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ON CERTAIN INTEGRAL INEQUALITIES
AND THEIR DISCRETE ANALOGUES

Abstract. In the present paper we establish new integral inequalities in two variables
and their discrete analogues which provide explicit bounds on unknown functions. The
inequalities given here can be used as tools in the study of certain differential, integral
and difference equations.

1. Introduction

The fundamental role played by the integral and finite difference in-
equalities in the development of the theory of differential, integral and finite
difference equations is well known. During the past few years some new inte-
gral and finite difference inequalities have been developed, which provide a
natural and effective means for further development of these equations, see
[1, 3-6] and the references given therein. In the qualitative analysis of cer-
tain classes of differential, integral and finite difference equations the bounds
provided by the existing literature are inadequate and it is necessary to seek
some new inequalities in order to achieve a diversity of desired goals. In this
paper we offer some basic integral inequalities involving functions of two
independent variables and their discrete analogues which can be used more
conveniently in certain new applications for which the inequalities given
earlier do not apply directly.

2. Main results

In what follows, R denotes the set of real numbers and Ry = [0, 0),
No ={0,1,2,...} be subsets of R. We use the usual conventions that empty
sums and products are taken to be 0 and 1 respectively. We assume that
all the functions which appear in the inequalities are real valued and all the
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integrals, sums and products involved exist on the respective domains of
their definitions.

An interesting and useful integral inequality is established in the follow-
ing theorem.

THEOREM 1. Let u(z,y), a(z,y), b(z,y), c(z,y) be nonnegative continuous
functions defined for z,y € Ry and p > 1 be a real constant. If

T oo

(2.1) vP(z,y) < a(z,y) + b(:c,y)s S (s, t)u(s, t)dtds,
0y

for z,y € Ry, then
z 1/p
(22) u(m,ws[a(m,y>+b(z,y)A<z,y>exp(§s( 0" aas)]

for z,y € Ry, where

T ets (Pt 1 25D s
(2.3) A(x,y)—gé (,t)< - + - )dtd,

forz,y e Ry.

Proof. Define a function z(z,y) by

(2.4) z(z,y) = S S c(s,t)u(s,t)dtds,
0y

then (2.1) can be restated as

(2.5) uP(z,y) < a(z,y) + bz, y)z(z,y).
From (2.5) and using the elementary inequality (see, [2, p. 30])

1/17’31/11 <& + é

P q
where & > 0, 3> 0 and 1/p+1/¢ =1 with p > 1, we observe that
(2.6) u(z,y) < la(z, y) + b(z, y) z(z, y)] /P [1P P
S p— 1 + a(z,y) + b(way)z(m’y).
p p P

From (2.4) and (2.6) we have

(2.7) 2(z,y) < S S c(s, t) (p; ! + a(s,?) + b(;’ D z(s,t))dtds

p

= A(z,y) + S S c(s,t)b—(';—t)z(s,t)dtds,

0y
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where A(z,y) is defined by (2.3). Clearly A(z,y) is nonnegative continuous,
nondecreasing in z and nonincreasing in y for z,y € R4. First we assume
that A(z,y) > 0 for z,y € R,. From (2.7) it is easy to observe that

(2.8) Z((ZZ)) 51+(§)§c(s,t)b(s 4 2 (( ))dtd

Define a function v(z,y) by the right hand side of (2.8). Then v(z,y) > 0,
%%i—’% < wv(z,y), v(z,y) is nonincreasing in y for y € R, and

(2.9) v(z,y) = S ez, t)—= bz,t) 2 A((Z ?)dt
< J oo, 5 0 < () )"

Treating y fixed in (2.9), dividing both sides of (2.9) by v(z,y), settingz = s
and integrating the resulting inequality from 0 to z, z € R, we get

e b(s,t
(2.10) v(z,y) < exp <§ S c(s,t)%)dtds)

0y

Using (2.10) in i-((ﬂ’l) < v(z,y) we have

T OO0
(2.11) z(z,y) < A(z,y) exp (S S c(s,t)?(—;ﬁdtds)

0y
If A(z,y) is nonnegative in (2.7), then we carry out the above procedure with
A(z,y) + € instead of A(z,y), where € > 0 is an arbitrary small constant,
and subsequently pass to the limit with € — 0 to obtain (2.11). The desired
inequality in (2.2) follows from (2.5) and (2.11).

