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Pietro Cerone

DIFFERENCE BETWEEN WEIGHTED INTEGRAL MEANS

Abstract. Weighted integral means over [c, d] and [a, b] where [c,d] C [a,b] are com-
pared in the current work by determining bounds for their difference in terms of a variety
of norms. The bounds are obtained and involve the behaviour of at most the first deriva-
tive. Previous work for unweighted integral means is recaptured as particular cases if the
weights are taken to be unity.

By a limiting shrinking of the subinterval [c,d] to a single point, weighted Ostrowski
type inequalities are shown to be recaptured, under certain conditions as particular in-
stances of the current development.

1. Introduction

Let the difference between two integral means D (f;a,c,d,b) be defined
by
(1.1)  D(f;a,c,d,b):=M(f;a,b) —M(f;c,d), a<c<d<b

where

1! 2 (f;a,b)
1.2 Mm(f;a,b) = —— t)dt =: ——~=,
(12) (i) = g @@= 0%
Barnett et al. [2] proved the following theorem demonstrating a number of
applications such as in probability theory, information theory and special
means.

THEOREM 1. Let f : [a,b] — R be an absolutely continuous mapping with
the property that f' € Lo [a,b], i.e.,

£l = ess sup [f(t)] < cc.

t€la,
Then for a < ¢ < d < b, we have the inequality
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(1.3) |D(f;a,c,d,b)

1 atb _ ctd 72
< {Z+ [(b_";)_(;_c)} }[(b—a)-(d—C)] 11

<2(b—a) — ([d= ][

where D (f;a,c,d,b) is as defined by (1.1).
The constant % is best possible in the first inequality and % is best in the
second inequality.

Cerone and Dragomir [3] proved a number of results for bounds on (1.1)
assuming various characteristics on the function f. They proved the follow-
ing three theorems.

THEOREM 2. Let f : [a,b] — R be an absolutely continuous mapping. Then
for a < ¢ < d < b the inequalities

(1.4) [D(f;a,¢c,d,b)]

1

_ e
b a,1 [1+( p >]q[qu+1+/\q+1]q”f/” ,
(q+1)e b A=p ’

fleLplab], 1<p<oo, z+¢=1

IN

L v+ A+ v =2 ”leHl, f' € Lyla,b],

hold where (b—a)v=c—a, (b—a)p=d—c, (b—a)A=b—-d.
The following theorem assumes that f is Holder continuous.

THEOREM 3. Assume that the mapping f : [a,b] — R is of r — H—Hélder
type. That is, f satisfies

(15) F@ =& SHJt—s[ forall t,s€a,b),
where 7 € (0,1] and H > 0 are given.
Then for a < ¢ < d < b, we have the inequality

(C _ a)'r‘+1 + (b _ d)T+1
1.6 D(f;a,c,d,b)| < -H
(19) I NS g —@-alc+1
The inequality (1.6) is best in the sense that we cannot put on the right hand
stde a constant K less than 1.

The following result holds for f of bounded variation on [a, b].

THEOREM 4. Let f : [a,b] — R be of bounded variation on [a,b]. The follow-
ing bounds hold
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(1.7) |D(f;a,c,d,b)]
’[b_a—(d—c) c+d_a+bH Vo (f)

2 2 2 b—a’

< b—d c—a
(=5) /0~ (5=2) 1@
+ [—C—H—b___%—_t—bl)] f(s0), for f monotonic
L nondecreasing,

where sg = Z’E——C&%:Ta'g—_cj and /% (f) is the total variation of f over [a, b].

The main focus of the current work is to obtain bounds for the differ-
ence of weighted integral means. Let p(z) and ¢ (z) be two positive weight
functions on [a,b] and [c,d] respectively with [c,d] C [a,b]. Further, let
0<P(b) = p(z)dz < 0o and 0 < Q (d) = {¢¢(z)dz < oo, then we may
define

(1.8) D (p,g; f;a,¢,d,b) := M(p; f;a,b) — M(q; f¢,d),
where

e lap(a)f(z)de
(1.9) M(p; f;a,b) == IO

Thus, specifically the current article aims at obtaining bounds on (1.8) with
various assumptions regarding f (¢) and the weight functions p (¢) and ¢ (t).
If p(t) and ¢ (t) are of bounded variation on [a, b] and [c, d] respectively,
then the functional, under the more general setting,
(110) A(P)Q;f;aacad7b) =M (Paf)a’b) _M(Q;f;cvd)a
where
fs f (@) dP ()
1.11 P;fia,b) =4—T—-— "
will also be investigated where consequently P (t) and Q(t) are also of
bounded variation on [a, b] and [c, d] respectively.

