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LATTICES RESPECTING CONVEX DECOMPOSITIONS, I

Abstract. - We prove the following results: Let (L1, L2) be a convex decomposition
of a lattice L. If Ly and Ly are 0-modular, then L is 0-modular. If L; is 0-distributive
(or Ly is distributive with 0) and Ly is distributive (or Ly is O-distributive), then L is
0-distributive.

1. Introduction

In this paper we explore the idea of a lattice convexly decomposed into
two sublattices. The construction is based on a general approach [1] partly
explained in [2]. In [3] we used it to describe an algorithm how to decompose
a finite distributive lattice into its Boolean blocks by convex decompositions.
To avoid confusion, we finally remark that our convex decompositions are
more general than the well known construction of Hall and Dilworth [6, 7].
For some other aspects concerning amalgams of lattices or their pasting see
also [4].

The ordered couple (L1, Ls) is said to be a convex decomposition of a

lattice L (written L = E&(Ll, L,)) if Ly and L9 are sublattices of L such that
Li#L ?é Ly, LiyNLy # 0, LULys=L, L = (L10L2] and Ly = [LlﬂLz).
Here (LyNLy] = {a € L;3b € LyN Ly a < b} and the set [L; N Ly) is defined
dually.

Note that L; N Ly is a convex subset of L.

Figure 1 illustrates a convex decomposition of a seven-element lattice L.

We now recapitulate some results on convex decompositions. The reader
may find the corresponding details in (3].
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For the sake of brevity, let us first introduce the following notation: We
will write z € @ or @ 3 z for ¢ € L1 N Ly and Ly N Ly S z, respectively.

If Vi, A; denote the lattice operations in the lattice L; (i = 1,2) and if
V, A are the operations in L, then

(1*) for any a,b€ L;
aANb=aNb&aVb=aV;b
(2*) foranyae€ L, and b€ Ly
a/\bza/\l(a*/\2b)&aVb=(aV1b+)V2b

where b, and a* are any elements of L such that ¢ 3 b, < b and
a<a*€e;

(3*) for any a € Ly and every b€ o, aV b€ e; for any ¢ € Ly and every
dee cAdEoe,

Note that if (L1, L) is a convex decomposition of L, then L possesses a
smallest element if and only if L; possesses a smallest element and in this
case the both elements coincide.

2. 0-modular lattices

Recall that a lattice L with 0 is called 0-modular [13], [5] if, for all
a,bce LyaAb=0and ¢ < bimply ¢ = (aVc)Ab. (See also [10}], [11], [8]
and [12].)

THEOREM 2.1. Let L = ai)(Ll, L2) and let Ly and Ly be 0-modular lattices.
Then L is 0-modular.

Proof. Suppose that a,b,c € L, a Ab=10 and ¢ < b. Let w denote the zero
element of Ly. If h € Ly N Ly, then w < h. From w € Ly = [L1 N Ly) we can
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see that there exists d such that e 3 d < w < h € o. Since L1 N L is convex,
wE e,
We will consider several cases:

Casel: a € Ly and b € Lq. Then ¢ € L, and, by the 0-modularity od L,
bA(aVe)=bAy(aVic)=c

Casell: a € L1, b€ Ly \ Ly and c € Ly. By (3*), we have o :=aVw =
= a Vi w € o. To show that

(2.1) aAb=w,
we proceed as follows. By applying (2*), we see that a A1 (x A2 b) =

=aAb=0.Letad :=a,c :=wand ¥ :==aAyb=aAb. Since ¢ < b and
a’ A1 b =0 it follows from the 0-modularity of L, that

w=(aViw) A (aNgb)=aAi(aNb)=aAb

according to (2*).

Let " := a, b” := band ¢’ := c. Now ¢” < b’ and a”" A2 b = w, by
(2.1). Thus, by the 0-modularity of La, ¢ = b A (a V2 ¢). Since @ 3 w < ¢,
it follows from (2*) that a V¢ = (a Viw) V2 ¢ = a V¢ and we finally get
c=bA(aVe).

Case IIl: a € L1, b € Ly \ Ly and ¢ € Ly \ Ly. Let v := ¢ V; w. By (3%)
and (1*) it is easy to see that ¢ 3y = ¢V w < b. Obviously,

(2.2) w<bA(aVw).
From a < a Vj w € e and (2*) we obtain
(23) a\q [b/\2 (avlw)]——-a/\bz().

