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THE HAUSDORFF METRIC AND ITS EXTENSIONS

Abstract. We consider a complete metric space (X, p) such that closed balls are
compact. The paper is devoted to the Hausdorff distance d defined on R, the space of all
nonempty compact subsets of X. We construct an embedding (R, d) — (S, dist¢), where
< is the family of all closed subsets of X. We show that (S, dists) is compact.

0. Introduction and preliminaries

Let (X, p) be a metric space. It is well known that when (X, p) is sep-
arable and locally compact then the set X = X U {oo} (Alexandroff com-
pactification) is metrizable, where oo is the point that does not belong to X
and (X, j) is compact (see [3], page 55). In the paper we use the Hausdorff
type distances to define a metric on X which is more direct and efficient.

By d we denote the Hausdorff metric defined by

d(4, B) = max{ps(4, B), ps(B, A)}

for all A, B in R, the space of all nonempty compact subsets of X, where
ps(A, B) is the Hausdorff semidistance (see [5]). The Hausdorff metric d may
be infinite when extended to <&, the space of all nonempty closed subsets
of X. In [5], a bounded metric on & is defined. We use extensions of the
Hausdorff metric to obtain a bounded metric on & including an empty subset
of X.

We extend d to a bounded metric h on &, the space of all closed subsets of
X (including the empty set). We admit the following ps(8, A) = 0, forall A C
X and p;s(A4,0) = oo for all nonempty A C X. For a real valued continuous
function f(t), such that f(t) > 0 for all ¢ € [0, 00) and §j; ) f(t)dt < oo we
define a metric dist; on the space of all closed subsets of X (including the
empty set) by
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disty(A,B)= | f(t)R(AN K (zg,t), BN K(zo,t))dt.
[0,00)

We discuss convergence and related properties of dist;. In particular
we show that (3, dists) is compact whenever nonempty finite closed balls
K(zo,r) = {y € X : p(z0,y) < r} are compact in (X, p). These studies are
important in the light of recent developments in the study of fractals and
semifractals (see [5] and [6]).

1. The extensions of the Hausdorff metric
We start with the following commonly known fact:

PROPOSITION 1.1. Let d be the Hausdorff metric on the space of closed and
bounded subsets of a set X (including the empty set). Then the function h
defined by

d(A,B .
h(A,B) = ﬁ%ﬁ if d(A, B) < 00
1 if d(A, B) = oo

is a metric on the space of closed and bounded subsets of X .

DEFINITION 1.2. Let zg € X be a fixed point. Given arbitrary closed subsets
A, B C X we define the function Ly g : [0,00) — R by Lapg(t) = d(AN
K(l‘o, t), Bn K(Io, t))

LEMMA 1.3. The function L g is right continuous.

Proof. We need to prove that if ¢, is a decreasing sequence in [0,00) such
that t, — tp as n — oo, then L4 p(t,) — La B(t0). The case when B N
K (zg,tn) = 0 for some n is trivial because then we will have BNK (zo,t0) = 0
which leads to L4 p(tn) = oo and Ly p(te) = oo if AN K(zg,to) # 0 or
AN K(zg,tp,) = 0 = BN K(xo,t,) for some n and then L4 p(t;) =0 =
Lap(to) for all j > n. Therefore we may assume that L4 g(t,) < oo for
all n.

Now let us suppose that lim, .o, L4 g(tn) exists and it is finite but
limp, o0 La,B(tn) # La,B(to) (we may assume the convergence of L4 g(tn)
because we may always choose a convergent subsequence). Then either
we have lim,_, LA,B(tn) > LA,B(to) or lim,_, LA,B(t'n) < LA,B(t()). In
the first case we put a = lim, L4 p(t,) and choose ¢ > 0 such that
a > L4 g(to)+e. For sufficiently large n there exist either a, € ANK(xo,t,)
such that p(as,b) > o — § for all b € BN K(xo,tn), (ie. K(an, @ = 5) N
BN K(zo,tn) = 0) or b, € BN K(zo,tn) such that p(bp,a) > a — § for
all a € AN K(zg,t,) (ie. K(bp,a — §) N AN K(zo,t,) = ). From a,, €
ANK (zg,t,) we choose a subsequence which converges to ap € AN K (xo,tp)
(by compactness of AN K(xo,tp)). Then K (zo, — 3¢) N BN K (zo,t0) = 0
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which gives the contradiction L4 g(tg) > a — % > o —€ > Ly p(to). The
proof for b, € BN K(zg,t,) is similar.

