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ASYMPTOTICS OF PSEUDODIFFERENTIAL
PARABOLIC EQUATIONS

Abstract. The paper provides new type examples covered by the general theory of
global attractors for abstract parabolic equations presented in the monograph [C-D 1].
Inside the class of sectorial equations of the form

) 4+ Au = F(u), t > 0, u(0) = uo,
we cover pseudodifferential parabolic problems
) up = ~(~A)*u + f(u), a €(0,1),

studied with suitable initial-boundary conditions and also their generalizations to prob-
lems with the main part being a finite sum of the fractional powers.

1. Part I. Abstract tools

Introductory notes. A class of equations with the main part being a
fractional power of a uniformly elliptic operator (or a finite sum of such
powers) will be studied here within the theory introduced in [FR], [HE], [PA]
and developed in our recent monograph [C-D 1]. There is no difference, in
general, in studying local solvability of abstract parabolic problems of the
form (1) and pseudodifferential equations (2) (or its generalizations), since
fractional powers of sectorial positive operators are, for a € (0, 1), sectorial
and positive. In this discussion it is convenient to use a notion, due to H.
T

Komatsu, of an operator of the type (w, M(6)) with w < § in a Banach
space X.

DEFINITION 1. We say that A is of type (w,M(6)), 0 < w < m, if the
domain D(A) is dense in X, the resolvent set of —A contains the sector
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larg M| < m ~ w and the condition ||A(A+ A)~!|| < M(6) holds on each ray
A=re? r e (0,400), |6 < T ~w.

One may easily show that A is of the type (w, M()), w < %, if and only
if A is a sectorial positive operator in the sense of [HE]. The equivalence of
these two notions will be discussed in the Appendix.

An interesting theorem by T. Kato (see [KO, p. 320]) ensures that:

PROPOSITION 1. If A is of type (w,M(#)) and if 0 < a < I, then A®
is of type (aw, Mq(0)) with certain positive constant My (). Furthermore,
the resolvent of A% is analytic in o and X in the domain 0 < a < Z

w’
largA| < ™ — aw.

As a consequence, any proper fractional power A%, a € (0,1), of a sec-
torial positive operator A will be sectorial and positive itself. Furthermore,

OBSERVATION 1. If A is of type (w, M(6)) withw < §, then the sum A+ AP
is a sectorial operator for any B € (0,1).

The above observation follows directly from [HE, Theorem 1.4.4] and
[HE, Example 6, p. 19] since

=8
Ves0 Yoe(0,1) Yoen(a) 14%2lix < el Azlx + C'eT7 |z x.

Observation 1 may be formulated even more generally. As a direct con-
sequence of [HE, Corollary 1.4.5] one has (see also [G-G-S}):

OBSERVATION 2. Let A be of type (w,M(6)) and the operators Bj, j =
1,...,m, be linear on a base space X. If B;A=% € L(X, X) for some num-
bers a; € [0,1), then the operator A + 3772, B; is sectorial in X.

Local solvability of abstract parabolic equations. As follows from the
above considerations pseudodifferential equations of the type (2) fall into a
class of abstract parabolic equations

(3) @+ Au=F(u), t>0, u(0)=up,

where A : D(A) — X is a sectorial positive operator in a Banach space X
and, for some 8 € [0,1), the nonlinear term F : X# — X, X# = D(4P),
is Lipschitz continuous on bounded sets. Recall that (see [HE, Chapter 3],
[C-D 1, Sections 2.1, 9.4]):

PROPOSITION 2. Under the above assumptions there is a unique XP solution
u of (3) with ug € XP, defined on a mazimal interval of ezistence [0, Ty, ),
and such that

u € C([0,7ug), XP) N CL((0, 7o), X7) N C((0, 7o), X 1), ¥ € [0,1).
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If the Lipschitz condition for F is violated, solvability of (3) is a more
delicate problem. The following result comes from [C-D 2] and is based on
the original considerations of [L-M].

