

Brian Fisher

THE DELTA FUNCTION AND THE COMPOSITION OF DISTRIBUTIONS

Abstract. Let F be a distribution and let f be a locally summable function. The distribution $F(f)$ is defined as the neutrix limit of the sequence $\{F_n(f)\}$, where $F_n(x) = F(x) * \delta_n(x)$ and $\{\delta_n(x)\}$ is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$. The distribution $\delta^{(s)}(x_+^\lambda)$ is evaluated for $\lambda > 0$ and $s = 0, 1, 2, \dots$

In the following we let N be the neutrix, see [3], having domain N' the positive integers and range N'' the real numbers, with negligible functions which are finite linear sums of the functions

$$n^\lambda \ln^{r-1} n, \ln^r n : \quad \lambda > 0, \quad r = 1, 2, \dots$$

and all functions which converge to zero in the usual sense as n tends to infinity.

It follows that the neutrix limit of a function is unique if it exists and if the usual limit of a function exists, it exists as a neutrix limit and the two limits are equal.

To see how neutrices can be used to define distributions, see [6].

Now let $\rho(x)$ be an infinitely differentiable function having the following properties:

- (i) $\rho(x) = 0$ for $|x| \geq 1$,
- (ii) $\rho(x) \geq 0$,
- (iii) $\rho(x) = \rho(-x)$,
- (iv) $\int_{-1}^1 \rho(x) dx = 1$.

Key words and phrases: distribution, delta-function, composition of distributions, neutrix, neutrix limit.

1991 *Mathematics Subject Classification:* 46F10.

Putting $\delta_n(x) = n\rho(nx)$ for $n = 1, 2, \dots$, it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

Now let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}' be the space of distributions defined on \mathcal{D} . Then if f is an arbitrary distribution in \mathcal{D}' , we define

$$f_n(x) = (f * \delta_n)(x) = \langle f(t), \delta_n(x-t) \rangle$$

for $n = 1, 2, \dots$. It follows that $\{f_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution $f(x)$.

The following definition was given in [4].

DEFINITION 1. Let F be a distribution and let f be a locally summable function. We say that the distribution $F(f(x))$ exists and is equal to h on the open interval (a, b) if

$$\text{N-lim}_{n \rightarrow \infty} \int_{-\infty}^{\infty} F_n(f(x))\varphi(x)dx = \langle h(x), \varphi(x) \rangle$$

for all test functions φ with compact support contained in (a, b) .

The following theorems were proved in [4] and [5] respectively:

THEOREM 1. *The distributions $(x_-^\mu)_-^\lambda$ and $(x_+^\mu)_-^\lambda$ exists and*

$$(x_-^\mu)_-^\lambda = (x_+^\mu)_-^\lambda = 0$$

for $\mu > 0$ and $\lambda\mu \neq -1, -2, \dots$ and

$$(x_-^\mu)_-^\lambda = (-1)^{\lambda\mu} (x_+^\mu)_-^\lambda = \frac{\pi \text{cosec}(\pi\lambda)}{2\mu(-\lambda\mu-1)!} \delta^{(-\lambda\mu-1)}(x)$$

for $\mu > 0$, $\lambda \neq -1, -2, \dots$ and $\lambda\mu = -1, -2, \dots$

THEOREM 2. *The distribution $(x_+^r)_-^{-s}$ exists and*

$$(x_+^r)_-^{-s} = \frac{(-1)^{rs+s} c(\rho)}{r(rs-1)!} \delta^{(rs-1)}(x)$$

for $r, s = 1, 2, \dots$, where

$$c(\rho) = \int_0^1 \ln t \rho(t) dt.$$

Note that in the Theorem 2, the distribution x_-^{-s} is defined by

$$x_-^{-s} = -\frac{(\ln x_-)^{(s)}}{(s-1)!}$$

for $s = 1, 2, \dots$ and not as in Gel'fand and Shilov [7].

