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LATTICES RESPECTING CONVEX DECOMPOSITIONS, I 

Abstract . - We prove the following results: Let (L\,L,2) be a convex decomposition 
of a lattice L. If L\ and L2 are 0-modular, then L is 0-modular. If L\ is O-distributive 
(or Li is distributive with 0) and L2 is distributive (or ¿2 is O-distributive), then L is 
O-distributive. 

1. Introduction 
In this paper we explore the idea of a lattice convexly decomposed into 

two sublattices. The construction is based on a general approach [1] partly 
explained in [2]. In [3] we used it to describe an algorithm how to decompose 
a finite distributive lattice into its Boolean blocks by convex decompositions. 
To avoid confusion, we finally remark that our convex decompositions are 
more general than the well known construction of Hall and Dilworth [6, 7]. 
For some other aspects concerning amalgams of lattices or their pasting see 
also [4]. 

The ordered couple (Li,L2) is said to be a convex decomposition of a 
lattice L (written L = cd{L\, L2)) if Iq and L2 are sublattices of L such that 
Li # L ^ L2, Za n L2 0, Li U L2 = L, L\ = (Li n L2] and L2 = [Lx n L2). 
Here {L\ DL2] = {a G L; 36 € L\C\ L2 a < b} and the set [L\ DL2) is defined 
dually. 

Note that L\ fi L2 is a convex subset of L. 
Figure 1 illustrates a convex decomposition of a seven-element lattice L7. 
We now recapitulate some results on convex decompositions. The reader 

may find the corresponding details in [3]. 
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Figure 1 

For the sake of brevity, let us first introduce the following notation: We 
will write x £ • or • 3 x for x £ L\ fl L2 and L\ fl L2 3 x, respectively. 

If Vj, Ai denote the lattice operations in the lattice Li (i = 1,2) and if 
V, A are the operations in L, then 

(1*) for any a,b £ Li 

aAb = aAibkaVb = a\/ib; 

(2*) for any a £ L\ and b £ L2 

flAi = aAi ( a * A 2 6 ) & a V 6 = ( a V i b+) V2 b 

where b+ and a* are any elements of L such that • 3 b+ < b and 
a < a* € •; 

(3*) for any a 6 L1 and every b € a V b € for any c G £2 and every 
d € c A d € 

Note that if (L\, L2) is a convex decomposition of L, then L possesses a 
smallest element if and only if L\ possesses a smallest element and in this 
case the both elements coincide. 

2. O-modular lattices 
Recall that a lattice L with 0 is called O-modular [13], [5] if, for all 

a, b, c £ L, a A b = 0 and c < b imply c = (o V c) A b. (See also [10], [11], [8] 
and [12].) 

THEOREM 2 . 1 . Let L = cd(L\,L2) and let L\ and L2 be O-modular lattices. 
Then L is O-modular. 

Proof. Suppose that o, b, c £ L, a Ab = 0 and c < b. Let uj denote the zero 
element of L2. If h £ L\ fl L2, then U <h. From UJ £ L2 = [L\ fl ¿2) we can 
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see t h a t t h e r e e x i s t s d s u c h t h a t • 3 d < u < h £ • . S i n c e L\ D L2 is c o n v e x , 

U! G • . 

W e w i l l c o n s i d e r s e v e r a l c a s e s : 

Case I: a G L\ and b G L\. T h e n c G L\ a n d , b y t h e O - m o d u l a r i t y o d L\, 

b A ( a V c) = b A i ( a V x c ) = c . 