PROPOSITION 3. If A is a sectorial positive operator in a Banach space
X, the resolvent of A is compact and, for some 8 € [0,1), F: XP — X is
continuous and takes bounded subsets of X® into bounded subsets of X, then
(3) has a local mild solution u € C([0,7), XP) fulfilling the Cauchy integral
formula

¢
(4) u(t, ug) = e g + Se_A(t"’)F(u(s))ds, t € [0,7).
0

Extendibility of the local solutions and a global attractor. If the
solutions are unique and exist globally in time, the problem (3) defines a C°
semigroup on a phase space X?. To describe the stability of (3) we recall a
notion of a global attractor (see [HA]) which is a compact, nonempty, and
invariant set 4, such that

sup inf ||T(t)wy — wa|lxs — 0 as t — +oo,

w EB W2€EA
whenever B is bounded in X7.

The following result of [C-D 1] provides the abstract conditions for the

existence of the global attractor.

PROPOSITION 4. Under the assumptions of Proposition 2, when the resolvent
of A is compact, the following two conditions are equivalent:

(i) relation T(t)ug = u(t,uo), t > 0, defines on XP a C° semigroup of
global solutions which has a global attractor,

(ii) It is possible to choose: a Banach space Y, with D(A) C Y, a locally
bounded function ¢ : Rt — R*, a nondecreasing function g : R* — R™,
and a certain number 0 € [0,1), such that,

(5) lu(t, wo)lly < c(lluollxs), t € (0,7u), uo € X7,
and, simultaneously,

(6)  |IF(u(t,u0))llx < g(llu(t, uo)lly)(1 + llu(t, uo)l%s),
t € (0,7y,),u0 € Xﬂ,
where (5) is also asymptotically independent of ug € XP.
Proposition 4 may be proved similarily as {C-D 1, Corollary 4.2.2]. We
remark that 8 € [0, %) is admissible in (6) provided that Y C X (see [C-D 1,
Remark 3.1.3]). Also, under the assumptions of Proposition 3, (ii) is sufficient

for (3) to generate a semigroup having a global attractor in X (see [C-D 2,
Corollary 1]) whenever mild solutions (4) are unique.
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Excerpts from the theory of interpolation. In applications it is im-
portant to have the embeddings of fractional power spaces in Sobolev and
Holder type spaces. It is even more convenient to have the complete charac-
terization of X# spaces (X being a complex Banach space) which is known,
provided that the purely imaginary powers of A are bounded; i.e.

(7) A%l cx,x) < ce, t € [—€,€].
If this is the case, the following interpolation formula holds
®) D(ACG-9e+98) = [D(A%), D(4%)}s, @, 20,0 € (0,1),

where [, -] denotes the complez interpolation functor (see [TR]). The well
known examples of operators with the BZP property (7) are the maximal
accretive operators in a Hilbert space with 0 in the resolvent set or, to be
more specific, the self-adjoint, positive definite operators. For the discussion
concerning the BIP property of the elliptic operators we refer to [C-D 1,
Section 1.3], which provides the overview of the recent results within this
field.

The operator —Ap in LP(2), p € (1,+00), Q € C?, appearing in the
examples below has been recently studied in [P-S] where it was shown that

Voe(o,m 3,850 | (—AD) | o) oy < Mp(0)e¥, t € R.
Therefore we have a characterization (8) of the domains X§, = D(—-Ap)*
and, in particular,

9) X =[LP(Q), W*P(Q) n Wy P(Q)]a C HZ*(), a € (0,1).

Using (9) and the embeddings for the spaces H2*(2) of Bessel potentials
(see [TR]), we obtain strict inclusions:

W4(Q) if 2a—%23—%,2§p§q<+oo,
10 X7 C .
(10) = oku(qy i 2a—%2k+,u, keN, pe(0,1).

Note that e.g. for p = 2 with further assumption 92 € C?*7, n > 0, the
inclusion in (9) turns to the equality

1
(11) Xfe = H34(Q), @ €[0,1], 20 # 2,
(see [GU 1], [C-D 1] for details).

2. Part II. Examples

We provide here two special examples of equations having fractional
powers of elliptic operators as the main part. Another equations and their
physical motivation may be found in [B-P-F-§] and [F-S-Z].
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EXAMPLE 1. As a first example consider a variant of an equation of anoma-
lous diffusion studied e.g. in [B-K-W 2], that is the equation of the form:

(12) u+ (-Ap)*u+b(z) - V(f(u))=0, t>0, z€Q,

where a € (%,1), b: R* O ! — R" is a differentiable, bounded vector
function and f(u) was originally equal to u|u|["~! with some r > 1. Here
f: R > Ris C' with f locally Lipschitz continuous function and we
require that

(13) divb(z) =0, z€Q.