We need the following easily proved lemma:

LEMMA.

$$\int_0^1 x^s \rho^{(s)}(x) dx = \frac{1}{2}(-1)^s s!.$$

We now prove the following theorem:

THEOREM 3. *The distribution $\delta^{(s)}(x_+^\lambda)$ exists and*

$$(1) \quad \delta^{(s)}(x_+^\lambda) = 0$$

for $\lambda > 0$, $s = 0, 1, 2, \dots$ and $(s+1)\lambda \neq 1, 2, \dots$ and

$$(2) \quad \delta^{(s)}(x_+^\lambda) = \frac{(-1)^{(s+1)(\lambda+1)} s!}{2\lambda[(s+1)\lambda - 1]!} \delta^{((s+1)\lambda-1)}(x)$$

for $s = 0, 1, 2, \dots$ and $(s+1)\lambda = 1, 2, \dots$

Proof. We have to evaluate

$$(3) \quad N\text{-}\lim_{n \rightarrow \infty} \langle \delta_n^{(s)}(x_+^\lambda), \varphi(x) \rangle,$$

where $\varphi(x)$ is an arbitrary function in \mathcal{D} with support contained in the interval $[a, b]$. For convenience, we may assume that $a < 0 < b$. By Taylor's Theorem we have

$$\varphi(x) = \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(0)}{k!} x^k + \frac{x^r}{r!} \varphi^{(r)}(\xi x),$$

where $0 < \xi < 1$ and r is an integer chosen so that $r > (s+1)\lambda$. In order to evaluate (3), we have to evaluate

$$(4) \quad \begin{aligned} N\text{-}\lim_{n \rightarrow \infty} \langle \delta_n^{(s)}(x_+^\lambda), \varphi(x) \rangle &= N\text{-}\lim_{n \rightarrow \infty} \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(0)}{k!} \int_a^b x^k \delta_n^{(s)}(x_+^\lambda) dx + \\ &+ N\text{-}\lim_{n \rightarrow \infty} \frac{1}{r!} \int_a^b x^r \delta_n^{(s)}(x_+^\lambda) \varphi^{(r)}(\xi x) dx. \end{aligned}$$

Making the substitution $nx^\lambda = u$, we have for $n^{-1/\lambda} < b$

$$\begin{aligned} \int_a^b x^k \delta_n^{(s)}(x_+^\lambda) dx &= \int_0^{n^{-1/\lambda}} x^k \delta_n^{(s)}(x_+^\lambda) dx + \int_a^0 x^k \delta_n^{(s)}(x_+^\lambda) dx \\ &= \frac{n^{s-(k+1)/\lambda+1}}{\lambda} \int_0^1 u^{(k+1)/\lambda-1} \rho^{(s)}(u) du + n^{s+1} \rho^{(s)}(0) \int_a^0 x^k dx, \end{aligned}$$

where $n^{s-(k+1)/\lambda+1}$ is a negligible function if $k \neq (s+1)\lambda - 1$ and it follows that

$$(5) \quad N\text{-}\lim_{n \rightarrow \infty} \int_a^b x^k \delta_n^{(s)}(x_+^\lambda) dx = \begin{cases} \frac{1}{2}(-1)^s s!/\lambda, & k = (s+1)\lambda - 1, \\ 0, & k \neq (s+1)\lambda - 1, \end{cases}$$

on using the lemma.

Next, we have

$$\begin{aligned} \int_0^b |x^r \delta_n^{(s)}(x_+^\lambda)| dx &= \int_0^{n^{-1/\lambda}} |x^r \delta_n^{(s)}(x_+^\lambda)| dx \\ &= \frac{n^{s-(r+1)/\lambda+1}}{\lambda} \int_0^1 |u^{(k+1)/\lambda-1} \rho^{(s)}(u)| du \\ &= O(n^{s-(r+1)/\lambda+1}) \end{aligned}$$

and it follows that

$$(6) \quad \lim_{n \rightarrow \infty} \int_0^b x^r \delta_n^{(s)}(x_+^\lambda) \varphi^{(r)}(\xi x) dx = 0.$$

Further

$$\int_a^0 x^r \delta_n^{(s)}(x_+^\lambda) \varphi^{(r)}(\xi x) dx = n^{s+1} \rho^{(s)}(0) \int_a^0 x^k \varphi^{(r)}(\xi x) dx$$

and it follows that

$$(7) \quad \text{N-} \lim_{n \rightarrow \infty} \int_a^0 x^r \delta_n^{(s)}(x_+^\lambda) \varphi^{(r)}(\xi x) dx = 0.$$

It now follows from equations (4) to (7) that

$$\text{N-} \lim_{n \rightarrow \infty} \langle \delta_n^{(s)}(x_+^\lambda), \varphi(x) \rangle = 0$$

for $(s+1)\lambda \neq 0, 1, 2, \dots$, proving equation (1) and

$$\text{N-} \lim_{n \rightarrow \infty} \langle \delta_n^{(s)}(x_+^\lambda), \varphi(x) \rangle = \frac{(-1)^s s! \varphi^{((s+1)\lambda-1)}(0)}{2\lambda[(s+1)\lambda-1]!}$$

for $(s+1)\lambda = 1, 2, \dots$, proving equation (2).