In the second case, for some € > 0, we have a = lim,_,o0 L4 p(tn) <
Lap(to) — €. Let us fix a € AN K(xp,t) and b € B N K(zg,t). Then
for sufficiently large n, K(a,a + §) N BN K(zo,t,) # 0 and K(b, o + §)
NAN K(zp,tn) # @ . We choose b, € K(a,a + §) N BN K(xo,tn) and by
compactness of K(a,a+ §) N BN K(zo,ts) we have lim;_,o bn; = be Bn
K (20, to) for some subsequence b,;. But p(a,b) = limj o0 pa,bn;) <@+ 3.
Similarly we have p(b, @) < a+5 for some @ € ANK (xp,tp). These imply that
L,(to) < a+ & which is a contradiction because o + § < La,g(to) — -
Finally we have proved that lim, . L4 B(tn) = La,B(to) and therefore
L 4 p(t) is right continuous. w

COROLLARY 1.4. The function t — h(A N K(zo,t), BN K(zo,t)) is Borel
measurable.

REMARK 1.5. Given a right continuous function g and ¢ € R, let £ = {z €
[0,00) : g(z) > a}. Then [z,z + §) C E for some § > 0 depending on z € E.
In particular E = Uzeg(z, z 4+ §), may be represented as a countable union
of left closed intervals and therefore E is a Borel set.

ExaMPLE 1. In X = R with the Euclidean metric we construct compact
subsets A and B by defining

A={£:m=12,...}u{0}and B={5-~5:m=1,2,3,... }U{0}.
ExAMPLE 2. In R? with the Euclidean metric we will construct compact
subsets A and B in R? such that L4 p(t) is discontinuous at infinitely many

points. Let us take a,,, > 0,8, > 0 such that 5_7" = m and Va2, + B2, =
w1 am = 1er,ﬁm=\/T"T,,m_123 . Now define z,, =
(Ctm, Bm) € R2. The sets

A= {z,:meNU{(0,0)} and

B = {tmzm : m € N} U {(0,0)}, where ty, = ;(1 +_1_I) and t; = 2

are compact. We calculate a few points of A and B and see that

() () () Jotom
and

b= {(—\%%) (43/5’2\1/5)’ (123@’4\?@)""}U{(0’0)}'

By plotting the points of A and B in each of the above Examples we
can draw the graph of L4 p(t) (in fact the graph of L4 p(t) in the above




236 S. P. Moshokoa

Examples resembles that of a step function) and finally observe that L 4 5(t)
is really discontinuous at infinitely (countably) many points.

REMARK 1.6. By considering R with the usual metric, by Ry we denote the
set of nonnegative real numbers and let A, = [0,n] C R+, where the n are
natural. Clearly the A, exhaust R, . But for the metric h we always have
h(An,Ry) = 1. Loosely speaking A,.; is closer to R, than A, but the
metric h fails to illustrate this property. Hence we are led to the following:

DEFINITION 1.7. Let f be a real valued continuous function, such that f(t) >
0 for all ¢ € [0,00) and $10,00) f(t)dt < oo. We define a distance between
closed subsets A and B of X by

dists(A,B) = | f(t)R(AN K(xo,t), BN K(zo,t))dt.
[0,00)

THEOREM 1.8. dist; is metric on S, the space of all closed subsets of X.

Proof. Certainly we have 0 < dist;(A,B) < oo as 0 < disty(4,B) <
§[0,00) f(t)dt < oo. Suppose that distf(A, B) = 0. Since f(t) > 0 for all
t € [0,00) it follows that h(A N K(zo,t), B N K(z¢,t)) = 0 for almost all
t € [0,00). This implies that A N K(z¢,t) = B N K(zo,t) for almost all
t € [0,), since h is a metric. Hence A = B.

Conversely suppose that A = B. Then dists(A, B) = dist;(A, A) =0 as
h(AN K(zg,t), AN K(zo,t)) = 0 for all ¢ > 0. By recalling that h(A, B) =
h(B, A) we obtain dists(A, B) = dists(B, A).