The equation (12) will be studied in a bounded domain with the boundary
00 € C?** g > 0, together with homogeneous Dirichlet initial-boundary
conditions
(14) {u(O,z) = up(z), €N,

Ujpq = 0.

Equation (12) in L?(Q2). The problem (12), (14) will be considered first as
an abstract parabolic equation (3) in the base space X = LP(2) withp > n
and A = (—Ap)®, Ap being the Laplacian with homogeneous Dirichlet
boundary condition, in which case (10) gives

D((-Ap)f) = XE, cwr (@) cC@), B2

[T

Define
(15) F(u) =b-V(f(v))
and take a bounded set U C W1P(Q). For ¢,% € U, we obtain

(16)  [|F(8) — F(¥)lle(a)
SN(F (@) — ' (@)b - Vol Loy + I f' ()b - V(¢ — ¥)llo(e)
< [Ibllizeayn (15 (8) = £/ (@)@l dllwr e ()
HF @z (@)ll¢ ~ Yllwre@)
< Cullé — Yllwrog),

where local Lipschitz continuity of f' has been used. As a consequence of
Proposition 2, to any ug € X f,,, B € (%, a), corresponds a unique X f, solu-
tion of (12), (14). According to the theory developed in [C-D 1], for global
solvability we need an additional e priori estimate of the local solutions in
an auxilliary Banach space Y. In this example we shall choose Y = L*®(f2).

L*®(f) estimate. Multiplying (12) by u?*~1, k =1,2,..., and integrating
over {) we obtain

07 g5 e = = §(-00)"uu e~ [ bia) - V(f (e
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Note that we have the equality

[ b(z) - V(f(u))u®*ldz = [ b(2) - V(ge(u))dz,
Q Q

where gi(s) = {j f'(2)22*~1dz. Now the properties gi(0) = 0 and (13) ensure
that the last integral in (17) vanishes. The first right hand side term in (17)
will be transformed based on the Kato-Beurling-Deny inequality (40) with
q=2k:

(18) - S(—AD)O‘u'M%_1 dz = - {(-Ap)*u |u|**~! sgnudz
Q Q
2k~ 1

S— k2

[ 1(=2D)% (jul*)dz.
Q

Note, that for arbitrary ¢ > 0 the local Xg,, solution u to (12), (14), B €
(3, @), belongs to Xg C WP(Q) c C(Q), so that |ulF € H}(R), k € N.
Now, continuity of the inclusion D((—Ap)*) C L%(Q) allows us to complete
the L2%((Q2) estimate

k2

L
2k

| s

S ukdz

au

S u?*dz < —const.
t 0

and to get the inequality

- 2k-1
(19) ”’lL(t, UO)”L%(Q) < ”uOHsz(Q)e Conat.—k!—t.

Letting k£ tend to infinity, one finds

(20) lu(t, uo)ll Loy < lluollzeo(a),

so that the solutions are estimated globally in time in L*(£2).

REMARK 1. The a priori estimates (19), (20) are formally valid also when 3 €
(0, %—], provided that solutions under consideration are sufficiently
smooth. However, for such range of the parameter 3, equation (12) changes
its type since the nonlinearity is not subordinated to the main linear part.
In that case we do not have local existence of solutions within the approach
used in this paper.

The subordination condition for the nonlinear term (see [C-D 1, condition
(3.1.4)}) may now be written in the form:
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(21) I F (u(t, uo))llLe(a)
= || (u(t, u0))b - Vu(t, uo)llLr()
< sup | f(s)llIbllizeo (o llu(t, uo) lwrra),

sl uo)lo,

thus the local X f,, solution to (12), (14) is in fact global in time for any
Be(}a)

Having (20) and (21) we know that the problem (12), (14) generates on
Xf,, a compact C° semigroup {T'(t)} of global solutions (see Remark 2 (i)),
which has bounded orbits of bounded sets. This and (19) guarantee next
that for each ugp € X g,, the w-limit set wys (uo) consists of a single element

0, which is the unique equilibrium of {T'(t)} and, furthermore,
T(t)up — 0 in Xg,, as t — +o0.
We thus conclude that:

THEOREM 1. For each 8 € (3,0) the problem (12), (14) generates on Xf,,
a C°® semigroup of global solutions. The stationary solution 0 is globally
asymptotically stable.