Let @ :==a, b := bA (aVw) and C = w. Using (2.2), (2.3) and the
0-modularity of L; applied to the triplet @, b, ¢, we have

c=@V1ie)A1b= (aViw) A1 [bA (aVw)].

By (1*) and (3*),aVw =0aViw €oand bA(aVw)=bAs(aViw) E e.
From (1*) we now find that

c= (aVlw) No [b/\g (avlw)] = (aVlw)/\zb
and so
(2.4) w= (a Vi w) Ag b.

Letd:=aViw, b:=b and ¢ := v. Using (2.4) and the 0-modularity of
L, applied to the triplet a, b, é, we can see that

y=&=(aV2&) Ny b=[(aViw)Vaq]Agb.
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On the other hand, from (2*) and ¢ > w < v we get (a Vi w) Vay =
=a V. Thus
(2.5) y=(aV~y)Azb.

Since ¥ < b, it follows that aAy<aAb=0and soaA~vy=0.
Let ag := a, bp := v and ¢y = c¢. By the 0-modularity of L; applied to
the triplet ag, by, ¢,

c=co=(apVico)A1bp = (aVic)Ar7.
From (2.5), aVc<aVy€ e, (1*) and (2*), it follows that
c=(aVic)A[(aVy)Aebl=(aVic)Ab=
=(aVc)Ab

Case IV: a € L\ Ly and b € L. Then ¢ € L;. Let v := ¢ V; w and
B:=bViw. Now, bAiw=bAw<bAa=0.

~

Let @ := w, b := b and ¢ := c. Applying the 0-modularity of L; to the
triplet @, b, ¢, we obtain

(2.6) c=é¢=(aViéd) Ab=(wVic)AMb=bA1".

Byb<pBe€eand (2%),0=bAa=bA; (BAz0).
Let a3 :=b, by := a Ay B and ¢; := w. Applying the 0-modularity of L,
to the triplet a1, b1, €1, it is clear that

w=c1=(a1V1c1)/\1b1=(bV1w)/\1 (a/\2,3)=a/\ﬂ.

If we set a := a, be := § and ¢y := 4, then by virtue of the 0-modularity
of Ly applied to the triplet as, b2, c» we get

Y =cCy = (a2V262)/\2b2 = (aV2’y)/\2ﬂ.
From (2.6), b < § € e and (2*) we then obtain
(2.7) c=bMy=bA1[BA2(aVay)]=bA(aV2y).

Since ® 3 w < a, it follows from (2*) that aVoy =a Vs (wVic) =aVe.
According to (2.7), we have c=b A (a V).

Case V: a € Ly \ L1, b € Ly \ L;. Then 0 = a A b € Lo, which is a
contradiction to our assumption that Lo # L. =

3. O-distributive lattices
A lattice L with 0 is called 0-distributive [13] if it satisfies the implication

[(aAb=0& aAc=0]= aA(bVc)=0

for every a,b,c of L. Y. Rav [9] calls such a lattice semiprime. See also [10].
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The seven—element lattice L7 = a(Ll,L2) from Figure 1 is not 0-
distributive but its sublattices L; and Ls are O-distributive. In general,
we can salvage the O-distributivity of L with a strenghthening of the as-
sumptions on L;, for example at the expense of requiring L; or L2 to be
distributive.

THEOREM 3.1. Let L = cd(L1, Ls), let Ly be O-distributive and let Ly be
distributive. Then L is 0-distributive.

Proof. Suppose that a,b,c € L,aAb=0 and a A c=0. Since Ly # L, the
situation where a and ¢ belong to L, is not possible. For the same reason
we can exclude the case where a € Ly and b € Ly. Moreover, if a,b and ¢
belong to Lj, then the assertion of the theorem is true by (1*).

By symmetry in b and c, it suffices to consider the following three cases.

Casel:a € L1, be Ly andc € L. Let W :=a A (bV c). We intend to
show that W = 0.

It is obvious by (2*) that
W=aA[a" A2 (bV ) =an; {a* A2 [(bVicy) Vacl}

where a < a* € e and e > ¢y < c. Let V :=a* A2 [(bV1 cy) Va ¢|. By virtue
of (1*), (3*) and the distributivity of L, we have

V=[a"A2(bVicy)]Va(a®Azc) = [a* Ay (bVicy)] Vi (a* Az c).

