
DEMONSTRATE MATHEMATICA 
Vol. XXXV No 1 2002 

Jan W. Cholewa, Tomasz Dlotko, Andrzej W. Turski 

ASYMPTOTICS OF PSEUDODIFFERENTIAL 
PARABOLIC EQUATIONS 

Abstract. The paper provides new type examples covered by the general theory of 
global attractors for abstract parabolic equations presented in the monograph [C-D 1]. 
Inside the class of sectorial equations of the form 

(1) ii + Au = F(u), i > 0, u(0) = u0, 

we cover pseudodifferential parabolic problems 

(2) ut = - ( - A ) ° i i + /(u), a G (0,1), 

studied with suitable initial-boundary conditions and also their generalizations to prob-
lems with the main part being a finite sum of the fractional powers. 

1. Part I. Abstract tools 
Introductory notes. A class of equations with the main part being a 
fractional power of a uniformly elliptic operator (or a finite sum of such 
powers) will be studied here within the theory introduced in [FR], [HE], [PA] 
and developed in our recent monograph [C-D 1]. There is no difference, in 
general, in studying local solvability of abstract parabolic problems of the 
form (1) and pseudodifferential equations (2) (or its generalizations), since 
fractional powers of sectorial positive operators are, for a G (0,1), sectorial 
and positive. In this discussion it is convenient to use a notion, due to H. 
Komatsu, of an operator of the type (ui, M{6)) with UJ < | in a Banach 
space X. 

DEFINITION 1. We say that A is of type (u>,M(6)), 0 < UJ < TT, if the 
domain D(A) is dense in X, the resolvent set of —A contains the sector 
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|orp A| < 7r - u) and the condition ||A(A + A) 1 | | < M(9) holds on each ray 
A = rei0, r G (0, +oo), |0| < TT - u. 

One may easily show that A is of the type (u>, M(0)), u < if and only 
if A is a sectorial positive operator in the sense of [HE]. The equivalence of 
these two notions will be discussed in the Appendix. 

An interesting theorem by T. Kato (see [KO, p. 320]) ensures that: 

PROPOSITION 1. If A is of type (u,M(d)) and if 0 < A < then Aa 

is of type (au>, Ma(0)) with certain positive constant Ma(9). Furthermore, 
the resolvent of Aa is analytic in a and A in the domain 0 < a < ¿j, 
|argA| < 7r — aw. 

As a consequence, any proper fractional power Aa, a G (0,1), of a sec-
torial positive operator A will be sectorial and positive itself. Furthermore, 

OBSERVATION 1. If A is of type (u,M(0)) with u < §, then the sumA + A13 

is a sectorial operator for any ¡3 G (0,1). 

The above observation follows directly from [HE, Theorem 1.4.4] and 
[HE, Example 6, p. 19] since 

Ve>o V ^ ( 0 > 1 ) V X 6 D ( A ) \\A^x\\X < e\\Ax\\x + C'e^\\x\\x. 

Observation 1 may be formulated even more generally. As a direct con-
sequence of [HE, Corollary 1.4.5] one has (see also [G-G-S]): 

OBSERVATION 2. Let A be of type (u>, M{0)) and the operators Bj, j = 
1 , . . . ,m, be linear on a base space X. If BjA~a' G C{X, X) for some num-
bers aj G [0,1), then the operator A + YlJLi Bj is sectorial in X. 

Local solvability of abs t r ac t parabol ic equat ions . As follows from the 
above considerations pseudodifferential equations of the type (2) fall into a 
class of abstract parabolic equations 

(3) ii + Au = F(u), t> 0, u ( 0 ) = uo, 

where A : D(A) —> X is a sectorial positive operator in a Banach space X 
and, for some 0 G [0,1), the nonlinear term F : X& —> X, X13 = D{A0), 
is Lipschitz continuous on bounded sets. Recall that (see [HE, Chapter 3], 
[C-D 1, Sections 2.1, 9.4]): 

PROPOSITION 2. Under the above assumptions there is a unique solution 
u of (3) with uq G defined on a maximal interval of existence [0,TUo), 
and such that 

u G C([0, ru o), x f ) n C1((0, rU0), XT) n C((0, rUQ), X1), 7 € [0,1). 
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If the Lipschitz condition for F is violated, solvability of (3) is a more 
delicate problem. The following result comes from [C-D 2] and is based on 
the original considerations of [L-M]. 

