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THE HAUSDORFF METRIC AND ITS EXTENSIONS 

Abstract. We consider a complete metric space (X, p) such that closed balls are 
compact. The paper is devoted to the Hausdorff distance d defined on 5?, the space of all 
nonempty compact subsets of X. We construct an embedding (5R, d) (Sr, distf), where 
S is the family of all closed subsets of X. We show that (Sr, distf) is compact. 

0. Introduction and preliminaries 
Let (X, p) be a metric space. It is well known that when (X , p) is sep-

arable and locally compact then the set X = X U {oo} (Alexandroff com-
pactification) is metrizable, where oo is the point that does not belong to X 
and (X,p) is compact (see [3], page 55). In the paper we use the Hausdorff 
type distances to define a metric on X which is more direct and efficient. 

By d we denote the Hausdorff metric defined by 

d(A,B) = ma x{ps(A,B),ps{B,A)} 

for all A, B in 5R, the space of all nonempty compact subsets of X, where 
ps(A, B) is the Hausdorff semidistance (see [5]). The Hausdorff metric d may 
be infinite when extended to S, the space of all nonempty closed subsets 
of X. In [5], a bounded metric on S is defined. We use extensions of the 
Hausdorff metric to obtain a bounded metric on S including an empty subset 
of X. 

We extend d to a bounded metric ZionS , the space of all closed subsets of 
X (including the empty set). We admit the following ps($, A) = 0, for all A C 
X and ps{A, 0) = oo for all nonempty AC X. For a real valued continuous 
function f(t), such that f(t) > 0 for all t 6 [0, oo) and J[0 ̂  f(t)dt < oo we 
define a metric distf on the space of all closed subsets of X (including the 
empty set) by 
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distf(A, B) = 5 f{t)h(A n K(x0, t), B n K{x0, t))dt. 
[0,oo) 

We discuss convergence and related properties of distf. In particular 
we show that (5, distf) is compact whenever nonempty finite closed balls 
K(xo,r) = {y G X : p(xo,y) < r} are compact in (X, p). These studies are 
important in the light of recent developments in the study of fractals and 
semifractals (see [5] and [6]). 

1. The extensions of the Hausdorff metric 
We start with the following commonly known fact: 

PROPOSITION 1.1. Let d be the Hausdorff metric on the space of closed and 
bounded subsets of a set X (including the empty set). Then the function h 
defined by 

is a metric on the space of closed and bounded subsets of X. 

DEFINITION 1.2. Let xo e X be a fixed point. Given arbitrary closed subsets 
A, B C X we define the function La,b '• [0,oo) —> R by La,b{^) — d(A n 
K(x0,t),BC\K{x0,t)). 

LEMMA 1.3. The function La,b is right continuous. 

P r o o f . We need to prove that if tn is a decreasing sequence in [0,oo) such 
that tn —> io as n —> oo, then LA,B(TN) LA,B{PQ). The case when B fi 
K(xo,tn) = 0 for some n is trivial because then we will have BC\K(xq, to) = 0 
which leads to LA,B{TN) = oo and L ^ B ^ O ) = OO if H K(xo,to) ^ 0 or 
A fl K(xo,tn) = 0 = B fl K(xo,tn) for some n and then LA,B(TJ) = 0 = 
LA,B(^O) for all j > n. Therefore we may assume that L , A , B ( T N ) < oo for 
all n. 

Now let us suppose that limn-+oo LA,B{tn) exists and it is finite but 
limn^oo LA,B(tn) LA,B{to) (we may assume the convergence of LA,B(tn) 
because we may always choose a convergent subsequence). Then either 
we have limn^oo LAlB{tn) > L a ^ q ) o r limn-^oo LA ,B( t n ) < LA,B(to)- In 
the first case we put a = l i m L A , B { t n ) and choose e > 0 such that 
a > La,b{U)) + £- For sufficiently large n there exist either an £ AnK(xo, tn) 
such that p(an,b) > a — | for all b G B fl K(xo,tn), (i.e. K(an,a - | ) fl 
B fl K(xo,tn) — 0) or bn € B fl K(xo,tn) such that p(bn,a) > a — | for 
all a 6 A n K(x0,tn) (i.e. K(bn,a - f ) f l A n K(x0,tn) = 0). From an € 
AnK(xo, tn) we choose a subsequence which converges to ao € An K(xotg) 
(by compactness of A fl K(x0,t0)). Then K(x0, a - n B n K(x0, t0) = 0 
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which gives the contradiction L/A,B(to) > a — ^ > a — e > ¿4,5(^0)- The 
proof for bn £ B fl K(xo,tn) is similar. 

