w (a, b) f (a) 
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and 
b 
\ h ( t ) f (t) dt < w (a, b) f (b). 
a 

The corollary is now completely proven. • 
REMARK 3. If we take the weight functions to be unity then earlier results 
may be recaptured as particular cases. 
REMARK 4. If we assume that there is a point x E (a, b) for which the func-
tion is continuous then we may recapture bounds for the weighted Ostrowski 
functional 
(2.36) © ( P ; / ) ( Z ) : = A 4 ( P ; / ) - / ( * ) , 
where 

\ a p ( x ) dx 

Indeed, if we assume that c = x € (a, 6), d = x + e 6 {a,b), then from (1.8) 
- (1.9), on assuming also that p(-) is continuous at x, 

< x + e p ( t ) f ( t ) d t 
M{p;f\a,b) - ¡X 

\ T p { t ) d t 
\D(j>,p;f]a,x,x + e,b)\ = 

Taking the limit as e —> 0+ gives 

l©(p;/)(z)l = Km\D(p,p-,f-,a,x,x + e,b)\. E—*0 

Moreover, from the identity (2.3) and the kernel k (t) as defined by (2.25) 
gives an identity for the weighted Ostrowski functional 

b 
(2.37) Q ( p ; f ) ( x ) = - \ K 0 ( x ) d f ( x ) , 

where 
b 
j p (t) dt • k0 (x) = 

li
ap{x)dx,t€ [o,x]; 

\b
tp{x)dx, t G (x,b). 

See the work [12] for bounds on 0 (p; f ) (x) obtained from the identity (2.37). 
If the weight p (x) is taken as unity and f (t) is absolutely continuous, 

then (2.37) may be recognised as Montgomery's identity, [4]. See also [1], 
[5]-[14]. 

3. Concluding remarks 
The current work has investigated differences between weighted inte-

gral means over the intervals [c, d] C [a, b]. One can envisage a process in 
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which access is restricted to a subinterval [c, d] so that the current work 
may prove useful in approximating the integral mean over a larger interval 
by having information over a subinterval. The work also allows for a dif-
ferent weighting envisaged as operation under changed conditions over the 
subinterval. 

This sort of problem was described in Barnett et al. [2] where the prob-
lem of determining the mean quality of a continuous stream process was 
examined in which the sampling was done over a subinterval. The current 
article may be looked upon as a similar problem where an external influence 
exemplified by the weight function is accommodated within the formula-
tion. 
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