C a s e II : a G L i , 6 G L 2 \ L i a n d c G ¿ 2 - B y ( 3 * ) , w e h a v e a : = a V u = 

= a V i a» G T o s h o w t h a t 

( 2 . 1 ) a Ab = LJ, 

w e p r o c e e d a s f o l l o w s . B y a p p l y i n g ( 2 * ) , w e s e e t h a t a A\ ( a A2 b) = 

= a A b = 0. L e t a' := a, c ' : = w a n d b' := a A2 b = a A b. S i n c e c ' < b' a n d 

a' Ai b' = 0 i t f o l l o w s f r o m t h e O - m o d u l a r i t y o f L\ t h a t 

LJ = (a V i u) A i ( a A2 b) = a A i ( a A2 b) = a A b 

a c c o r d i n g t o ( 2 * ) . 

L e t a" := a, b" := b a n d c" : = c . N o w c" < b" a n d a" A 2 b" - w , b y 

( 2 . 1 ) . T h u s , b y t h e O - m o d u l a r i t y o f c = b A2 ( a V2 c ) . S i n c e • 3 u < c , 

i t f o l l o w s f r o m ( 2 * ) t h a t a V2 c = ( a V i u) V 2 c = a V c a n d w e finally g e t 

c = 6 A ( a V c ) . 

C a s e I I I : a G L i , b E Li\L\ and c G L i \ L 2 . L e t 7 : = c V i a>. B y ( 3 * ) 

a n d ( 1 * ) i t is e a s y t o s e e t h a t • 3 J — c\/ UJ < b. O b v i o u s l y , 

(2 .2) w < 6 A ( a V w ) . 

F r o m a < a V i w € • a n d ( 2 * ) w e o b t a i n 

(2.3) a A i [ 6 A 2 ( a V i w ) ] = a A 6 = 0. 

L e t a := a, b := b A ( a V u ) a n d c : = w . U s i n g ( 2 . 2 ) , (2 .3) a n d t h e 

O - m o d u l a r i t y o f L\ a p p l i e d t o t h e t r i p l e t a , b, c, w e h a v e 

c = (a V i c) A i b = (a V i u) A i [6 A ( a V a>)]. 

B y ( 1 * ) a n d ( 3 * ) , a V w = flViw6« a n d b A (a V u) = 6 A 2 ( a V i u) G • . 

F r o m ( 1 * ) w e n o w find t h a t 

c — ( a V i u>) A2 [6 A2 ( a V i w)] = ( a V i u>) A2 6 

a n d s o 

( 2 . 4 ) w = ( o V i u) A 2 b. 

L e t a : = a V i u;, b :— b a n d c : = 7 . U s i n g (2 .4) a n d t h e O - m o d u l a r i t y of 

L2 a p p l i e d t o t h e t r i p l e t a, b, c, w e c a n s e e t h a t 

7 = c = ( a V2 c ) A2 b = [ (a V i u) V 2 7 ] A 2 b. 
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On the other hand, from (2*) and • 3 u < 7 we get (a Vi w) V27 = 
= a V 7. Thus 

(2.5) 7 = (o V 7 ) A2 b. 

Since 7 < £>, it follows that a A 7 < a A 6 = 0 and so a A 7 = 0. 
Let ao := a, b0 := 7 and Co = c. By the 0-modularity of L\ applied to 

the triplet ao, BO, CQ, 

c - c0 = (ao Vi co) Ai b0 = (a Vi c) Ai 7 . 

From (2.5), a V c < a V 7 6 » , (1*) and (2*), it follows that 

c = ( a V 1 c) Ai [(a V 7 ) A2 6] = (a Vi c) A 6 = 

= (a V c) A 6. 

Case IV: a € L2 \ L\ and b 6 L\. Then c E L\. Let 7 := c Vi w and 
(3 := b Vi w. Now, BAILJ-bAu<bAa = 0. 

Let a := LJ, b b and c := c. Applying the 0-modularity of L\ to the 
triplet a, b, c, we obtain 

(2.6) c = c = (a Vi c) Ai S = (LJ VI C ) AI b = b Ai 7. 