In the second case, for some e > 0, we have a — limn->oo LA,B{tn) < 
LA,B{to) — Let us fix a € A n K(xo,to) and b £ B r1 K(xo,to). Then 
for sufficiently large n, K(a,a + |) fl B fl K(xo,tn) ^ 0 and K(b,a + 

nA n K{x0, tn) ^ 0 . We choose bn E K(a, a + §) n B n K(x0, tn) and by 
compactness of K(a, a + fl B fl K(xo,tn) we have lim^oo bnj = b e B fl 
K(x0, to) for some subsequence bnj. But p(a, b) = lim^oo p(a, bnj) < a. + 

Similarly we have p(b, a) < for some a € Af\K(:Co, ¿o)- These imply that 
LA,B(to) < Q! + § which is a contradiction because a + | < LA,B{t0) — f • 
Finally we have proved that limn_00 LA,B{tn) — and therefore 

LA,B(t) is right continuous. • 

C O R O L L A R Y 1.4. The function t h(A N K(x0,t),B n K(x0,t)) is Borel 

measurable. 

REMARK 1.5. Given a right continuous function g and a € K, let E = {x 6 
[0,00) : g(x) > a } . Then [x, x + 6) C E for some 6 > 0 depending on x € E. 

In particular E = Ux^e[x, x + 6), may be represented as a countable union 
of left closed intervals and therefore E is a Borel set. 

EXAMPLE 1. In X = R with the Euclidean metric we construct compact 
subsets A and B by defining 

} U { 0 } a n d 5 = { 5^r i : m = 1 ,2 ,3 , . . . } U {0} . 

EXAMPLE 2. In R2 with the Euclidean metric we will construct compact 
subsets A and B in R2 such that La,B it) is discontinuous at infinitely many 
points. Let us take am > 0,(3m > 0 such that ^ = m and y/a^ + ¡3^ = 

m> Le- Q m = mVl+m*' ^ = T l f c ? ' W = 1 ' 2 ' 3 ' - - " N ° W d e f i n e X™ = 
{am,Pm) G R2- The sets 

A = {xm : m € N} U { (0,0) } and 

B = {tmXm : M € N} U { (0,0) } , where tm = + — l — ) , and ti = 2 
I m m — 1 

are compact. We calculate a few points of A and B and see that 

H (^M^MiTir ̂ 0) • -}u {(0- 0)> 
and 

B = { • (iTf ' (i^W iTfs) - }u {(0'0,}-
By plotting the points of A and B in each of the above Examples we 

can draw the graph of LA,B{t) (in fact the graph of LA,B{t) in the above 
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Examples resembles that of a step function) and finally observe that La,Bit) 
is really discontinuous at infinitely (countably) many points. 

R E M A R K 1 .6 . By considering R with the usual metric, by R+. we denote the 
set of nonnegative real numbers and let An = [0, n] C R+, where the n are 
natural. Clearly the An exhaust R+. But for the metric h we always have 
/j(An,R+) = 1. Loosely speaking Ai+i is "closer" to R_|_ than An but the 
metric h fails to illustrate this property. Hence we are led to the following: 

DEFINITION 1 .7 . Let f be a real valued continuous function, such that f(t) > 
0 for all t 6 [0, oo) and Jj0 ^ f(t)dt < oo. We define a distance between 
closed subsets A and B of X by 

distf(A,B) = J f(t)h(AnK(xQ,t),BnK(x0,t))dt. 
[0,oo) 

T H E O R E M 1 .8 . distf is metric on the space of all closed subsets of X. 

P r o o f . Certainly we have 0 < distf(A, B) < oo as 0 < distf(A, B) < 
J[0)OO) f(t)dt < oo. Suppose that distf (A, B) — 0. Since f(t) > 0 for all 
t e [0, oo) it follows that h(A n K(x0,t),B n K(x0,t)) = 0 for almost all 
t € [0, oo). This implies that A n K(x0,t) = B n K(x0,t) for almost all 
t € [0, oo), since h is a metric. Hence A = B. 

Conversely suppose that A — B. Then distf (A, B) = distf (A, A) = 0 as 
h{A n K(x0,t),A n K(x0, t)) = 0 for all i > 0. By recalling that h{A, B) = 
h(B,A) we obtain distf (A, B) = distf (B, A). 

Finally we recall that h(A, B) < h(A, C) + h(C, B) for compact subsets 
A, B and C in X. As the A fl K(xo,t) are compact then by using the 
properties of integrals we obtain distf(A,B) < distf(A,C) + distf (C,B). 
So the proof is complete. • 

2. Compactness of (5, distf) 

T H E O R E M 2 . 1 . Let An (where n G N) and A be compact subsets of (X,p). 
Consider the following conditions: 

(i) limn_+oo d(An, A) = 0, 
(ii) limn_,oo LAn,A{t) — 0 for aH except countably (or finitely) many t € 

[0,oo), 
(iii) limn-xx, distf (An, A) = 0 . 