For p(t) and q (t) continuous on their respective intervals [a, b] and [c, d]
then (1.8) — (1.9) results from (1.10) — (1.11). Only continuity is required
since p (t) and ¢ (t) are positive.

It is demonstrated that a limiting approach, under suitable continuity
assumptions, produces an identity for the weighted Ostrowski functional
from which bounds may be obtained.
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2. Some analytic inequalities from identities

Prior to obtaining bounds on (1.8) it is useful to demonstrate the validity
of an identity involving the kernel K : [a,b] — R defined by

(P(t) a<t<Lg

P(b)’ - =

. P(t) Q(t) . .

(2.1) K (t):={ PO Q) <t<d;
P(t)

Py b fstsh

where the weight functions p : [a,b] — Ry and ¢ : [¢,d] — R4 are such
that 0 < P(b) = Szp(t)dt < oo and 0 < Q(d) = qu(t)dt < oo with
[c,d] C [a,b].

LEMMA 1. Let f : [a,b] — R be of bounded variation on [a,b]. Further, let
p:la,b] » Ry and q: [¢,d] = Ry, [¢,d] C [a,b] be positive weight functions
of bounded variation and P (t) = {' p(z)dz, Q(t) = Siq(z) dz, t € [a,b]

and t € [c,d] respectively. Then,
b

(2.2) ~ VK @t)df (t) = A(P,Q; f;a,¢,d,b),

a
where K (t) is the kernel function as defined by (2.1) and A(P, Q; f;a,c,d,b)
by (1.10).

Proof. We start with

b _CP(t Pl Q@)
‘SK(t)df(t)—;mdf +§:(‘—_W> f(t)
b
+‘§i(}5—%— )df(t)

and using integration by parts of the Riemann-Stieltjes integrals, we get

b c c
(K@i ()= 21 ()] - 501 @aP(

P )
d d
+ (5 - o @] - )1 @) (5 -5

4

P(®) Q(d)

+(§E—g— )f(t)b—i

Now, using the fact that P(a) = Q(c) =
identity (2.2) results. =
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REMARK 1. For p () and g (t) continuous then dP (t) = p(t) dt and dQ (t) =
g (t) dt and so from (2.2) the identity

[~ o

(2.3) K (t)df (t) = D(p,q; f;a,c,d,b),

a
holds, where K (t) and D (p, q; f;a,c,d,b) are as defined by (2.1) and (1.8)
respectively.
Further, for f (-) absolutely continuous on [a, b] then df (t) = f’ (t) dt

The following well known lemmas will prove useful and are stated here
for lucidity.

LEMMA 2. Let g,v : [a,b] — R be such that g is continuous and v is of
bounded variation on [a,b]. Then the Riemann-Stieltjes integral §z g (t)dv (t)
ezists and is such that

b

g (t)dv(t)

)

(2.4) < sup |g( t)[\/

t€a,b]

where \/2 (v) is the total variation of v on [a,b].

LEMMA 3. Let g,v : [a,b] — R be such that g is Riemann integrable on [a, b]
and v is L-Lipschitzian on [a,b]. Then

b

§g(t)dv(2)

[

b
(2-5) < Lilg (1))t

with v is L-Lipschitzian if it satisfies

lv(z) —v(y)| < Llz -y
for all z,y € [a, b].
LEMMA 4. Let g,v : [a,b] — R be such that g is Riemann-integrable on [a, b]
and v is monotonic nondecreasing on [a,b]. Then

b

{9 () dv(2)

b

< {lg@)ldv(t).

a

(2.6)

It should be noted that if v is nonincreasing then —v is nondecreasing.