We next establish the following integral inequality which can be used in

certain situations.

THEOREM 2. Let u(z,y), a(z,y), b(z,y) be nonnegative functions defined
and continuous forxz,y € Ry, F: R3+ — R, be a continuous function which
satisfies the condition

0 S F(z,yau) - F(IL‘,y,’U) < G(z,y,v)(u— ’U),

foru>v >0, where G : Ri — R4 is a continuous function and p > 1 be a
real constant. If
(2.12) uP(z,y) < a(z,y) + b(w,y)s S F(s,t,u(s,t))dtds,

0y
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for z,y € R, then

(2.13) u(z,y) < [ (z,y) + b(z,y)A(z,y) exp (S S G(s,t,—— p+1 i‘;’t_))x
Oy
1/p
ML )] :
Yy
for z,y € Ry, where
(2.14) Az,y) =\ F(s,t,g—_—l + M)dtds,
o p P
forz,y € R,.
Proof. Define a function z(z,y) by
(2.15) z(z,y) = S S F(s,t,u(s,t))dtds.
0y

Then as in the proof of Theorem 1, from (2.12) we see that the inequalities
(2.5) and (2.6) hold. From (2.15), (2.6) and the conditions on F, it follows
that

(2.16) 2(z,y) < Soo [ (s,t, UL b(s’t)z(s,t)>

§, T r
F(s,t,%+a(s t))+F( ¢ p—;—+a(s t))]dtds

p p
a(s,t)
p

S :B y) +S S G(S,t, P- 1 -+ ) Z(S,t)dtds,
0y p

b(s, 1)
p
where A(z,y) is defined by (2.14). The rest of the proof can be completed

by closely looking at the proof of Theorem 1 given above. Here we omit the
further details.

3. Discrete analogues

In this section we establish the discrete versions of Theorems 1 and
2 which can be used in the study of certain partial finite difference and
sum-difference equations.

THEOREM 3. Let u(m,n), a(m,n), b(m,n), c(m,n) be nonnegative functions
defined for m,n € Ny and p > 1 be a real constant. If

m—1 oo

(3.1) wP(m,n) < a(m,n) +b(m,n) Y D c(s,t)u(s,t),

s=0 t=n+1
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for m,n € Ny, then

(3.2) u(m,n) < [a(m,n)+b(m,n)e(m,n)§l [1+ti C(s’t)MHw’

for m,n € Ny, where

—

m—

(3.3) emn) =3 Y cst) (% - ﬁ(;—t))

s=0 t=n+1
for m,n € Ng.

Proof. Define a function z(m,n) by

(3.4) z(m,n) = Z Z c(s, t)u(s,t).

5=0 t=n+1

Then (3.1) can be written as
(3.5) wP(m,n) < a(m,n) + b(m,n)z(m,n).
From (3.5) as in the proof of theorem 1, we get

p—1 + a(m,n) + b(m,n)
p p p
From (3.4) and (3.6) we have

(3.7)  2(m,n) < Z‘ Z ofs t)( ML b(s’t)z<s,t)>

s=0 t=n+1 p p

= e(m,n) + Z Z ) z(s,1),

s=0 t=n+1

(3.6) u(m,n) < z(m,n).

where e(m,n) is defined by (3.3). Clearly e(m,n) is nonnegative, nonde-
creasing in m and nonincreasing in n for m,n € Ny. First we assume that
e(m,n) > 0 for m,n € Ny. From (3.7) we observe that

st s,t
+ZZ )Estg.

s=0 t=n+1

I/\

e(m n)

Define a function v(m,n) by

(3.8) vim,n) =1+ Z Z b(s t) (s, t).

s=0 t=n+1 (S t)
Then ﬁ;’:—;‘% < v(m,n) and
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(3.9) [vim+1,n) —v(m,n)] — [v(m+ 1,2+ 1) —v(m,n+ 1))
b(m,n +1) z(m,n + 1)

P e(m,n + 1)
b(m,n + 1)

=c(m,n+1)

<ce(m,n+1) v(m,n +1).