Then we have (z) (ii) (iii). 

P r o o f . (i)=r-(ii) Let ip(t) — limsupn_>00d(An D K(x0,t),Ar\ K(x0,t)) and 
r„ = inf{r > 0 : AnK(x0, r) ± 0} and i?0 = sup{r > 0 : A<lK(x0, r)° ^ 0}. 
Then certainly ip(t) = 0 for all t < T-Q or t > RQ. In particular for such t, 
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limn—,oo d(An, A) — 0 implies limn_oo LAn,A(t) = 0. Now we show that there 
are at most countably many t E [ro, Ro} such that ip{t) > 0. 

Given a natural number k, let E^ = {t E [0, oo) : ip(t) > jr}. We want 
to show that E& is finite. We assume that it is infinite and finally arrive at 
a contradiction. We may choose an infinite convergent sequence tn E E^ C 
[ro, R0] such that ip(tn) > ^ = 8 for n > N. 

Since A is compact then we can define N(A,6) to be the maximum 
number of points xi, x2, • •., xm in A such that p(xi, Xj) > 6 for i ^ j. Now 
N(A, 8) is well defined since by compactness of A we can choose a finite 
number of points in A that are ¿-separated . 

Suppose that E^ is infinite. Given m = N(A, 6) we choose m+2 elements 
h < t2 < . . . < i m + 2 from Ek and define n = , n = 
for / = 1 , 2 , . . . ,m+ 1. 

Let ni be so large that d(An, A) < for all n>n\ and LAn A(t i) 

>\-
(1) Either there exists a E A fl K(xQ,t\) such that K(a, fl 

K(xo,ii) = 0 and then we set a\ = a or 
(2) there exists aE Anir\K(x0,ti) such that K(a, ^ n A n i ^ x o , ^ ) = 0, 

and then we may always find a E A fl -K"(:ro,ii + H K{a,r\), where 

r\ = We again set ax = a. 

Suppose we have chosen ai, a2, • • •, ai E A,n\ < n2 < . . . < n;, where 

ai € A n K(xo, -VY2-) and p(a\, AN) < n for all n > n\ 
a2 E A fl K(xo, and p(a2, AN) < r 2 for all n > n2 

ai E AR\K(x o, t|+2"1"1) and p(a,[, AN) < ri for all n > n; and p(aj,di) > ^ 
for all 1 < i / j < I. 

We find n/ + i > ni so large that d(An, A) < ri+i for all n > n j + i and 
L A n w A ( t l + 1 ) > 

As in (1), if there exists a E A fl K{xo, i ; + i ) such that K(a, fl Ant+1 fl 
K(xo,U+i) = 0 we set a ; + i = a. We notice that p(aj,ai+1) > ^ for j = 
1 , 2 , . . . . J . 

On the other hand, if there exists a € ANI+1 fl K(xo,ti+i) such that 
K(A, fl A D K(XQ, TI+I) = 0 then there exists 

aE AC) K(x0,tl+1 + h+LZlttl) n K(a, rl+1). 

We set ai+i = a. Clearly a E A f~l K(x0, t '+1+ f '+2) ; /j(a/+i, An) < r i + i for all 
i > nl+1 and p(ai+i,aj) > for all j = 1, 2 , . . . , I. It follows by induction 
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that there exists a sequence 04,02,... ,am+1 6 A such that p(aj,o i ) > ^ 
for all i j, which contradicts the maximality of m. Therefore E^ is finite. 

Now E = {t e [0,00) : ip(t) > 0} = Ufcli Ek is at most countable. So the 
Lebesgue measure of E is zero. Hence (i)=>(ii). 

(ii)=>(iii): Let limn-^oo L,An,A(t) = 0 for all except countably or finitely 
many t £ [0, 00). Clearly this implies 

lim = lim h(AnD K(x0,t),An K(x0,t)) = 0, 

except for countably or finitely many t 6 [0,00). Hence 

lim distf(An,A) = 0 
n—»oo 1 

as 
lim \ f(t)h(Anr\K(x0,t),AnK(x0,t))dt = 0, 

n—+ oo J 

[0,°o) 

by the Lebesgue dominated convergence theorem. Hence (ii)^(iii ). • 

COROLLARY 2.2. Let An (where n is natural) and A be compact subsets of 

(X, p). Suppose that there exists a number R > 0 such that An and A are 

included in K(x0, R). 