THEOREM 5. Let f : [a,b] — R be of bounded variation on [a,b]. Further, let
the weight functions p : [a,b] = Ry and g : [c,d] — Ry also be of bounded
variation with [c,d] C [a,b]. Then the following bounds hold
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(2.7) P(b)|A(P,Q; f;a,c,d,b)
(52 P (2) dt + ok 1216 (1)t
+55.(P (8) = P (£)) dt] ']l » f' € Loo [a, ]

(1229 0t + oy (10 ()1
+ 14PO) - POY) 1/l £ € Lalat], a>1 E+5 =1

(
max {P(c), gfy PO) = P@}f'ls, £ € Lufa,b];
(

IA

max{ ), oty P (b) — P(d)} Ve (f"), f' of bounded variation
[i2 P (t) dt + gl 5216 (1)t
+ (P -P@) dt] L f! is L-Lipschitzian,
o P (1) df (£) + oty 5216 ()] df (2)
L + §Z (P(b)—P()df (1), f’ is monotonic nondecreasing,
where
(2.8) 0(t) : =Q(AP{)-PB)Q{), te(cd),
v =ess sup |6(t)].
t€le,d)
Further, the Lebesgue norms ||-|| are defined in the usual way as
b 1
Ihll, = (§|h(t)|“dt)3 for heLgla,b], a>1, §+ % =1
and

|hllo :=ess sup |h(t)| for h € Lyla,b].
te(a,b)

Proof. We start by assuming that f is absolutely continuous, then from
Remark 1 and identity (2.2) we have

A(PaQ;f;a’c:d7b) = _SK(t)fl(t)dt,

a

and so
b

[ K@) (t)ydt

a

b

< VIK @)I|F' ()] dt.

a

(29) |A(P,Q; f;a,¢,d,b)| =
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Now, for f' € L [a,b] we have
b

b
VIE @) f ()] dt < §IK @©)]dt- |1 F],

so that
b 1 c 1 d
(2.10) E[K(t)ldt— —méP(t)dH— PO 0@ §|6(t)|dt
+5 - § b) — P (t))dt,
P ),

where 6 (t) is as given by (2.8).

For the second inequality in (2.7) we utilise Holder’s integral inequality
from (2.9) to give
b

VK (t) f (t)dt

a

< (SIK |"dt) 11,
1

1
f’ELa[a,b}, a>1’a+—ﬂ_:1

From (2.1) we have

b
(2.11) PP () (|K (1) at
a
L oo as et 8
Fa) flo@) dt+ (P () - P(t)dt
d
and so the second inequality in (2.7) results.
The third inequality in (2.7) is obtained from (2.9) for f’' € L [a,}]
b

VK@) f (t)at

a

PPyt L

<ess sup |[K(t)|-|f|l;,
te(a,b)

where |K (t)| is nondecreasing over [a,c| and nonincreasing over [d,b] and
so

_ 0 T b
(2.12) esstzmlm(tn_max{m),Q(d),P(b) P(d)},

where v = ess sup |6 (t)| with 8 (¢) as defined in (2.8).
teled]
The fourth inequality follows directly from (2.4) by associating K (t)

with g (t) and f (t) with v (¢) while making use of (2.12). The fifth follows
from (2.5) and (2.10) while making the same associations.
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Finally, for the sixth inequality, utilising (2.6) gives
b b

VK @)df ()] < JIK ()1 df (8),

a a

(2.13)

where from (2.1)

b c d
1) POIK @1 ) = POF 0+ 5|01 O

b
+{(P®) - P@)df (1),
d

and hence the theorem is proved. =

REMARK 2. In (2.7) the integrals over [a,c| and [d,b] may be further de-
veloped, however, as for the integrals over [c,d], more explicit knowledge
regarding the weight functions p(t) and ¢ (t) is required in order to deter-
mine the location of the zeros of 8 (). In particular,

~{t-ad @)

a a

(2.15) §P (t)dt=(t—c)P (t)}

a

[

= S (c=1t)dP(t) =cP(c) — v(P;a,c)
and
b
(2.16) {(P(b)—P(t)at

d
b b
= (t—d) (P (b) —P(t))]d-i-S(t—d)dP(t)
d
=§@—®u%w=wm¢w—dwwr4%@»
d
with ,
(2.17) v(P;d,b) = {tdP(t).

a
COROLLARY 1. Let f : [a,b] — R be absolutely continuous on |a,b], then for
a<c<d<band p: [a,b] >Ry continuous, with 0 < P(b)=§2p(t)dt<oo
the inequalities
(2.18) %(p;a,b) |D (p,p; f;a,¢,d, b)|
= 2 (p; a,b) | (p; f;a,b) — M (p; f c,d)|
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(Bl Moo » f' € Loo [a,b];
Bfuf'ua, fleLalob], a>1, s+ 5=1
Boo 11l f' € Li[a,b];
<< B VE(F), f' of bounded variation
B L, f'is L-Lipschitzian
By, <m(a,c) f (a) + m(d,b) f (b)
m (a,¢) +m (d,b) f (e, f' is monotonic nondecreasing
| m (c,d)
hold where
b b

