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CHARACTER SUMS AND PAIR CORRELATIONS

Abstract. Let p be a prime number, x a generator of the group of Dirichlet characters
mod p and let aqg € C, {aq| £ 1 for any 1 < ¢ < /P, g prime. We prove that

> ‘ > aqx"'(q)‘2<<p-

mi{<yP  9<P

g prime

1. Introduction

The pair correlation as well as higher correlation measures are studied
in connection with the distribution of spacings between the elements of a
given sequence of numbers. In recent years substantial progress was made
towards understanding the correlations of fractional parts of polynomials
and related sequences (see [6], [8], [1], [7]). In all these problems success
came from the fact that one was able to estimate certain exponential sums
intimately connected to the correlation measures associated to the given
sequence. There are also cases when the correlations are not seen as the
goal of the investigation but rather as a tool to be used in achieving a
different objective. The study [9] of averages of short exponential sums is
an example of such a situation where the pair correlation is used as a tool.
Let € > 0, let N < M < P be positive integers and let r(X) = ;((_j{()l
be a rational function which is not a polynomial, with integer coefficients
bounded by PX! and with deg f, deg g < K3, where K; and K, are some
positive constants. Then it is shown in [9] that for almost all pairs (p, m)
with p prime, p € [P,2P] and m € {1,..., M} one has

(11) | Se(™) | <o, NP
1<n<N

1991 Mathematics Subject Classification: 11140, 11A07.



226 M. Vajiitu, A. Zaharescu

Here almost all means that the exceptional set has density < P~¢, r(n)
is computed modulo p and ¥’ denotes a sum over values of n for which
g(n) # 0 (modp). In order to prove this result one brings into play the pair
correlation of the sets

= {1l o)

and use them to provide upper bounds for the short moments

) S | e

1<m<M 1<n<N

:1§n§N}

for each p individually. Such a method can only succeed if one has an alter-
native way of estimating the pair correlations. This was achieved in [9] by
performing an average over p. The result is the following inequality:

(1.3) D l Se

P<p<2P 1<m<M 1<n<N

2
TN s WM

from which (1.1) follows for almost all pairs (p,m).
In this paper we consider averages of character sums of the form

2

(14) > Y xm9)

mi<vP  ¢<vP

¢ prime

where p is a prime number and x is a generator of the group of Dirichlet
characters (modp). Usually when dealing with short averages of short char-
acter sums we don’t know how to obtain best possible upper bounds. The
classical inequality of Polya and Vinogradov (see [3]) gives square root can-
cellation in long character sums, while the well known results of Burgess [2]
give nontrivial cancellation in short character sums of length > p%. One
easily obtains square root cancellation in long averages of short character
sums, for example

(1.5) > ] Y. x™9) |
m (modp—1) q<f
g prime :

3

log P

while the delicate estimates for higher moments of character sums due to
Montgomery [5] give nontrivial cancellation in short averages of short char-
acter sums. Our idea in dealing with a sum as in (1.4) is to use a map
z — ¢* (modp), where g is a primitive root mod p, in order to transform
the character sums from (1.4) in exponential sums and then provide upper
bounds in terms of pair correlations as was done in [9] with the sums from
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(1.2). The method also works if one has weights in the sums from (1.4). We
will prove the following inequality, which is essentially best possible.

THEOREM 1. Let p be a prime number, x a generator of the group of Dirichlet
characters mod p and let ag € C, |ag| < 1 for any 1 < ¢ < /P, q prime.

Then
2
S Y ™o <p
Im{<yP 4<yP
q prime

As a consequence of this result, if we choose an integer b and set ag =
x%(q) for any g, we obtain the following corollary.

COROLLARY 2. Let p be a prime number and x a generator of the group of
Dirichlet characters mod p. Then for any integer b one has

(1.6) > l > ><’"(q)|2 <L p.

|m—bl<\/p q<ﬁ

g prime
Note that by adding the inequalities (1.6) for b =0, [\/p], 2[\/D],---,

{\/P|? one obtains an upper bound for the long average over m (modp — 1)
which is essentially as good as (1.5). Thus what Corollary 2 says is that one
can localize the long sum from (1.5) to intervals of length ~ ,/p without any
loss of information.