From (3.9) and using the facts that v(m,n) > 0, v(m,n + 1) < v(m,n) for
m,n € Ny, we observe that
vim+1,n)—v(m,n)] [pm+Ln+1)-v(mn+1)
v(m,n) v(m,n+ 1)

b(m,n + 1)

» :
Keeping m fixed in (3.10), set n = ¢ and sum over t =n,n+1,...,7 —1
(r > n+1is arbitrary in Np) to obtain

[v(m+1,n) —v(m,n)] [p(m+1r)—v(m,r)]
(3:11) v(m,n) v(m,r)
- (m, 1)
< c(m, t) 2.
S 2 (m,1) >

(3.10)

<c(m,n+1)

o

Noting that lim, o v(m+1, r) = lim, o v(m,7) = 1 and by letting r — oo
in (3.11) we get

[v(m +1,n) — v(m,n)] i )

v(m,n) ’

i.e.
> b(m, t
(3.12) vim+1,n) <[l+ Z c(m,t) (m, )]v(m,n).
t=n+1
Now by keeping n fixed in (3.12), setting m = s and substituting s =
0,1,2,...,m — 1, successively and using the fact that v(o,n) = 1, we get
.- (S ]
(3.13) v(m,n) < H 1+ Y (s, )=
t=n+1

Using (3.13) in glmnz—zg < v(m,n) we have

m—1 oo
(3.14) z(m,n) < e(m,n) H [1 + Z c(s,t)£p’tl].

s=0 t=n+1
The required inequality in (3.2) follows from (3.5) and (3.14). If e(m,n) is
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nonnegative, then we carry out the above procedure with e(m,n)+¢ instead
of e(m,n), where € > 0 is an arbitrary small constant, and subsequently pass
to the limit with € — 0 to obtain (3.2).

THEOREM 4. Let u(m,n), a(m,n), b(m,n) be a nonnegative functions de-
fined for m,n € Ny, L : N} x Ry — Ry be a function which satisfies the
condition

0 < L(m,n,u) — L(m,n,v) < K(m,n,v)(u — v),

foru > v >0, where K(m,n,v) is a nonnegative function defined for m,n €
Ny, v € Ry and let p > 1 be a real constant. If

m—1 oo

(3.15) uP(m,n) < a(m,n) + b(m,n) Z Z L(s,t,u(s,t)),

§=0 t=n+1
for m,n € Ny, then

(3.16) u(m,n) < [a(m,n)
+ b(m,n)e(m,n) i [1 + i K(s,t, p; ! + a(s’t)) b(s’t)] l/p,

p p

for m,n € Ny, where

m—1 oo
(3.17) €(m,n) = Z Z L<s,t,p—;l + a(s,t)),

s=0 t=n+1 p

for m,n € Ny.

The proof of this theorem follows by closely looking at the proofs of the
above theorems. Here we omit the details.

4. An application
In this section, we present an immediate application of Theorem 1 to
obtain the bound on the solution of a nonlinear integral equation of the

form
r OO

(4.1) uP(z,y) = f(z,v) +S S g(z,y, s, t,u(s,t))dtds,

where p > 1 is a real constant, u, f : Rﬁ_ - R, g: R5+ — R are continuous
functions such that

(4.2) 1f(z,9)| < a(z,y),

(4.3) lg(z,u,5,t,u(s, 1))| < b(z, y)e(s, t)]u(s, t)],
for0<s<z,0<t<y,z,y € Ry, where a, b, c are as defined in Theorem
1. Let u(z, y) be a solution of (4.1) for z,y € Ry+. From (4.1)-(4.3) it follows
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that
(4.4) [u(z, )P < a(z,y) + bz, v) | | c(s,t)]u(s, t)|dtds.
0y

Now a suitable application of Theorem 1 to (4.4) yields

T 00 1/p
(4.5) |u(z,y)| < [a(a:,y) + b(z,y) Az, y) exp (S S c(s,t)g%t—)dtds)] ,
Oy
where A(z,y) is defined by (2.3). The right-hand side of (4.5) gives the
bound on the solution of (4.1) in terms of the known functions.

Finally, we note that the bounds obtained in Theorems 1-4 are indepen-
dent of the unknown functions and will have many possible applications to
boundedness, uniqueness, continuous dependence and other properties of the
solutions of certain classes of partial differential and finite difference equa-
tions. However, various applications of these inequalities will be reported
elsewhere.
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