(2.19) A (p;a,b) = P(b) = Sp(t) dt =m(a,b), M(a,b)={tp(t)dt,

a

(2.20) ¢(t) = A(p;c,d) A(p;a,t) — A(p;a,b) A(p;c,t), tE|c,d];

c d
(2.21) Bg={PP(t)dt+ f16( t)|f’dt+§ [P (b) — P (1)) dt

mB (c d) y

m(a,c) +m(d,b)
m{c,d)

X [M (c,t*) — M (t*,d) + dm (t*,d) — em (¢, t*)]

+M (d,b) — dm (d,b), with (t*) =0,

(2.22) By =cm(a,c) — M (a,c)+

(228) Bop=max {m(a, ), s () 0(d)+Io(}+ (@] mi(d,B) |

m(a,c) + m(d,b) ‘Si

(2.24) e d

p(t) f(t)dt -

t) f(t)dt

c

+\p(t) f

c
=i
b
d
and \/® (h) is the total variation of h over [a, b].

Proof. From Lemma 1 and Theorem 5, let ¢ (¢) = p(¢). Define a new kernel
for this specific g (¢) then from (2.1) we obtain
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( A(p;a,t)
A(pad) t€la,c,
(2.25) k() = ig il ti Q‘((pf’fcc’;)), € (¢,d)
2A(p;a,t) — A(p;a,b)
\ A (7 a.D) , t€[d,b].

We also note Remark 1 as exemplified by (2.3) so that D(p, ¢; f;a,c,d,b)
for p, ¢ continuous satisfy the same identity as A(P, Q; f; a,c,d,b) for p,q of
bounded variation.

Now, we shall investigate the behaviour of « (¢).

We note that  (a) = « (b) = 0 and  (¢) is continuous at ¢ and d. Further,
from (2.20),

¢ (c) =2A(p;c,d)A(p;a,c) >0 and
¢ (d) = A(p;c,d) [A(p;a,d) — A(p;a,b)] <0

and so there is at least one point t* € (¢, d) such that ¢ (¢*) = 0. For p(¢)
continuous

¢' (t) =p(t) [ (p;s,d) ~ A(p;a,b)] <0
and so there is only one point ¢t* such that ¢ (¢*) = 0 and t* € (¢,d).

It should be noted that ¢(t) in (2.20) is equivalent to 6 (t) of (2.8)

with ¢(t) = p(t) and Q(d) = Sgp(t) dt. We thus need to determine the
expressions in (2.7) in an explicit form.

We note from (2.15) and (2.16) that

(2.26) SP (t)dt = cP(c) — M (a,c) = cm(a,c) — M (a,c),

(2.27) §(P (b) ~ P(8))dt = M (d,b) —d- (P (b) - P (d))
‘ — M(d,b) — dm (d,b),

where we have used (2.19).
Further, from (2.20) and the above behaviour of ¢ (t)

(228)  esssuplg(t)] = max{(c), ~4(d)}
= 216(0) ~ 8(d) + 16(c) + (@)

and
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d t* d
(2.29) flo@ldt= (o t)dt— | ¢ (t)dt.

Now, integration by parts gives

foyat=-{(t—c)¢'(t)dt
= [~ T+ §p(0)de| @ wic,d) - 2 010,
= [em (¢, t") = M (c, t")] [% (p; ¢, d) — A(p; @, b)]
and
d d
—{odt=—1{(t—d)¢ (t)at

d
= [g (t—d)p(t)dt] [% (p; ¢,d) — 2 (p; a,b)]

= [M (¢*,d) + dm (t*,d)] [A (p; ¢, d) — A(p; a,b)].-
Hence from (2.26) we obtain
d

(230)  flp(®)ds

=[M (c,t*) — M (t*,d) + dm (t*,d) — ecm (c, t")] [A (p; ¢, d) — A (p; a, b))
=[M(c,t") = M (t*,d) + dm (t*,d) — em (c,t*)] [m (a,¢) + m (d,))].