COROLLARY 3.1 *The distribution $\delta^{(s)}(x_-^\lambda)$ exists and*

$$(8) \quad \delta^{(s)}(x_-^\lambda) = 0$$

for $\lambda > 0$, $s = 0, 1, 2, \dots$ and $(s+1)\lambda \neq 1, 2, \dots$ and

$$(9) \quad \delta^{(s)}(x_-^\lambda) = \frac{(-1)^s s!}{2\lambda[(s+1)\lambda-1]!} \delta^{((s+1)\lambda-1)}(x)$$

for $s = 0, 1, 2, \dots$ and $(s+1)\lambda = 1, 2, \dots$

Proof. Equations (8) and (9) follow on replacing x by $-x$ in equations (1) and (2) respectively.

THEOREM 4. *The distribution $\delta^{(s)}(|x|^\lambda)$ exists and*

$$(10) \quad \delta^{(s)}(|x|^\lambda) = 0$$

for $\lambda > 0$, $s = 0, 1, 2, \dots$ and $(s+1)\lambda = 2, 4, \dots$ and

$$(11) \quad \delta^{(s)}(|x|^\lambda) = \frac{(-1)^{(s+1)(\lambda+1)} s!}{\lambda[(s+1)\lambda - 1]!} \delta^{((s+1)\lambda-1)}(x)$$

for $s = 0, 1, 2, \dots$ and $(s+1)\lambda = 1, 3, \dots$

Proof. This time, with $n^{-1/\lambda} < \min\{-a, b\}$, we have

$$\begin{aligned} \int_a^b x^k \delta_n^{(s)}(|x|^\lambda) dx &= \int_{-n^{-1/\lambda}}^{n^{-1/\lambda}} x^k \delta_n^{(s)}(|x|^\lambda) dx \\ &= \frac{n^{s-(k+1)/\lambda+1}}{\lambda} \int_{-1}^1 u^{(k+1)/\lambda-1} \rho^{(s)}(|u|) du \end{aligned}$$

and it follows that

$$\begin{aligned} (12) \quad \lim_{n \rightarrow \infty} \int_a^b x^k \delta_n^{(s)}(|x|^\lambda) dx \\ &= \begin{cases} (-1)^s s! / \lambda, & \text{even } k = (s+1)\lambda - 1, \\ 0, & \text{odd } k = (s+1)\lambda - 1. \end{cases} \end{aligned}$$

Next, we have

$$\begin{aligned} \int_a^b |x^r \delta_n^{(s)}(|x|^\lambda)| dx &= \int_{-n^{-1/\lambda}}^{n^{-1/\lambda}} |x^r \delta_n^{(s)}(|x|^\lambda)| dx \\ &= \frac{n^{s-(r+1)/\lambda+1}}{\lambda} \int_{-1}^1 |u^{(k+1)/\lambda-1} \rho^{(s)}(|u|)| du \\ &= O(n^{s-(r+1)/\lambda+1}) \end{aligned}$$

and it follows that

$$(13) \quad \lim_{n \rightarrow \infty} \int_a^b x^r \delta_n^{(s)}(|x|^\lambda) \varphi^{(r)}(\xi x) dx = 0.$$

Equations (10) and (11) now follow as above from equations (12) and (13).

