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ON CERTAIN INTEGRAL INEQUALITIES 
AND THEIR DISCRETE ANALOGUES 

Abstract . In the present paper we establish new integral inequalities in two variables 
and their discrete analogues which provide explicit bounds on unknown functions. The 
inequalities given here can be used as tools in the study of certain differential, integral 
and difference equations. 

1. Introduction 
The fundamental role played by the integral and finite difference in-

equalities in the development of the theory of differential, integral and finite 
difference equations is well known. During the past few years some new inte-
gral and finite difference inequalities have been developed, which provide a 
natural and effective means for further development of these equations, see 
[1, 3-6] and the references given therein. In the qualitative analysis of cer-
tain classes of differential, integral and finite difference equations the bounds 
provided by the existing literature are inadequate and it is necessary to seek 
some new inequalities in order to achieve a diversity of desired goals. In this 
paper we offer some basic integral inequalities involving functions of two 
independent variables and their discrete analogues which can be used more 
conveniently in certain new applications for which the inequalities given 
earlier do not apply directly. 

2. Main results 
In what follows, R denotes the set of real numbers and R+ = [0,oo), 

No = { 0 , 1 , 2 , . . . } be subsets of R. We use the usual conventions that empty 
sums and products are taken to be 0 and 1 respectively. We assume that 
all the functions which appear in the inequalities are real valued and all the 

1991 Mathematics Subject Classification: 26D10, 26D15. 
Key words and phrases: integral inequalities, discrete analogous, two variables, explicit 

bounds, integral and difference equations, nondecreasing, nonincreasing. 



244 B. G. Pachpatte 

integrals, sums and products involved exist on the respective domains of 
their definitions. 

An interesting and useful integral inequality is established in the follow-
ing theorem. 

THEOREM 1. Let u(x,y), a(x,y), b(x,y), c(x,y) be nonnegative continuous 
functions defined for x, y 6 R+ and p > 1 be a real constant. If 

X oo 

(2.1) up(x, y) < a(x, y) + b(x, y) ^ j c(s, t)u(s, t)dtds, 
o y 

for x,y 6 R+, then 
r / x o ° hi, M V P 

(2.2) u{x,y)< ( x °° b(s t) 
I \ c(s,t)—-—dtds 
0 y  P  

for x, y 6 i?+, where 

(2.3) A(x, y) = \ T c(s, t) + \ d t d S j 

a V P v j 

for x,y e R+. 

P r o o f . Define a function z(x,y) by 
X oo 

(2.4) z(x, y) — J j c(s,t)u(s,t)dtds, 
o y 

then (2.1) can be restated as 

(2.5) up(x, y) < a(x, y) + b(x, y)z{x, y). 

From (2.5) and using the elementary inequality (see, [2, p. 30]) 

¿/P0V* < ^ + ft, a . 

P Q 

< 
P P P 

Prom (2.4) and (2.6) we have 

(2.7) z(x,y) < j jc(Sji)(^=i + + bAfAzMytds 

= A(x,y) + \ \ c(s,t)^1^-z(s,t)dtds, 
j j n 

where a > 0, /3 > 0 and 1/p + 1/q = 1 with p > 1, we observe that 

(2.6) u(x, y) < [a(x, y) + b(x, y)z(x, y)]1/p{l]p~1/p 

P ^ + ± 1 y ) + H x 1 y ) z { X i y ) 

0 V p 
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where A(x,y) is defined by (2.3). Clearly A(x,y) is nonnegative continuous, 
nondecreasing in x and nonincreasing in y for x, y G R+. First we assume 
that A(x,y) > 0 for x, y € R+. From (2.7) it is easy to observe that 

(2.8) < 1 + H c ( S ) i ) ^ M i M d i d s . 
V ' A(x,y) ~ l y J p A(s,t) 

Define a function v(x,y) by the right hand side of (2.8). Then v(x,y) > 0, 
¿fay) < v(x,y), v{x,y) is nonincreasing in y for y € R+ and 

(2.9) vx(x,y) = ] c ( x , t ) ^ ^ - d t 
P A(x,t) 

< \ c(x,t)b(X,tK(x,t)dt < v(x,y) \ c(x,t)b^X'^dt. J -n J r> 

y 
oo 

P y y 
Treating y fixed in (2.9), dividing both sides of (2.9) by v(x,y), setting x = s 
and integrating the resulting inequality from 0 to x, x 6 R+, we get 

(2.10) v(x,y) < exp ^ J 

Using (2.10) in ^ ^ < v(x,y) we have 

(2.11) z(x, y) < A(x, y) exp ^ j \ c(s, t)^^-dtds\. 
Vo y p ' 

If A(x, y) is nonnegative in (2.7), then we carry out the above procedure with 
A(x,y) + e instead of A(x, y), where e > 0 is an arbitrary small constant, 
and subsequently pass to the limit with e —> 0 to obtain (2.11). The desired 
inequality in (2.2) follows from (2.5) and (2.11). 