Combining (2.26), (2.27) and (2.30) gives from the first and fifth in-
equalities of (2.7) the respective inequalities in (2.18) with B; as given by
(2.22). The second inequality in (2.18) is obtained from the corresponding
inequality in (2.7) for specifically ¢ (t) = p (t).

Further, from (2.28) and the third and fourth inequalities in (2.7) gives
the respective inequalities in (2.18) where By, is as given in (2.23) and of
course ¢ (t) = p(t).

Now for the final inequality. From the last inequality in (2.7) with ¢ (t) =
p(t) so that 8(t) = ¢ (t) and P (b) = m(a,b), Q (d) = m(c,d) we have on
integrating by parts

[+ c
(2.31) §P@)df(t)=P(c) o)~ Tp(t) f(t)at
a a
[

=m(a,¢) £ (c) - {p(t) F(t)at

a
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t* d

e LT o = Ts0a0-jewo)
m(c,d) , m(c,d) | -

and

b b
(233) {[P() - P14 (1) = (P(b)~ P(d) f (@) +p(0) f (1)t
d d
b
=m(d,b) f (d) +|p(t) f (©) .
d

Using the fact from (2.20) that
(2.34) ¢l (t) =P (t) [m (c,d) —m (a" b)] =P (t) [m (a, C) +m (d’ b)]
then

Jo@®)df () =—¢(c)f(c) - (' (t)F(t)dt

c C

= —m(c,d)m(a,c) f (c)
"

—[m(a,c) +m(d,b)] { p(t) f (t) dt

c

and
—§¢>(t>df = ~9(@) 1 @~ Im(a,6) + m (@] | (07 )
= —m(c.d)m(db) f (4 t
(o) +m @] [ () (e
Thus, t
1 (¥ ¢
23) gl POT O - fs0a 0]

_ m (a,¢) +m(db) {

=-m(a,c) f (c) —m(d,b) f (d) m(e.d) §p(t) £ (t)dt.
Combining (2.31), (2.32), (2.33) into the final inequality of (2.7) gives (2.24)
upon using (2.35). The upper bound on the final inequality in (2.18) is ob-
tained on noting that for h (t) > 0, w(a,b) = Sg h (t)dt and f (t) monotonic
nondecreasing then

b

~Jh(t) £ (1) dt < w(a,b) £ (a)

a
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and
b

VR(t) f(t)dt < w(a,b) f(b).

a

The corollary is now completely proven. m

REMARK 3. If we take the weight functions to be unity then earlier results
may be recaptured as particular cases.

REMARK 4. If we assume that there is a point z € (a, b) for which the func-
tion is continuous then we may recapture bounds for the weighted Ostrowski
functional

(2.36) O (p; f) (z) == M(p; f) - f (2),
where

op(z) f(z)do
M (p; L
(p; f) = P (2)do

Indeed, if we assume that c =z € (a,b), d =z +¢€ € (a,b), then from (1.8)
- (1.9), on assuming also that p(-) is continuous at z,

o p(t)f(t)dt
Sz+5 (t)dt

|D(p,P§f§a,ma$+5,b)| = M(paf)a’b)_
Taking the limit as ¢ — 0+ gives
10 (#; f) (@)| = lim |D (p, p; f; 0,2,z + ¢, )|

Moreover, from the identity (2.3) and the kernel « (t) as defined by (2.25)
gives an identity for the weighted Ostrowski functional

b
(2.37) O (p; f) (z) = — | ro (z) df (),
where
b Sflp(:t:)da:,te [a,z];
[p(t)dt - ko (2) =
¢ Pp(z)dz, t € (z,b).

See the work [12] for bounds on © (p; f) (z) obtained from the identity (2.37).

If the weight p(z) is taken as unity and f () is absolutely continuous,
then (2.37) may be recognised as Montgomery’s identity, [4]. See also [1],
5}-[14].

3. Concluding remarks

The current work has investigated differences between weighted inte-
gral means over the intervals [c,d] C [a,b]. One can envisage a process in
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which access is restricted to a subinterval [c,d] so that the current work
may prove useful in approximating the integral mean over a larger interval
by having information over a subinterval. The work also allows for a dif-
ferent weighting envisaged as operation under changed conditions over the
subinterval.

This sort of problem was described in Barnett et al. [2] where the prob-
lem of determining the mean quality of a continuous stream process was
examined in which the sampling was done over a subinterval. The current
article may be looked upon as a similar problem where an external influence
exemplified by the weight function is accommodated within the formula-
tion.
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