Acknowledgements. The authors are grateful to the referee for point-
ing out the relationship between Lemma 3 below and the Large Sieve In-
equality.

2. Exponential sums and pair correlations

Let N = {z, : 1 < n < N} be a finite sequence of real numbers and let
M be a positive integer. In [9] it is proved that

2
(2.1) > | X elmaa)| <« MEW, M)
1<Sm<M  1<n<N
where
EW,M) = |{1 <n,n' <N:l|zp—zn| < i}|
) ) = 14 - =
and ||-|| denotes the distance function to the nearest integer. Here we con-

sider an extension of the above inequality in which we associate weights
ai,...,an € C to the points zj,...,zy. The result is the following
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LEMMA 3. For any real numbers z,,-- -, zy, any complex numbersa,,---,an
and any positive integer M one has

2
(2.2) Z l Z ane(mmn)l <M Z |anan|.
Im|<M " 1<n<N 1<n,n'<N
”zn‘zn'llfﬁ

Proof. We follow the proof of (2.1) given in [9]. Let z1,...,zN, a1,...,aN
and M be as in the statement of the lemma. Let h be the periodic function
mod 1 which on [-1,1] is given by

_ feM(1-2Mpt) it < o3
h(t)—{o if ok < Jt] < 1.

Expand k in a Fourier series

W)= Y cme(mi),

meZ

where the Fourier coefficients are given by

e = {%Sinz (;’—A’Zf—’) if m # 0,
if m=0.

We will use the fact that the coefficients ¢, are nonnegative and |¢,| > 1
uniformly for |m| < M. We also use the positivity of h and the fact that ﬁhﬁ
is bounded by the characteristic function of the interval [~ 517, z57]. In order
to make our positivity argument work, let us note first that it is enough to

prove (2.2) when ai,...,ay are nonnegative real numbers. Indeed, for any
ai,...,ay € C the left hand side of (2.2) is

<2 Z (' Z (Rean)e(mmn)lz—%—‘ Z (Imay) e(mmn)'2),

Imi<M 1<n<N 1<n<N
while the right hand side of (2.2) is

> M Z (|Re an, Re ap| + |[Im ay, Im ay).
1<n,n'<N
”z"—zn’“SEIIW

Thus the general case of (2.2) follows from the case when ay,...,any € R.
Suppose we are in this case. Then. the left hand side of (2.2) is

<2 ¥ (l > ane(ma:n)|2+| > ane(mxn)'z)

Imi<M  1<n<N 1<n<N
an>0 an<0
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while the right hand side of (2.2) is

>M ( Z Qp G + Z an an:).

1<n,n'<N 1<n,n'<N
len—zn < 5 len—nr < 5k
Qn,0,1 >0 an,a,<0
This shows that the general case of (2.2) reduces to the case a1,...,an
> 0. Assume we are in this case, then we have on one hand
(2.3) Z An Gt h(Tn — o) < 2M Z an Gy
1<nn'<N 1<n,n'<N

”:En'—Inl||S-2l—M
On the other hand one has
(2.4) Z an Grt M(Zn — Zp)

1<n,n'<N
= Z Qn Gpy Z cme(m(zn — )
1<n,n'<N meL

— Z Cm Z ap Ayt e(m(wn - Tnr))

mez 1<n,n'<N

= Zcml Z anp e(mzy)

meZ 1<n<N

‘2

Since ¢ > 0 for any m and |¢pm| > 1 for [m| < M, one has

(2.5) Z ’ Z an e(mxy) I < Z cm‘ an e(mzn)r.
|m|<M 1<n<N 1<n<N
Now (2.2) follows from (2.3), (2.4) and (2.5), and the lemma is proved.
As was pointed out by the referee, the above lemma implies the dual
of the Large Sieve Inequality with worse constants than usually given. The
Large Sieve Inequality (see Montgomery [4]) gives an upper bound of the
form

R M+N
(2.6) SOIS(a)P < AN,E) Y anf?
j=1 n=M+1

for any trigonometric polynomial with complex coefficients
M+N

S(a) = Z ane(na)

n=M+1

and any real numbers 1, ..., ag which are well spaced (mod 1) in the sense
that |la; — a;|| > 6 for j # s. Here one can take A(N,6) = N -1+ 6~1. By
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duality, (2.6) is equivalent to having (see [4], p. 551)