Finally we recall that h(A, B) < h(A4,C) + h(C, B) for compact subsets
A, B and C in X. As the AN K(zp,t) are compact then by using the
properties of integrals we obtain dists(A, B) < distf(A,C) + disty(C, B).
So the proof is complete. =

2. Compactness of (3, disty)

THEOREM 2.1. Let A, (where n € N) and A be compact subsets of (X, p).
Consider the following conditions:

(i) limp—00 d(An, A) =0,
(i) limp 00 L4, A(t) = O for all ezcept countably (or finitely) many t €
[0, 00),
(i) limp o0 dists(An, A) =0 .
Then we have (i) = (i1) = (i13).
Proof. (i)=(ii) Let (t) = limsup,_,o d(An N K(zo,t), AN K(zo,t)) and
ro = inf{r > 0: ANK(zo,7) # 0} and Rp = sup{r > 0 : ANK (zo,7)° # 0}.
Then certainly v¥(¢) = 0 for all ¢ < rg or ¢ > Rp. In particular for such ¢,
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limp—,00 d(An, A) = 0 implies imp_,o L4, 4(t) = 0. Now we show that there
are at most countably many ¢ € [ro, Ry] such that ¢(¢) > 0.

Given a natural number k, let By = {t € [0,00) : 9(t) > 1}. We want
to show that Ej is finite. We assume that it is infinite and finally arrive at
a contradiction. We may choose an infinite convergent sequence t, € Ep, C
[ro, Ro] such that 9(t,) > % =§forn > N.

Since A is compact then we can define N(A4,§) to be the maximum
number of points z1,z3,...,Zx in A such that p(z;,z;) > 6 for i # j. Now
N(A,6) is well defined since by compactness of A we can choose a finite
number of points in A that are d-separated .

Suppose that Ej, is infinite. Given m = N(A4, §) we choose m+2 elements

to—t1)AL tip1—t)AE AT
t <t2<...<tm+2fromEkanddeﬁner1=(2 21) ",rl=(’“ ')21‘ -1

forl=1,2,...,m+1.
Let ny be so large that d(An, A) < gi—tl)—"- foralln > n; and LAnl,A(tl)

>

x|=

(1) Either there exists a € A N K(zo,t1) such that K(a,{)NAg, N
K(z0,t1) = 0 and then we set a; = a or
(2) there exists a€ A, N K (zo,t1) such that K(~, k)ﬂAﬂK(xo, t) =

and then we may always find a € AN K(zo,t1 + 251) N K(a,71), where

ta—t1)AL
(—2—21)——& We again set a; = a.

Suppose we have chosen aj,a2,...,0; € A,n1 < ng < ... < ny, where

a; € AN K(zo, 31—;—32) and p(a1,An) <ri foralln>m
az € AN K(xy, 51;553) and p(ag, Ap) < 72 for all n > ny

a1 € ANK (zg, %—’f—l) and p(a;, An) < r; for all n > n; and p(a;,a;) > 71,;
forall1<i#j <L

We find n;47 > ny so large that d(A,, A) < 743 for all n > nyyq and
L, A(t141) > £

As in (1), if there exists a € AN K(zo, t;1+1) such that K(a %) Anipy
K(zo,ti41) = 0 we set a;41 = a. We notice that p(aj,a;+1) > —1,; for 7 =
1,2,... 1.

On the other hand, if there exists @ € Ay,
K(a, %) N AN K(zo,t;41) = 0 then there exists

N

N K(zg,t;41) such that

tiyo — ¢ ~
a € ANK(zo,t141 + ﬁgz—l“) N K(a,r141)-

We set a;;1 = a. Clearly a € AN K(zy, t’—“%t‘ﬂ), plai1, Ap) < 114 for all
n > nyy1 and p(aj41,a5) > ﬁ forall j =1,2,...,1. It follows by induction



238 S. P. Moshokoa

that there exists a sequence a1, as,...,am4+1 € A such that p(a;,a;) > —21,5
for all ¢ # j, which contradicts the maximality of m. Therefore E} is finite.
Now E = {t € [0,00) : 9(t) > 0} = URZ; E is at most countable. So the
Lebesgue measure of E is zero. Hence (i)=-(ii).
(ii)=-(iii): Let limp— 00 L 4, a(t) = O for all except countably or finitely
many t € [0,00). Clearly this implies

: La,at) _
Jim T+ La Al Jim h(An N K (zo,t), AN K(z0,1)) =0,

except for countably or finitely many ¢ € [0, 00). Hence
lim distf(An, A) =0
n—00

Jim | Ft)h(An N K (zo,t), AN K (zo,t))dt =0,
(0,00)
by the Lebesgue dominated convergence theorem. Hence (ii)=>(iii).