REMARK 2. For f(s) = s|s|"~! Example 1 reduces to the problem studied
in [B-K-W 2|. However, for the validity of the above calculations we need
to take r > 2 which is not the case considered in [B-K-W 2]. To cover the
case when f is only of class C*(R) (e.g. f(s) = s|s|"~! with r € (1,2)) we
shall refer to Proposition 3. For this we need to check that: (i) the resolvent
of (—Ap)® is compact and that (ii) F : Xg,, — X defined in (15) is a
continuous function which takes bounded subsets of X E,,, B € (%,a), into
bounded subsets of LP(2).

Property (i) is immediate, since ((—Ap)®)~! = (~Ap)~* is a bounded
linear operator defined on the whole of X and (-Ap)~%(X) = X7, is com-
pactly embedded in X.

For the proof of (ii) we rewrite (21) in a form

22) IF@lle) < sup [ (s)lIblize@ymlldllwrr), ¢ € WHP(R).

sizli®le@)
Since p > n and f’ is locally bounded it is clear from (22) that F(B)
is bounded in LP(?) whenever B is bounded in W1P(Q). Also, as seen
from the second inequality in (16), convergence of {¢,} in WlP(Q2) c C(Q)
ensures convergence of {F(¢p)} in LP(R), p > n, which shows continuity of
F: X g, — X. Consequently, recalling Proposition 3, the problem (12), (14)
possesses a (not necessarily unique) mild solution u(-, ug) for each ug € X g,,.
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Equation (12) in L?(f). It may be interesting to consider Example 1 in a
larger base space, like L2(§2). We shall outline below solvability of (12), (14)
in this case. Unlike in the case X = LP(f2), p > n, we need here to restrict
the growth of the nonlinear term f according to the condition

(23) 1f'(s1) = f'(s2)] S clsr — sal (1 + Isa|"™* + |27, 51,82 € R,

where

(24) 1< { arbitrarily large if 48 > n,
r

<#2 if 4B<n<8p-2.

Using Holder inequality and the assumptions (23), (24), one can check Lip-

schitz continuity of the nonlinear term (15) acting from Xf,_ to L3(9),

B € (1, a). This justifies local solvability of (12), (14) in ng, Be (3 a)
For global solvability and the existence of a global attractor it suffices to

find time independent estimate of || F'(u(t, uo))||12()- Considerations similar

to those justifying the Lipschitz continuity of F in L?(f2) give for n > 2

| F(d)llL2(ay < const.|(1+ |¢]")| VeIl L2(q)
< const. ([11V]llz2(@) + ¢ zzer (e IVl 20y ) »
+n

withp =272 ¢= S which leads to the estimate

25 F < n(r n(r ,
(25) 1@z < 916 mesns Gy sezn

with certain nondecreasing function g : Rt — R*. When r fulfills (24), the

2n!r+12
inclusion sz c WhTertn () allows us to extend (25) to a subordination
condition of type (6). The uniform in time and asymptotically independent

f up € X?, estimate of [|u(t nray  foll in (17)-(19).
of ug € X7, estimate of ||u( ,uo)lle o ollows as in (17)-(19)
For n = 1,2 one may use the estimate

WF (D) L2y < const.(|||Vll| L2y + ||¢||23_33(Q)|||V¢|||Ls(n)), 5> 2,

together with the embedding X fz C Whs(Q), valid for n = 1,2, 6 > 1 and
s > 2 sufficiently close to 2, to get the similar conclusion.

Therefore, Theorem 1 remains true also when X = L2(Q) is the base
space.

REMARK 3. It is possible to extend further the base space X. As a result
of [GU 2, Theorem 1.7], the Cauchy problem for (12) in half space (i.e.
when (¢,z) € Rt x R") may be studied in L!(R"). In that case our abstract
approach meets the considerations of [B-K-W 1], [B-K-W 2]. Since the space
average of the solution is preserved in time (see [B-K-W 1}), the asymptotic
behavior in L!(R™) is no more trivial.
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EXAMPLE 2. As a second example consider the fractional dissipative equa-
tion (see [VA]):

(26) {”t =—(-Ap)*u+g(u), t>0,zeQ,

’LL(O,:E) = U()(m), T €, =0,

Usn

where € is a bounded domain in R™ with Q € C? and o € (0,1). We
assume that g : R — R is a locally Lipschitz function and choose p > 2 such
that 2a — 2 > 0.