THEOREM 5. *The distribution $\delta^{(s)}(\operatorname{sgn} x|x|^\lambda)$ exists and*

$$(14) \quad \delta^{(s)}(\operatorname{sgn} x|x|^\lambda) = 0$$

for $\lambda > 0$, $s = 0, 1, 2, \dots$ and $(s+1)\lambda = 1, 3, \dots$ and

$$(15) \quad \delta^{(s)}(\operatorname{sgn} x|x|^\lambda) = \frac{(-1)^{(s+1)(\lambda+1)} s!}{\lambda[(s+1)\lambda - 1]!} \delta^{((s+1)\lambda-1)}(x)$$

for $s = 0, 1, 2, \dots$ and $(s+1)\lambda = 2, 4, \dots$

Proof. Again with $n^{-1/\lambda} < \min\{-a, b\}$, we have

$$\begin{aligned} \int_a^b x^k \delta_n^{(s)}(\operatorname{sgn} x|x|^\lambda) dx &= \int_{-n^{-1/\lambda}}^{n^{-1/\lambda}} x^k \delta_n^{(s)}(\operatorname{sgn} x|x|^\lambda) dx \\ &= \frac{n^{s-(k+1)/\lambda+1}}{\lambda} \int_{-1}^1 u^{(k+1)/\lambda-1} \rho^{(s)}(\operatorname{sgn} u|u|) du \end{aligned}$$

and it follows that

$$(16) \quad N\lim_{n \rightarrow \infty} \int_a^b x^k \delta_n^{(s)}(\operatorname{sgn} x|x|^\lambda) dx = \begin{cases} (-1)^s s!/\lambda, & \text{odd } k = (s+1)\lambda - 1, \\ 0, & \text{even } k = (s+1)\lambda - 1. \end{cases}$$

Next, we have

$$\begin{aligned} \int_a^b |x^r \delta_n^{(s)}(\operatorname{sgn} x|x|^\lambda)| dx &= \int_{-n^{-1/\lambda}}^{n^{-1/\lambda}} |x^r \delta_n^{(s)}(\operatorname{sgn} x|x|^\lambda)| dx \\ &= \frac{n^{s-(r+1)/\lambda+1}}{\lambda} \int_{-1}^1 |u^{(k+1)/\lambda-1} \rho^{(s)}(\operatorname{sgn} u|u|)| du \\ &= O(n^{s-(r+1)/\lambda+1}) \end{aligned}$$

and it follows that

$$(17) \quad \lim_{n \rightarrow \infty} \int_a^b x^r \delta_n^{(s)}(\operatorname{sgn} x|x|^\lambda) \varphi^{(r)}(\xi x) dx = 0.$$

Equations (14) and (15) now follow as above from equations (16) and (17).

For further related results, see [1], [2] [8] and [9].

Acknowledgement. The author would like to thank the referee for his help in the improvement of this paper.

References

- [1] F. Al-Sirehy and B. Fisher, *A composition of distributions*, Internat. J. Appl. Math., 1 (6) (1999), 689–694.
- [2] F. Al-Sirehy and B. Fisher, *The composition of the functions $|x|^{-\lambda}$ and $|x|^{2r/\lambda}$* , Fract. Calc. Appl. Anal. 2 (5) (1999), 575–582.
- [3] J. G. van der Corput, *Introduction to the neutrix calculus*, J. Analyse Math. 7 (1959), 291–398.
- [4] B. Fisher, *On defining the change of variable in distributions*, Rostock. Math. Kolloq. 28 (1985), 75–86.
- [5] B. Fisher, *On defining the distribution $(x_+^r)^{-s}$* , Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 15 (1985), 119–129.
- [6] B. Fisher, *Neutrices and Distributions*, Complex Analysis and Applications '87, Sofia 1989, 169–175.
- [7] I. M. Gel'fand and G. E. Shilov, *Generalized Functions*, Vol. I, Academic Press, 1964.
- [8] B. Jolevska-Tuneska and B. Fisher, *Results on the compositions of distributions*, Internat. J. Appl. Math. 5 (4) (2001), 407–418.
- [9] J. D. Nicholas and B. Fisher, *A result on the composition of distributions*, Proc. (Math. Sci.), I.A.Sc., 109 (3) (1999), 33–42.

INSTITUTE OF SIMULATION SCIENCES
SERC, HAWTHORN BUILDING
DE MONTFORT UNIVERSITY
LEICESTER, LE1 9BH, ENGLAND

and

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
UNIVERSITY OF LEICESTER
LEICESTER, LE1 7RH, ENGLAND
E-mail: fbr@le.ac.uk

Received December 11, 2000; revised version April 25, 2001.