Then 

lim distf(An, A) = 0 
n—• 00 1 

implies that 

lim d(An,A) = 0. 
n—»00 

Proo f . Let AN and A be as stated above and assume that there exists R > 0 
such that AN, A C K(XQ,R) for all n. Suppose that lim^oo distf(AN, A) 

= 0. 
Then 

distf(An, A) 

= \ f(t)h(Anr\K(x0,t),AnK(x0,t))dt> f t * / ^ j f(t)dt. 
[0,0c) l + d(An,A)[R^ ^ 

Thus 
lim i f(t)dt < 0, 

n ^ o o l + d(An,A)[Rl^> -

and since f(t) > 0 we must have limn^oo d(An, A) — 0. Hence the required 
result. • 

REMARK 2.3. From the above results we see that ( i ) , ( i i ) and (in) in Theo-
rem 2.1 are equivalent once An and A are restricted to bounded regions of 
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EXAMPLE 3. Consider X — R with the Euclidean metric , and let f(t) = e 
A = {0 } , An — { 0 , n } , and xo = 0. Clearly d(An, A) — n, and 

lim d(An, A) = oo > 0. n—> oo 
But 

distf(An, A) = J e _ t / i ( { 0 , n } fl [ — { 0 } fl [—£, £]) dt 
[0,oo) 

= J e _ i / i ( { 0 } , {0})df + J e - ' M i O . n J . i O } ) ^ 
[0,n] 

n r * . Tl it, p * , it 
= — ; . 

1 + n , J N e n ( l + n) [n,oo) v ' 

In particular, 
Tl 

lim distf(An, A) = lim — r = 0. n—>oo J n—»oo e n ( l + Tl) 

Therefore (iii)=>(i) in Theorem 2.1 does not hold in general. 
It is well known (see [2] and [4]) that closed and bounded subsets are not 

necessarily compact in an arbitrary metric space and that separable Hilbert 
spaces are isometrically isomorphic (see [4]). In particular, closed finite balls 
of I2 are not compact either. This will be used in the next example. 

EXAMPLE 4. Let X = I2 be a Hilbert space with the norm ||.||2, ctk be a 
dense sequence in the interval [1,2], and let e^ denote standard base vectors 
in X . We define 

A = {akek : for k = 1 , 2 , . . . } , 

and let XQ be the zero vector. Clearly A is a closed and bounded subset of 
X (as A is discrete). We define An = {(ajt + : k = 1 , 2 , . . . } . Obviously 
An is also closed and bounded in X and d(An,A) < ||̂ efc||2 = So that 
limn_*oo d(An, A) = 0. On the other hand if t 6 (1,2), and since {ak} is dense 
in [1,2], then for every n there exists k such that akeh < t < + 
In particular 6 i f ) K(xo,t) but (ak + An fl K(xo,t). Now 
"tfj/e^nni^xo.t) \\akek-yh > This means that LAntA(t) > y/2 for every 
t 6 (1,2) and finally ip(t) > V2 on the whole interval t £ (1, 2). In particular, 
Theorem 2.1 may not be extended to noncompact An, A and K(XQ, t). 

THEOREM 2.4. Let (X, p) be a metric space such that finite closed balls are 
compact. Then the space of all closed subsets including the empty set is 
compact for the metric distf. 

P r o o f . Let {An} be a sequence of closed subsets in X. We want to find a 
convergent subsequence {Ani} of {An} in distf. So let A™ = An!~)K(x o, m) C 
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K(xo,m). By compactness of K(xo,m) we may find a convergent subse-
quence of A™ in (K(xo,m),d) for each m. Using the diagonal method 
(Cantor method) we may choose a subsequence Ans such that for every 
m £ [1, oo) the sequence A™s —• Am in the Hausdorff metric d as s —> oo. 

Since A™ = A™' on K(x0,m A m) thus Am = A™ on K(x0,m A m). 
Let A = Clearly the set A is closed in X. Then LAns>A{t) = 
LA™s,A

m{t) —> 0 as s —• oo except at most countably many t 6 [0,m). By 
letting m —> oo we obtain lim^oo LAnslA(t) = 0 except at most countably 
many t € [0, oo). Hence by Theorem 2.1, lim5^oo distf(Ans, A) = 0, which 
completes the proof. • 

Finally let (X, p) be a metric space such that finite closed balls are 
compact. We define the function 

d f . X x X - > [0,oo) 

df(x,y) = distf({x},{y}) 

for all x, y E X. By identifying the point oo in X with the empty subset of 
X, the function df defines a metric on X. Letting f(t) = e _ i , we get 

. , , , . ,, p-max{p(x0,x),p(
xo,y)} 

d -t(x y) = e-
min{p(x°>x)>p(x°>y)} — -

1 + p(x,y) 
In particular, when X = R equipped with the usual metric, and xo = 0, 
then 

n i A i n e-(WVlvl) 
de-t(x,y) = Alvl) -

l + \x-y\ 

For some results on the extensions of X (one-point compactification) and 
the topology on Q see [1], [7] and [8]. 
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