The equation (26) may be rewritten as an abstract problem in X = LP(Q)
with corresponding to g Nemytskii operator G : X g,, — X being Lipschitz

continuous on bounded sets. Here Xg,, denotes the domain of (~Ap)? in
LP(2) and B is such that

(27) 2ﬂ—%>0, ﬁe[%,a),

so the embedding X fp C C(f) is continuous. The above justifies existence
of the local X g,, solutions to (26).

Global solutions to (26). For the global solvability and the existence of a
global attractor we shall assume additionally that g fulfills the dissipative-
ness condition:

(28) lim sup 9(s) <0.
ls|=+00 S

As in the case of a scalar parabolic equation (see [HA, p. 75]), for 8 given
in (27) the formula

(29) L(¢) =

N =

¢
{[(~ap)s¢)2dz — | | g(s)dsdz, ¢ € XE,,
Q Qo0

defines a Lyapunov function on X g,,. Since L£(u(t,up)) is decreasing in time
we have an a priori estimate

u(t,uo)
(30) %S[(—AD)%u(t,uo)]zdzS[,(uo)+S [ g(s)dsda.
Q Q 0

Following [HA, p. 76], the dissipativeness condition implies that

z
Sg(s)ds <e+C., z€R,
0

with arbitrary ¢ > 0 and a corresponding constant C, > 0. Therefore, (30)
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extends to the estimate

(31) { [(~AD)%u(t, uo))* dz < 4(L(uo) + const.|Q),
Q

being the required a priori estimate of the solutions in Eﬁ'

When |G(s)] < ¢(1 + |s|") with
{7‘<1+1:27°‘5 and B in (27), n > 2a,
2

r arbitrarily large, n < 2¢,

the X 1?2 estimate (31) is sufficient for global Xfp solvability of (26) (see
[C-D 1, Section 5.2]). To avoid the growth restriction on g we need to
strengthen the estimate (31). Since (31) implies the L?(2) estimate, an
L*®(Q) estimate of the X f,, solutions to (26) will follow from Lemma 1 (see
Appendix).

Asymptotic behavior of solutions to (26). As known, the existence of
a Lyapunov function having all properties of [HA, pp. 49-50] determines
the asymptotic behavior of solutions. Following closely the presentation of
[HA, pp. 76-77] one can check that the problem (26) generates on X g,, B
satisfying (27)) a gradient system whenever g is a C? function.

All w-limit sets of points are contained in the set E of stationary solutions
to (26), that is in the set of X§, solutions to
(32) { (—Ap)*v =g(v), ve X,
=0.
Whenever the set E is bounded in X§,, compactness of the resolvent of
(—Ap)* (see Remark 2) ensures the existence of a global attractor A for
the semigroup generated by (26) on X fp, B as in (27) (see [HA, Theorem
3.8.5]).

Boundedness of the set E. First we show that the set E of solutions v
to (32) is bounded in L?(f2). Multiplying (32) by v, integrating and using
(43), we find that

(33) {(~Ap)*vvdz < C | v?dz + D|Q,
0 0

Y0aq

and since R .
const. S p2dz < S [(—AD)%qS} dz, ¢ € ng,
Q Q
then (33) provides an L%(f2) estimate of v for C = 1const..
Using the recurrence technique of Moser-Alikakos, the L%(Q) estimate of
the set E may next be sharpened to an L*°({2) estimate, analogously as in
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the proof of Lemma 1 (see [C-D 1, Lemma 6.2.2] for details). Finally from
(32) we find
(34) S |(-Ap)®v|Pdz = S lg(v)|Pdz < const.(llvllLoo(Q)) < 400,

Q 0

which shows that E is bounded in X§;.
We shall summarize the above studies in the following:

THEOREM 2. The problem (26) studied on LP(R), p 2 2, 2a — 7 > 0 under

the assumption (28) generates on Xgp(ﬂ)’ B as in (27), a C° semigroup

which has a global attractor. Whenever g € C2, this semigroups is a C!
gradient system.

REMARK 4. Within the above approach one can similiarily consider an ab-
stract parabolic equation
n
up = ZA;"'u+ f(z,u, DPu),
i=1
where the main part is a sum of fractional powers of elliptic operators (see
Observation 2).

3. Part III. Appendix

Various definitions of generators of analytic semigroups. We first
compare Definition 2 of a sectorial positive operator by [HE] and Definition 1
of an operator of type (w, M(9)).

