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CHARACTER SUMS AND PAIR CORRELATIONS 

Abstract. Let p be a prime number, x a generator of the group of Dirichlet characters 
mod p and let aq G C, |a9 | < 1 for any 1 < q < ^/p, q prime. We prove that 

1. Introduction 
The pair correlation as well as higher correlation measures are studied 

in connection with the distribution of spacings between the elements of a 
given sequence of numbers. In recent years substantial progress was made 
towards understanding the correlations of fractional parts of polynomials 
and related sequences (see [6], [8], [1], [7]). In all these problems success 
came from the fact that one was able to estimate certain exponential sums 
intimately connected to the correlation measures associated to the given 
sequence. There are also cases when the correlations are not seen as the 
goal of the investigation but rather as a tool to be used in achieving a 
different objective. The study [9] of averages of short exponential sums is 
an example of such a situation where the pair correlation is used as a tool. 
Let e > 0, let N < M < P be positive integers and let r(X) = 
be a rational function which is not a polynomial, with integer coefficients 
bounded by PKl and with deg / , deg g < K2, where K\ and K2 are some 
positive constants. Then it is shown in [9] that for almost all pairs ( p , m ) 
with p prime, p E [P, 2P] and m € {1 , . . . , M} one has 

2 

M <%/p i<^fp 
q pr ime 

(1.1) 
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Afp = { r { n ) (m°dp) : 1 < n < N} 

Here almost all means that the exceptional set has density < P - 6 , r(n) 
is computed modulo p and Yl' denotes a sum over values of n for which 
g(n) ^ 0 (modp). In order to prove this result one brings into play the pair 
correlation of the sets 

-r(n) (modp) 

P 
and use them to provide upper bounds for the short moments 

l<m<M 1 <n<N P 

for each p individually. Such a method can only succeed if one has an alter-
native way of estimating the pair correlations. This was achieved in [9] by 
performing an average over p. The result is the following inequality: 

(1-3) £ E I 
P<P<2P1<771<M l<n<N P 

from which (1.1) follows for almost all pairs (p,m). 
In this paper we consider averages of character sums of the form 

(1-4) E | E * m M 2 

M <y/P 1<y/P 
q prime 

where p is a prime number and x is a generator of the group of Dirichlet 
characters (modp). Usually when dealing with short averages of short char-
acter sums we don't know how to obtain best possible upper bounds. The 
classical inequality of Polya and Vinogradov (see [3]) gives square root can-
cellation in long character sums, while the well known results of Burgess [2] 
give nontrivial cancellation in short character sums of length > p* . One 
easily obtains square root cancellation in long averages of short character 
sums, for example 

(1-5) E | E Xm(q) 
TO (modp—1) q<\/p 

q prime 

3 
2 7)2 

< 
logp' 

while the delicate estimates for higher moments of character sums due to 
Montgomery [5] give nontrivial cancellation in short averages of short char-
acter sums. Our idea in dealing with a sum as in (1.4) is to use a map 
x gx (modp), where g is a primitive root mod p, in order to transform 
the character sums from (1.4) in exponential sums and then provide upper 
bounds in terms of pair correlations as was done in [9] with the sums from 
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(1.2). The method also works if one has weights in the sums from (1.4). We 
will prove the following inequality, which is essentially best possible. 

THEOREM 1. Letp be a prime number, x a generator of the group of Dirichlet 

characters mod p and let aq 6 C, |ag| < 1 for any 1 < q < y/p, q prime. 

As a consequence of this result, if we choose an integer b and set aq = 

Xh{q) for any q, we obtain the following corollary. 

COROLLARY 2. Let p be a prime number and x & generator of the group of 

Dirichlet characters mod p. Then for any integer b one has 

Note that by adding the inequalities (1.6) for 6 = 0, [y/p], 2[y/p],..., 

[y/p]2 one obtains an upper bound for the long average over m (modp — 1) 
which is essentially as good as (1.5). Thus what Corollary 2 says is that one 
can localize the long sum from (1.5) to intervals of length « *Jp without any 
loss of information. 