M+N R 9 R
2.7) S [ welnan)| AW il
n=M+1 r=1 r=1

for all y,. Clearly the parameter M is irrelevant in (2.6) and (2.7). Note that
if the real numbers z1,...,zy from Lemma 3 are such that ||z, — z|| > 6
for 1 < n # n' < N, then for any 1 < n < N there are at most [Mlg] +1
values of n’ for which ||z, — zp/|| < 517. Therefore in this case the right
side of (2.2) is bounded by (M +671) 3 <,.<n |an|?. So we see that Lemma
3 implies indeed (2.7), with its right hand side multiplied by an absolute
constant.

3. Proof of Theorem 1

Let p, x and the a;s be as in the statement of the theorem. Let g be
the unique primitive root mod p for which x(g) = e(p—iT), and consider the
one-to-one map L : (Z/pZ)* — Z/(p — 1)Z given by g™ = z (modp) for
any 0 # z € Z/pZ. Thus x(y) = e(%(_y—l)) for any 0 # y € Z/pZ. Let H be the
set of prime numbers < ,/p and denote by U the image of H in Z/(p — 1)Z
through L. Set N' = {Z%7 : u € U}. Since U is well defined mod p — 1, N
will be defined mod 1. %‘or any ¢ € N we set

Oz 1= Gy = G4

where u is the unique element of ¢/ which corresponds to z and ¢ is the

unique element of H which corresponds to u, that is z = %7 and v = L(g).

p—1
Then one has

(3.1) >3 aqx’"(q)|2 = 2 [T aue( niul)lz

Im|<\p q€H Iml<yF weld p
2
= Z ’Z aze(mw)‘ .
Iml<\P 2EN

From Lemma 3 applied with M = [,/p] and our assumptions on the
weights a, it follows that

(3.2) > I > ar e(mar:)‘2

Im|<\P TEN
<vF Y leay
z,2' €N
||95—i’3'“55[%[

< \/1_)#{(17,3:’) ENXN:|o—a| < 5[-\1/?]}
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As we mentioned in the Introduction, the method is only successful if
one has an alternative way of dealing with the pair correlation of the set .
Here we do not have an extra average over p as in [9], but we take advantage
of the special shape of the set A/. We derive

(3.3) #{(:1;,:1:') ENXN:|z—z

, 1

”Sm}
/ = — s (modp— 1) s < =LV

#{ ) €U xttsuzal~ s (modp ”’"52{\@1}

_ p—1
#{ g, 7)) EHxH:q=q¢g"° (modp); |s S—}.
(0:4) (modp); o < 7
If we denote for any integer s
Hs = {gqg™° (modp) : g € M},
then the right hand side of (3.3) can be written as
(3.4) > #(HoNOHy).
ls|< &=
From (3.1), (3.2), (3.3), and (3.4) we get
2
(3.5) 3 ’ 3 ag xm(q)\ <vp S #(MonH,).
Iml<yP g€H [s|§-21i_ﬁ;-

For s = 0 one has # (Ho N Ho) = #H = =(,/p). For any other s in (3.5)
we claim that #(Ho N H;) < 1. Indeed, let us assume that for some such s
there are at least two distinct pairs (g1, ¢2), (g3,94) € H x H such that

(3.6) ¢1=¢29 ° (modp)
and
(3.7) g3 =g49 ° (modp).

Note that since s # 0 (modp — 1) one has g=° # 1 (modp), hence the
numbers ¢; and g9 are distinct. Also ¢; and g3 are distinct, otherwise the
pairs (¢1,q2) and (g3,qs) would coincide. From (3.6) and (3.7) it follows
that

q194 = @2 g3 (mod p).

But q1 g4 and g2 g3 are positive integers smaller than p, therefore the
above congruence implies the equality ¢; g4 = g2 ¢3. Since q1, g2, g3, and ¢4
are prime numbers, g; will coincide with either ¢ or g3, which is not the
case. This proves the claim. Hence the right hand side of (3.5) is bounded
by /(7 (/D) + \;171 ), and this completes the proof of the Theorem 1.
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