For o € R and ¢ € (0, §), by Sa,¢ denote a sector of the complex plain
Sep={re€C:¢<arg(A—-a)| <7, A #a}.

DEFINITION 2. A linear, closed, densely defined operator A : X D D(A4) —
X acting in a Banach space X, is a sectorial operator if and only if there

exist a € R, ¢ € (0,%) and M > 0 such that the resolvent set p(A) contains
the sector S, ¢ and

1T - A4)7) <

|/\A_/Ia| for each A € S 4.

We shall show that for a = 0 and w < § Definitions 1 and 2 are equiva-
lent, i.e. an operator A is of type (w, M(6)) if and only if A is sectorial with
sector Sp . This will be a simple consequence of the proposition below.

PROPOSITION 5. Let A : X — X be a closed linear operator in a Banach
space X, ¢ € [0,7] and Sp ¢y C p(A). The following two conditions are
equivalent:

M(6)

(35) (AT —A4)7i < e for each A € Sp ¢ such that arg A = 6,
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(36) IO - A)7Y < A—)/:fl- for each A € Sp 4.
Proof. It suffices to show that (35) implies (36). Fix ¢ < w and 8 € [¢, 27—
¢] and let a = arcsin '2'1\%55' Take A such that arg A € (0 — ,0 + a). Then

there exists Ag such that arg \g = 8, |Ao] > |A| and —'\l—)‘]"—' < —-—(—5 Therefore

we have

1
(37) IA = Aol <

= 20l - A

Using the result of [YO, p. 211]
(AT = A)7 =3~ (do = N (Mol — 4)7+Y
ieN
and the estimate (37), we obtain that
2M(6) _ 2M(9)
< ;
Aol Al
for each A with arg A € (0—q, 0+a). Since the interval [¢, 2 —¢] is compact,
the proof is complete. =

I - A)7H <

The Kato-Beurling-Deny inequality. A version of the famous Kato-
Beurling-Deny inequality will be proved below for completeness of the pre-
sentation. We shall focus here on A = —Ap in L?(Q),  C R" being a
bounded C? domain, which is a special case of the general theory in [DA).

It is well known that (sI + A)~!, s > 0, has a positive symmetric kernel
K, = Ky (z,y), z,y € R, satisfying the estimate in [TA, 5.168, p. 210]. Also,
the integral formula for fractional powers of A (see [TR, §1.15.1 (6)]) reads:

: +00
A% = Smﬂ”a | s*1A(sI+ A)vds, v € D(4), a € (0,1).
0

Writing below for simplicity of the notation (-, -) 2(q) for the L?(£2) product,
we obtain

(A%, v" M) 12

. +00
_ <s1n7ra S sa—l(sI+A—sI)(SI+A)_1'Ud3’”q'1>
T L¥(Q)

: +o0
sinTo _ _ —
S s l(ll"’q“Ll(ﬂ) — (s(sI + A) Ly, ve 1)L2(9)) ds, vecy,
0

s

C = {6 € CP@: 420, g,y =0}.
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The properties of K; and an elementary inequality of [DA, p. 68]
(s—t)(s*H =207 > 4—(qq§—l)ls% ~ti]2, 5>0,t>0,¢>2,

ensure next that

(38)  |[v?llzacay — (s(sT + A) 1,077 1) 12(q)
=gy —s | v (e)(y)Ks(z,y)dzdy
OxN

S [v(2) — v () — 7 (y))Ks(z, y) dz dy
Qxﬂ

+ vy —s | v9(2)Ks(z,y) dzdy
Qx0

S [v(2) - v(¥)]?~}(2) — v* 7 (¥))Ks(2, y) do dy
QxQ

+ vl L) — sll(sI + A) "1 (w9 || Lyqy
S He-1)

) g q
I (2Qialm("’)’”2(y)|2Ks(z,y)dmdy

+ [|v?| 1y — sl(sT + A)_l(vq)”Ll(n)), §>0, 422, ve(ly,

where in the last line above we have used additionally the inequality 1 >
g%;—ll, q > 2, and the contraction property of A in L!(Q2) (see [DA, Theorem
1.3.5]), which guarantees that

vl Ly — sll(sI + A)_l(vq)”Ll(Q) >0, s>0,ve C0+.
Similar calculations show that

(A%(v3),v%) 120

. +00
_ <Sm7fa S sa—l(sI+A—sI)(sI+A)_1('U§)d5,U§>
T ) L)