By b < (3 € • and (2*), 0 = 6 A a = b A1 (0 A2 a). 
Let ai 6, 61 := a A2 0 and ci := w. Applying the 0-modularity of L\ 

to the triplet 01, b\, ci, it is clear that 

LJ = ci = (ai Vi ci) Ai fei = (b Vi w) Ai (a A2 f3) — a A (3. 

If we set a2 := a, 62 := /5 and C2 ~ 7 , then by virtue of the 0-modularity 
of ¿2 applied to the triplet a^, 62, c2 we get 

7 = c2 = (02 V2 C2) A2 62 = (a V2 7 ) A2 (3. 

From (2.6), b < (3 € • and (2*) we then obtain 
(2.7) c = b Ai 7 = 6 Ai \P A2 (a V2 7)] = b A (a V2 7) . 

Since • 3 LJ < a, it follows from (2*) that a V2 7 = a V2 (w Vi c) = a V c. 
According to (2.7), we have c = 6 A (a V c). 

Case V: a G L2 \ ¿1, 6 € L2 \ Li. Then 0 = a A 6 £ L2, which is a 
contradiction to our assumption that L2 ^ L. m 

3. O-distributive lattices 
A lattice L with 0 is called O-distributive [13] if it satisfies the implication 

[(aA6 = 0 & a A c = 0]=> a A ( 6 V c ) = 0 

for every a, b, c of L. Y. Rav [9] calls such a lattice semiprime. See also [10]. 
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The seven-element lattice L7 = cd(Li, L 2 ) from Figure 1 is not 0-
distributive but its sublattices L\ and L 2 are O-distributive. In general, 
we can salvage the O-distributivity of L with a strenghthening of the as-
sumptions on Li, for example at the expense of requiring L\ or L2 to be 
distributive. 

THEOREM 3 . 1 . Let L = cd(Li, L2), let L\ be O-distributive and let L2 be 
distributive. Then L is O-distributive. 

P r o o f . Suppose that a, b, c G L, a A b = 0 and a A c = 0. Since L2 L, the 
situation where a and c belong to L2 is not possible. For the same reason 
we can exclude the case where a G L2 and b G L2- Moreover, if a, b and c 
belong to L\, then the assertion of the theorem is true by (1*). 

By symmetry in b and c, it suffices to consider the following three cases. 

Case I: a G L\, b G L\ and c G L 2 . Let W := a A (b V c). We intend to 
show that W = 0. 

It is obvious by (2*) that 

W = a Ai [a* A2 {b V c)] = a Ax {a* A2 [(6 Vi c+) V2 c]} 

where a < a* G • and • 3 c+ < c. Let V :— a* A2 [{b Vi c + ) V2 c]. By virtue 
of (1*), (3*) and the distributivity of L2 we have 

V = [O* A2 (b Vi c+)] V2 (a* A2 C) = [a* A2 (b Vi c+)] Vi (a* A2 c). 

Let H ~ a* A2 (6 V1 c+) and K := a* A2 c. Then from (1*) and (3*) it follows 
that H = a* Ai (6 Vi c+) and it is simple to verify that H, K G L\ and that 
W = a Ai (# Vi K). At the same time 

a Ai H = a Ai [a* Ai (6 Vi c+)] = (a Ax a*) Ai (6 Vi c+) = a Ai (6 Vi c + ) . 

By assumption and (1*), a f\\ b = a A b = 0. Similarly, a Ax c+ = 
= a A c + < a A c = 0. Since Li is O-distributive, we have a Ai H — 0. 
By (2*), a Ai K = a Ai (a* A2 c) = a A c = 0. From the O-distributivity of Li 
we see that W = a Ai V = a Ai (H Vi K) = 0. 