Acknowledgements. The authors are grateful to the referee for point-
ing out the relationship between Lemma 3 below and the Large Sieve In-
equality. 

2. Exponential sums and pair correlations 
Let M - {x n : 1 < n < iV} be a finite sequence of real numbers and let 

M be a positive integer. In [9] it is proved that 

Then 

E I E W m ( q ) 2 « P -
M <VP i<VP 

q prime 

( 1 . 6 ) 

I m-b\<y/p ?<yp 
g prime 

( 2 . 1 ) 

l<m<M l<n<N 

where 

E{M,M) = |{l < n, ri < N : \\xn - xn,\\ < 

and || || denotes the distance function to the nearest integer. Here we con-
sider an extension of the above inequality in which we associate weights 
o i , . . . , ajv G C to the points x\,. . . , xjy. The result is the following 
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LEMMA 3. For any real numbers x\, • • •, xn, any complex numbers ai, • • •, a^r 
and any positive integer M one has 

, 2 
&nan' I • 

\m\<M l<n<N l<n,n'<N 

Proof . We follow the proof of (2.1) given in [9]. Let x i , . . . , XJV, a i , . . . ,ajv 
and M be as in the statement of the lemma. Let h be the periodic function 
mod 1 which on [ — i s given by 

f 2 M ( l - 2 M | t | ) 

Expand h in a Fourier series 

h(t) = Cme(mt), 
me z 

where the Fourier coefficients are given by 

f 4M2 - 2 fmn) 
= | \2Mj Cn = { am [m) 

if m = 0. 

We will use the fact that the coefficients cm are nonnegative and \cm\ 1 
uniformly for |m| < M. We also use the positivity of h and the fact that 
is bounded by the characteristic function of the interval [— , 2^7] • In order 
to make our positivity argument work, let us note first that it is enough to 
prove (2.2) when 01,. . . , a/v are nonnegative real numbers. Indeed, for any 
o i , . . . , Oiv € C the left hand side of (2.2) is 

- 2 / L (| (Rean)e(mxn) +| ^ (Iman) e(mxn)| ) , 

\m\<M l<n<N 1 <n<N 

while the right hand side of (2.2) is 

>M ^ (\Re an Re an'\ + \Im an Im an'\). 
1 <n,n'<N • 1 

: 2 M 

Thus the general case of (2.2) follows from the case when a i , . . . , a/v £ R. 
Suppose we are in this case. Then the left hand side of (2.2) is 

- 2 (| H ane(mxn) +| ane{mxn) 
|m|<M \<n<N l<n<N 

a„>0 a„< 0 
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while the right hand side of (2.2) is 

> m ( E anan>+ E flnfln')-

1 <n,n'<N \<n,n'<N 

an,ani> 0 an,ani<0 
This shows that the general case of (2.2) reduces to the case a i , . . . 

> 0. Assume we are in this case, then we have on one hand 

(2 .3 ) E an ant h(xn - xni) < 2M E anan'-
1 <n,n'<N \<n,n'<N 

l|Xn-X„/||<2M 

On the other hand one has 

E ° n ° n ' h(xn ~ %ri) 
1 <n,n'<N 

= E anan' ^ ^ e(m(xn - Xn')) 
1 <n,n'<N meZ 

= E ^ E an an: e(m(xn ~ xn>)) 
mgZ l<n,n'<N 

~ E ° m | E e { m x n ) • 
mGZ l<n<JV 

Since Cm > 0 for any m and \cm\ 1 for |m| < M, one has 
. 2 | 2 

(2 .5 ) £ I ^ « n e(mxn) < E ^ | E a n e(mxn) • 
|m|<Ai 1 <n<N meZ l<n<W 

Now (2.2) follows from (2.3), (2.4) and (2.5), and the lemma is proved. 
As was pointed out by the referee, the above lemma implies the dual 

of the Large Sieve Inequality with worse constants than usually given. The 
Large Sieve Inequality (see Montgomery [4]) gives an upper bound of the 
form 