We next establish the following integral inequality which can be used in 
certain situations. 

THEOREM 2. Let u(x,y), a(x,y), b(x,y) be nonnegative functions defined 
and continuous for x,y G F : i?^. —» be a continuous function which 
satisfies the condition 

0 < F(x, y, u) - F(x, y, v) < G(x, y, v)(u - v), 

for u > v > 0, where G : R+ —> R+ is a continuous function and p > 1 be a 
real constant. If 

X oo 

(2.12) up(x, y) < a(x, y) + b(x, y) \ \ F(s, t, u(s, t))dtds, 
0 y 
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for x,y 6 R+ then 

(2 .13) u(x,y) < a(x, y) + b(x, y)A(x, y) exp 
/IOO 

[\\G(s,t, 
V 0 y 

p + 1 | g(s,t) 
p p 

x ^ M d t d s 

l/p 

for x,y 6 R+, where 
X O ° — 1 / 4) 

(2 .14) A(x, Y) = 5 5 F(s, t, V—- + ^H)dtds, 
0 y P P 

for x, y € 
P r o o f . Define a function z(x,y) by 

X oo 

(2 .15) z(x, y) = J J F(s,t,u(s,t))dtds. 
0 y 

Then as in the proof of Theorem 1, from (2 .12) we see that the inequalities 
(2.5) and (2 .6) hold. From (2 .15) , (2 .6) and the conditions on F, it follows 
that 

p— 1 a(s,t) b(s,t) 
(2 .16) z(x,y)<\\ 

0 y 
F[s,tt- + 

P P 
+ 

P 
-z(s,t) 

. f L E z I + i M V J j E i i ^ 
v p p J \ p p 

< A(x, y) + ] ] G(s, + s ( s > t)dtdSi 

dtds 

0 y p p p 

where A(x,y) is defined by (2 .14) . The rest of the proof can be completed 
by closely looking at the proof of Theorem 1 given above. Here we omit the 
further details. 

3. Discrete analogues 
In this section we establish the discrete versions of Theorems 1 and 

2 which can be used in the study of certain partial finite difference and 
sum-difference equations. 
THEOREM 3. Let u(m, n), a(m,n), b(m,n), c(m,n) be nonnegative functions 
defined for m, n G Nq and p > 1 be a real constant. If 

m—1 oo 
(3.1) up(m,n) < a(m,n) + b(m,n) ^ ^ c(s,t)u(s,t), 

s=0t=n+l 
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for m,n S No, then 

(3.2) u(m,n) < 

TO— 1 r oo 
a{m,n)+b{m,n)e(rn,n) J J 1 + ^ ^ c(s,t) 

i =0 L t=n+l P 

1/p 

/or m,n £ NQ, where 

(3.3) e(m, n) = £ £ c(S, t) + ^ M ) , 

/or m,n € AT0. 

P r o o f . Define a function z(m,n) by 

m—1 oo 
(3.4) z ( m , n ) = ] T c(s,t)u(s,t). 

s = 0 t = 71+l 

Then (3.1) can be written as 

(3.5) up(m, n) < a(m, n) + b(m, n)z(m,n). 

Prom (3.5) as in the proof of theorem 1, we get 

(3.6) 
p - 1 a(m,n) b{m,n) 

u{m,n) < 1—1 H—- -z(m,n). 
P P P 

From (3.4) and (3.6) we have 

m—1 oo 
(3.7) « K » ) < £ £ <> fë1 + ^ + ^ ( ' • 1 

é i . Î S i V f V V V 

m—* °° 6fs i ) 
= e ( m , r a ) + ^ ^ c(s, i ) —z ( s , i ) , 

s=0t=n+1 ^ 

where e(m,n) is defined by (3.3). Clearly e(m,n) is nonnegative, nonde-
creasing in m and nonincreasing in n for m,n G N0. First we assume that 
e(m,n) > 0 for m,n e NQ. From (3.7) we observe that 

î ( n , f l ) < i + x ; f ; c ( s , t ) ^ a ' t ) z M 

s=0i=n+l e(m, n) 

Define a function v(m,n) by 

P e(s,t)' 

TO—1 OO 

(3.8) 
s=0 i=n+l P 
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(3.9) [v(m + 1, n) — v(m, n)] — [v(m + 1, n + 1) — v(m, n + 1)] 
b(m, n + 1) z(m, n + 1) 

= c(m, n + 1)-
p e(m,n +1) 

^ , ^.b(m,n +1) , 
< c(m,n + 1) v(m,n+ 1). 