Case II: a 6 Li , 6 G ¿2 a^d c G £2- Let Q : = a A (6 V c) and P : = 
= a* A2 (6 V2 c) where a < a* G •. Then Q = a P. Since L2 is distributive, 
from (1*) and (3*) we obtain 

P = (a* A2 b) V2 (a* A2 c) = (a* A2 6) Va (a* A2 c) 

and so Q = a/\\ [(a* A26) Vi (a* A2C)]. From (2*) it is seen that aAi (a* A26) = 
= a A b = 0 and that a A\ (a* A2 c) = a A c = 0. Since Li is O-distributive, 
we have Q — 0. 
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Case III: a e L2, b 6 L\ and c € L\. Let B := a A (b V c). By (2*), B = 
(6Vic)Ai[(6Vic)*A2a] where £>Vic < (6Vic)* £ •. Pu t A := (&Vic)*A2a. By 
( 3 * ) , A € • and, clearly, B = ( f c V i c ) A i A Here bAxA = 6AI[(6VIC)*A 2 O ] . But 
b < (bye)*. Therefore, by (2*), bA-^A = bAa = 0. Similarly, cAxA = cAa = 0. 
It then follows from the O-distributivity of L\ that B = 0. • 

We end this section with a symmetric result. 

THEOREM 3 . 2 . Let L = cd(Li,L2), let L\ be a distributive lattice with 0 
and let L2 be O-distributive. Then L is 0-distributive. 

P r o o f . Let UJ denote the zero element of L2 . Suppose that a, b, c G L, 
a A b = 0 and a A c = 0. 

In a similar manner as in the proof of Theorem 3.1 we can see that it is 
sufficient to consider the following three cases. 

Case I: a e Li, b E L\ and c € L2. Let V a A (b V c). By (2*), 

V = a Ai [a* A2 (6 V c)] = a Ai {a* A2 [(b Vi c+) V2 c}}. 

Now • 3 u < c and, referring to (3*), we see that a < a Vi u 6 • . Thus we 
can choose a* = a V i w which gives 

V = a Ai {(a Vi u) A2 [(b Vi u) V2 c]}. 

From (3*) and (1*), 

(a Vi u) A2 (6 Vi w) = (a Vi u ) Ai (6 Vi w). 

Since Li is distributive, it follows that 

(3.1) {a V i w) A2 (6 V i w) = ui. 

Notice that 

0 < u < (a Vi w) A2 C < a Vi w. 

Moreover, by (2*), 

a Ai [(a Vi w) A2 C] = a A c — 0. 
Let A := u, B := a and C := (aViw)A2c. Now A < C, 0 = BAXC = BAXA 
and a Vi w = B Vi yl = C Vi A. By the distributivity of L\ we therefore get 
C = A, i.e., 

(3.2) ( a V i w ) A2C = W. 

Since L2 is O-distributive, (3.1) and (3.2) yield 

(a V i u) A2 [(6 V i w) V2 c] = w. 

Consequently, K = o A i w < a A c = 0. 

Case II: a e Li, b € L2 and c G L2 . Let VT := a A (6 V c). By (2*), 
W" = a Ai [a* A2 (6 V2 c)]. In view of (3*) it is clear that we can choose 
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a* = oViw. Now, by (2*), 
a Ai [(a Vi u) A2 b] — a A b = 0. 

Since 
0 < U) < (a Vi OJ) A2 b < a Vi w, 

the distributivity of Li implies that a* A2 b = (a Vi a;) A2 6 = a>. Replacing 6 
by c and vice-versa, we similarly get o* A2 c = u. Since L2 is O-distributive, 
a* A2 (b V 2 c) = w. It follows that W = a A i w < a A c = 0 and so W = 0. 

Case III: a <E L2, b E Li and c e la- Let Z := a A (6 V c). By (2*) and 
(3*) , 

Z = {b Vi c) Ai [(6 Vi c Vi u) A2 a]. 

Since L\ is distributive, it follows from (2*) that 
Z = {b Ai [(6 Vi c Vi w) A2 a]} Vi {c Ai [(6 Vi c Vi u) A2 a]} 

= (6 A a) V (cAa) = 0. 
Acknowledgement. We express our sincere thanks to the referee for 
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