COROLLARY 2.2. Let A, (where n is natural) and A be compact subsets of
(X, p). Suppose that there exists a number R > 0 such that A, and A are
included in K(zo, R).
Then
lim dists(An, A) =0

n—oo
implies that
lim d(A4,,A)=0.

n—300
Proof. Let A,, and A be as stated above and assume that there exists R > 0
such that An, A C K(zo, R) for all n. Suppose that limp_,o distf(Arn, A)
=0.
Then

distf(An, A)

d(A,, A
= | SOB(An 0 Ko ), A K e ) > e RS
Thus
lim d(4n, 4) | f(tat <o,

n—o0 1 + d(An, A) [R oo)

and since f(t) > 0 we must have lim,_,, d(An, A) = 0. Hence the required
result. =

REMARK 2.3. From the above results we see that (2), (4¢) and (4i7) in Theo-
rem 2.1 are equivalent once A, and A are restricted to bounded regions of

(X, p)-
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EXxAMPLE 3. Consider X = R with the Euclidean metric, and let f(t) = e,
A={0}, A, = {0,n}, and z¢ = 0. Clearly d(A,, A) = n, and

Jim d(An, A) =00 > 0.

But
dists(Ap, A) = S e th({0,n} N [~t,t],{0} N [—t,8]) dt
[0,00)
= | e'h({0},{0})dt+ | e*h({0,n},{0})dt
(0,n] [n,00)
= 1+n[n§x})e dt = —e”(1+n)'
In particular,
Jim dist(An, A) = Jim aitn) 0.

Therefore (iii)=>(i) in Theorem 2.1 does not hold in general.

It is well known (see [2] and [4]) that closed and bounded subsets are not
necessarily compact in an arbitrary metric space and that separable Hilbert
spaces are isometrically isomorphic (see [4]). In particular, closed finite balls
of 12 are not compact either. This will be used in the next example.

EXAMPLE 4. Let X = [? be a Hilbert space with the norm Il-ll2, ax be a

dense sequence in the interval [1,2], and let e, denote standard base vectors
in X. We define

A= {ogep:for k=1,2,...},

and let zy be the zero vector. Clearly A is a closed and bounded subset of
X (as A is discrete). We define A, = {(ax + 1)er : k= 1,2,...}. Obviously
Ap is also closed and bounded in X and d(A4,, A) < ||%ek||2 = % So that
limg 00 d(An, A) = 0. On the other hand if ¢ € (1,2), and since {ay} is dense
in [1,2], then for every n there exists k such that ager < t < (ag + %)ek.
In particular akex € AN K(zo,t) but (ax + 2)ex & An N K(zo,t). Now
infye 4,nK(zo,t) ll2ker —yll2 2 /2. This means that L4, 4(t) > v/2 for every
t € (1,2) and finally 1(¢) > v/2 on the whole interval ¢ € (1,2). In particular,
Theorem 2.1 may not be extended to noncompact A4,, A and K(zo,t).

THEOREM 2.4. Let (X, p) be a metric space such that finite closed balls are
compact. Then the space of all closed subsets including the empty set is
compact for the metric disty.

Proof. Let {A,} be a sequence of closed subsets in X. We want to find a
convergent subsequence{ Ay, } of {A,} indists. Solet AT = A,NK(zo,m) C
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K(z9,m). By compactness of K(zp,m) we may find a convergent subse-
quence of AT* in (K(zg,m),d) for each m. Using the diagonal method
(Cantor method) we may choose a subsequence A,, such that for every
m € [1,00) the sequence A" — A™ in the Hausdorff metric d as s — oo.
Since AT = A™ on K(zg,m A m') thus A™ = A™ on K(zg,m A m').
Let A = UR_;A™. Clearly the set A is closed in X. Then Ly, a(t) =
Lam am(t) — 0 as s — oo except at most countably many t € [0,m). By
letting m — oo we obtain lims_,o La,, 4(t) = 0 except at most countably
many t € [0, 00). Hence by Theorem 2.1, lim_, dists(Apn,, A) = 0, which
completes the proof. =

Finally let (X, p) be a metric space such that finite closed balls are
compact. We define the function

df : X x X —[0,00)
by X
ds(z,y) = dists({z}, {y})

for all z,y € X. By identifying the point oo in X with the empty subset of
X, the function d 7 defines a metric on X. Letting f(t) = ™%, we get
e—maz{p(z0,z),p(z0,y)}

1+ p(z,y)

In particular, when X = R equipped with the usual metric, and zy = 0,
then

de_t(x,y) = e_min{p(m()yz))p(z())y)} —

e~z V lvD)

1+ |z -yl

For some results on the extensions of X (one-point compactification) and
the topology on < see [1], [7] and [8].
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