Let H := a* /A2 (bVicy) and K := a* Az c. Then from (1*) and (3*) it follows
that H = a* A1 (b V1 c4+) and it is simple to verify that H, K € L; and that
W =aA; (H V1 K). At the same time

aN H=aN [a* A1 (b Vi C+)] = (a A1 CL*) A1 (b V1 C+) =a/\q (b V1 C+).

By assumption and (1*), a A7 b = e A'b = 0. Similarly, a Ay ¢4 =
=aAcy < aAc = 0. Since Ly is O-distributive, we have a Ay H = 0.
By (2*), aA;1 K = a A1 (a* Aac) = aAc = 0. From the 0-distributivity of L
weseethat W=aAN V=aA (HV1K)=0.

Case II: a € L1, b € Ly andc € Ly. Let Q := aA(bVec)and P :=
= a* Ny (bV2c) where a < a* € o. Then Q = a A1 P. Since Lo is distributive,
from (1*) and (3*) we obtain

P =(a" A2 b)Va (a* Aac) = (a* Nab) Vy (a* A2 )

and so Q = aA;[(a*A2b) V1 (a*Azc)]. From (2*) it is seen that aA; (a*Agb) =
=aAb=0 and that a A1 (a* A2¢c) = a Ac = 0. Since L; is 0-distributive,
we have @ = 0.
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Case IIl: a € Ly, b€ Ly andc € Ly. Let B:=a A (bVc). By (2*), B =
(bVic)A1[(bVic)* Aga] where bVie < (BVic)* € o. Put A := (bV1c)*Aza. By
(3*), A € e and, clearly, B = (bVic)A1A. Here bA1 A = bA;[(bV1€)*Aza]. But
b < (bVe)*. Therefore, by (2*), bA1 A = bAa = 0. Similarly, cA1 A = cAa = 0.
It then follows from the 0-distributivity of L; that B=0. =

We end this section with a symmetric result.

THEOREM 3.2. Let L = Q(Ll,Lg), let Ly be a distributive lattice with 0
and let Ly be 0-distributive. Then L is 0-distributive.

Proof. Let w denote the zero element of Ls. Suppose that a,b,c € L,
aAb=0and aAc=0.

In a similar manner as in the proof of Theorem 3.1 we can see that it is
sufficient to consider the following three cases.

Casel: a € L1, be Ly andc € Ly. Let V :=a A (bV ¢). By (2%),
V=an[a* N (bVe)] =aAn{a* A [(bV1cy)Vacl}

Now e > w < ¢ and, referring to (3*), we see that a < a Vi w € o. Thus we
can choose a* = a V; w which gives

V=an {(aViw) A2 [(bViw) Vacl}.
From (3*) and (1%),
(aViw) A2 (bViw) = (aViw) A1 (bViw).
Since L1 is distributive, it follows that
(3.1) (aViw) Ay (bViw) =w.

Notice that
0<w<(aViw)A2c<aViw.

Moreover, by (2%),
aM[(aViw)A2c)=aAc=0.

Let A:=w,B:=aand C := (aViw)A2c. Now A< C,0=BAC=BNA
and a V1w = B V1 A = C V1 A. By the distributivity of L; we therefore get
C=A,ie,

(3.2) (aViw) Az c=w.

Since Ly is 0-distributive, (3.1) and (3.2) yield
(aViw) A2 [(bViw) Vac] =w.

Consequently, V=aANw <aAc=0.

Case Il: a € L1, b € Ly and ¢ € L. Let W := a A (bV ¢). By (2%),
W = a Ay [a* Az (b Va c)]. In view of (3*) it is clear that we can choose



Convex decompositions 223

a* = a Vi w. Now, by (2%),
aM[(aViw)A2bj=aAb=0.

Since
0<w<(aViw)A2b<aViw,

the distributivity of L; implies that a* A2 b = (a V1 w) A2 b = w. Replacing b
by ¢ and vice—versa, we similarly get a* A2 ¢ = w. Since L» is O-distributive,
a* A2 (bVac) =w. It follows that W =aAjw <aAc=0and so W =0.

Case III: a € Ly, b€ L1 and ¢ € Ly. Let Z := a A (bV ). By (2*) and
(3%),
Z = (bV1 C) N1 [(bVl cVq w) Nog a].

Since L; is distributive, it follows from (2*) that
4 = {b A1 [(b ViecVh w) AV a]} Vi {C N1 [(b VicVy w) No a]}
=(bAa)V(cAa)=0.
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