+o00

§ s*  (lvlloray — (s(sT + A)"(vh),0%) 120 ds
0

sinma

s

s +o00
sin wQ a—
| s vy —s | vi(@)vd(@)Ks(z,y) dzdy)ds

0 OxN
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: +o00
sinwo - S
| ot (It + 5 § o) - ot )P Ku(ay) dody
aQxQ

- S vq(z)Ks(:z:,y)dzdy>ds

QxQ
sinma o0 s q g
= ZE2 (2 | o) - vB PR (o) dady
T 0 aQx0

+ 0%z = 6T+ A7 0D zaqoy ) s

§>0,g22,ve C()" . As a consequence of the relation (38) and the obvious
estimates when a = 0 or a = 1 we obtain the proposition below.

PROPOSITION 6. Let Q@ C R" be a bounded domain, 0Q € C?, and A= —Ap
on L*(Q). Then, for a € [0,1], ¢ € [2,+00) and ¢ € CF the following
inequality holds:

(39) [ A% ¢v-ldo = [ AT AT (¢ )an > LT (4301 i

Q Q Q

Extension of (39) to functions with arbitrary sign. It is well known
that the resolvent (A\I — Ap)~1, X > 0, preserves positivity (see [DA, The-
orem 1.3.5]). This property extends directly to the resolvent of (—Ap)®,
a € (0,1), because of the formula ([KO, p. 319]):

(M + (=Ap)*)~

sinra +S°° T

H A2 + 2AT% cos Ty + T2

- (tI — Ap)~tdr, XA>0,

since the denominator above is positive. Next, for ¢ € X7, with gl €
X2, Theorem 1.3.2 of [DA] gives us that |¢| € X2 [z and
J(-Ap)*¢19l* " sgn dz > [(-A)%(I¢])(~Ap) ¥ (I¢I*™") da.
Q Q
Together with (39), the last estimate justifies that

COROLLARY 1. For o € [0,1], g € [2,+00), ¢ € X% and ||?"! € X2, the

following estimate holds:

L2’

0 J-Aoreirtsgnpde > “’q (ESOHCRE
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REMARK 5. Formulas (39), (40) hold also, with the same proof, for (—-Ap)
replaced by arbitrary operator A given by a symmetric differential operator

- Z 3 (av(a;)aix]-) , T€NCR",
i,j=1
considered with homogeneous Dirichlet condition in a bounded domain Q
with 8Q € C2. We need to assume additionally that the coefficients a;; are
real, a;; € C*(Q), aij = aji, 1,7 = 1,...,n, and the following ellipticity
condition is satisfied:

n

Ip>oVeeaVeerr D aij(2)éig; 2 nlél*
4,5=1
For the weaker possible assumptions on the coefficients and the boundary
of 2 one may refer to [DA].

The Moser-Alikakos technique. The lemma below has been used in the
estimates of Example 2.

LEMMA 1. For Xf,, solutions to (26), 8 as in (27), the following implication
holds:

(41) (llu(®, uo)ll L1 (@) < const., t > 0)
= (Jlu(t, uo)llLe(q) < const.’, ¢t > 0).

Proof. For an arbitrary domain @ C R™ (bounded or not) and any x> 0
the interpolation inequality for LP spaces
2t

I6lzae) < 0N o IBIET , ¢ € LHQ) N IF4(Q),

and the Young inequality lead to the estimate
VesoVu>03c.,,50 [19lZ2q) < €lldliiaru(g) + CeulldliZs q)-
Choosing p > 0 such that X fz C L**#(Q) we obtain
(42)  Veodgso l6lEam) < ellélys, + Cilidlliaay ¢ € XE:,
x?,

which is a counterpart of the formula [C-D 1, (9.3.8)]. Observe next that
the dissipativeness condition (28) implies
(43) Ve>03p>0Vser s9(s) < Cs* + D,

which in order corresponds to [C-D 1, (9.3.5)].
Finally we recall the estimate (40) with ¢ = 2F:

gy ) J(-20) 260 )de < J((-0)°4116 s gz
Q
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With the above conditions (42), (43), (44), we are able to repeat step by
step the calculations of [C-D 1, Lemma 9.3.1] and get (41). The proof is
complete. u
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