R M+N 
(2.6) E l 5 ^ ) ! 2 ^ ^ ) E K l 2 

3=1 n=M+1 

for any trigonometric polynomial with complex coefficients 
M+N 

S(a) = E ane[na) 
n-M+1 

and any real numbers a i , . . . , o r which are well spaced (mod 1) in the sense 
that 11a,- — cts|| >6 for j ^ s. Here one can take A(N, 6) = N - 1 + <5_1. By 
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duality, (2.6) is equivalent to having (see [4], p. 551) 
M+N R 2 R 
E £fre(nar) < A{N,6) £ \yr\ 

2 (2.7) 
n=M+1 r=l 

for all yr. Clearly the parameter M is irrelevant in (2.6) and (2.7). Note that 
if the real numbers x\,..., xn from Lemma 3 are such that \\xn — xn< || > 6 
for 1 < n n' < N, then for any 1 < n < N there are at most + 1 
values of n' for which \\xn — xn> || < j j j - Therefore in this case the right 
side of (2.2) is bounded by (M + <5_1) lan|2- So we see that Lemma 
3 implies indeed (2.7), with its right hand side multiplied by an absolute 
constant. 

3. Proof of Theorem 1 
Let p, x and the a'qs be as in the statement of the theorem. Let g be 

the unique primitive root mod p for which x{d) = )> an<^ consider the 
one-to-one map L : (Z/pZ)x —> Z/(p - 1)Z given by = x (modp) for 
any Z/pZ. Thus x{y) = e(f^y) for any 0 ^ y e Z/pZ. Let H be the 
set of prime numbers < ^/p and denote by U the image of 7i in Z/(p — 1)Z 
through L. Set M — { - p j : u 6 U}. Since U is well defined mod p — 1, M 
will be defined mod 1. For any x € M we set 

where u is the unique element of U which corresponds to x and q is the 
unique element of Ti which corresponds to u, that is x = and u — L(q). 
Then one has 

\m\<^/p 16AT 
From Lemma 3 applied with M = [^/p] and our assumptions on the 

weights aq it follows that 

a,x :— a,u :— a,q 'X • 

(3.2) 

x,x'eAi 
l l x - x ' B ^ 
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As we mentioned in the Introduction, the method is only successful if 
one has an alternative way of dealing with the pair correlation of the set M. 
Here we do not have an extra average over p as in [9], but we take advantage 
of the special shape of the set N . We derive 

(3.3) # | ( x , x ' ) € M x M : ||x - x'|| < = 

# j ( u , u ' ) eUxU:u = u'-s (modp - 1); |s| < = 

# { ( 9 , 9 ' ) €HxH:q = q'g-s (modp); |s| < 

If we denote for any integer s 

ns = {qg~s (modp) :qe7i}, 

then the right hand side of (3.3) can be written as 

(3.4) £ # ( H 0 n n s ) . 

From (3.1), (3.2), (3.3), and (3.4) we get 

( 3 . 5 ) £ \Y/agXm(q)\2 « V P £ #(H0nHs). 

\ m \ < V p « e * 

For s = 0 one has # { H q fl Hq) = #H = v{y/p). For any other s in (3.5) 
we claim that #("Ho H Tis) < 1. Indeed, let us assume that for some such s 
there are at least two distinct pairs (91,92), (93,94) € H x H such that 

(3.6) 91 = 92 9 _ s (modp) 

and 
(3.7) 93 = q4g~s (modp) . 

Note that since s ^ 0 (modp — 1) one has g~s ^ 1 (modp), hence the 
numbers 91 and 92 are distinct. Also 91 and 93 are distinct, otherwise the 
pairs (91,92) and (93,94) would coincide. From (3.6) and (3.7) it follows 
that 

9i 94 = 92 93 (modp). 

But 9194 and 92 93 are positive integers smaller than p, therefore the 
above congruence implies the equality 91 94 = 92 93. Since 91, 92, 93, and 94 
are prime numbers, 91 will coincide with either 92 or 93, which is not the 
case. This proves the claim. Hence the right hand side of (3.5) is bounded 
by \/P(7r(\/p) + ^ f j ) ' a n d this completes the proof of the Theorem 1. 
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