P 

From (3.9) and using the facts that v(m,n) > 0, v(m,n + 1) < v(m,n) for 
m, n 6 NQ, we observe that 

[v[m + 1, n) — v(m, n)] [v(m + 1, n + 1) — v(m, n + 1)] 
(3.10) 

v(m, n) v(m,n + 1) 

, b(m, n + 1) 
< c(m,n + 1)—— -. 

Keeping m fixed in (3.10), set n — t and sum over i = n ,n + l , . . . , r — l 
(r > n + 1 is arbitrary in NQ) to obtain 

[v(m + 1, n) — v(m, n)] [v(m + 1, r) — v(m, r)] 
(3.11) 

v(m,n) v(m,r) 

< 
t=n+1 

Noting that limr_oo v(m+1, r) = lim,—^ v(m, r) = 1 and by letting r —» oo 
in (3.11) we get 

[v(m + 1, n) — v(m, n)] ^ ^ ^ b(m,t) 

v(m, n) 
< c(m,t)-

t=n+1 

i.e. 

(3.12) v(m + 1,n) < [1 + c(m,t)^^-]v(rn,n). 
P t=n+1 

Now by keeping n fixed in (3.12), setting m — s and substituting s — 
0 , 1 , 2 , . . . ,m — 1, successively and using the fact that v(o, n) = 1, we get 

m—1 r oo 
(3.13) v(m,n) < JI 1+ C M 

b(s,t) 

s=0 t = n + l P 

Using (3.13) in < v{m,n) we have 

m—1 r 
z(m,n) < e(m,n) J J 1+ ^ c(s,t) 

b(s,t) 

P 
(3.14) 

s=0 L t=n+1 

The required inequality in (3.2) follows from (3.5) and (3.14). If e(m,n) is 
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nonnegative, then we carry out the above procedure with e(m, n) + e instead 
of e(m, n), where e > 0 is an arbitrary small constant, and subsequently pass 
to the limit with e —> 0 to obtain (3.2). 

T H E O R E M 4. Let u(m,n), a(m,n), b(m,n) be a nonnegative functions de-
fined for m, n E No, L : x R+ R+ be a function which satisfies the 
condition 

0 < L(m, n, u) — L(m, n, v) < K(m, n, v)(u — v), 
for u > v > 0, where K(m, n, v) is a nonnegative function defined for m,n G 
No, v 6 R+ and let p > 1 be a real constant. If 

m— 1 oo 
(3.15) up(m,n) < a(m,n) + b(m,n) ^^ ^^ L(s,t,u(s,t)), 

s=0t=n+l 

for m,n E No, then 

(3.16) u(m,n) < [a(m,n) 

i , w ^ T T 1 ^ ST- „f P-1 a ( 5 , i ) \ 6 ( S , i ) l 1 / P 

s = 0 L t = n + 1 ^ P V J V . 

for m,n € AT0, where 

(3.17) „ ) - £ £ £ ( . l t , E z l + 2 M ) , 
s=0 t=n+l ^ ^ y / 

for m,n E No-
The proof of this theorem follows by closely looking at the proofs of the 

above theorems. Here we omit the details. 

4. An application 
In this section, we present an immediate application of Theorem 1 to 

obtain the bound on the solution of a nonlinear integral equation of the 
form 

X oo 
(4.1) up{x, y) = f(x, y) + \ \ g{x, y, s, t, u(s, t))dtds, 

0 y 

where p > 1 is a real constant, u, f : —» R, g : R5
+ —> R are continuous 

functions such that 
(4.2) \f(x,y)\<a(x,y), 
(4.3) \g(x,y,s,t,u(s,t))\ < b(x,y)c(s,t)\u{s,t)\, 
for 0 < s < x, 0 < t < y, x, y € R+, where a, b, c are as defined in Theorem 
1. Let u(x, y) be a solution of (4.1) for x, y € R+. From (4.1)-(4.3) it follows 
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that 
X oo 

(4.4) \u{x,y)\p <a(x,y) + b{x,y)\ \ c{s,t)\u(s,t)\dtds. Is. 
0 y 

Now a suitable application of Theorem 1 to (4.4) yields 
o y 

(4.5) |u (x ,y) |< a(x,y)+ b(x,y)A(x,y)exp 

where A(x,y) is defined by (2.3). The right-hand side of (4.5) gives the 
bound on the solution of (4.1) in terms of the known functions. 

Finally, we note that the bounds obtained in Theorems 1-4 are indepen-
dent of the unknown functions and will have many possible applications to 
boundedness, uniqueness, continuous dependence and other properties of the 
solutions of certain classes of partial differential and finite difference equa-
tions. However, various applications of these inequalities will be reported 
elsewhere. 
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