PROPOSITION 3. If A is a sectorial positive operator in a Banach space 
X, the resolvent of A is compact and, for some 0 € [0,1), F : —» X is 
continuous and takes bounded subsets of X^ into bounded subsets of X, then 
(3) has a local mild solution u € C([0,r),X^) fulfilling the Cauchy integral 
formula t 

(4) u(t, uq) = e~Atu0 + j e-Ait~s)F(u(s))ds, t 6 [0, r) . 
o 

Extendibility of the local solutions and a global attractor. If the 
solutions are unique and exist globally in time, the problem (3) defines a C° 
semigroup on a phase space X&. To describe the stability of (3) we recall a 
notion of a global attractor (see [HA]) which is a compact, nonempty, and 
invariant set A, such that 

sup inf ||T(i)ii;i — W2—> 0 as t —• +oo, 
Wl 

whenever B is bounded in XP. 
The following result of [C-D 1] provides the abstract conditions for the 

existence of the global attractor. 

PROPOSITION 4. Under the assumptions of Proposition 2, when the resolvent 
of A is compact, the following two conditions are equivalent: 

(i) relation T(t)uo = u(t,uo), t > 0, defines on 
XP a C° semigroup of 

global solutions which has a global attractor, 
(ii) It is possible to choose: a Banach space Y, with D(A) C Y, a locally 

bounded function c : R+ —> R+, a nondecreasing function g : R+ —> R+, 
and a certain number 9 € [0,1), such that, (5) ||u(i,uo)||y < cdl^ollx")) < e ( 0 , TUq ), U 0 e x f , 
and, simultaneously, 
(6) | | F ( n ( i , U o ) ) k < 5 ( M i , n o ) | | y ) ( l + H i ( u o ) | | ^ ) , 

where (5) is also asymptotically independent ofuo € 
Proposition 4 may be proved similarily as [C-D 1, Corollary 4.2.2]. We 

remark that 0 € [0, is admissible in (6) provided that Y C X (see [C-D 1, 
Remark 3.1.3]). Also, under the assumptions of Proposition 3, (ii) is sufficient 
for (3) to generate a semigroup having a global attractor in X& (see [C-D 2, 
Corollary 1]) whenever mild solutions (4) are unique. 



78 J. W. Cholewa, T. Dlotko, A. W. Turski 

Excerpts from the theory of interpolation. In applications it is im-
portant to have the embeddings of fractional power spaces in Sobolev and 
Holder type spaces. It is even more convenient to have the complete charac-
terization of X& spaces (X being a complex Banach space) which is known, 
provided that the purely imaginary powers of A are bounded; i.e. 

(7) \\A«\U(x,x)<Ce, t e [ - e , e ] . 
If this is the case, the following interpolation formula holds 

(8) D ( A < - = [D(Aa),D(A%, a,(3 > 0,9 € (0,1), 

where [•, denotes the complex interpolation functor (see [TR]). The well 
known examples of operators with the BTV property (7) are the maximal 
accretive operators in a Hilbert space with 0 in the resolvent set or, to be 
more specific, the self-adjoint, positive definite operators. For the discussion 
concerning the BIV property of the elliptic operators we refer to [C-D 1, 
Section 1.3], which provides the overview of the recent results within this 
field. 

The operator —Ad in Z^fO), p 6 (l,+oo), dCl 6 C2, appearing in the 
examples below has been recently studied in [P-S] where it was shown that 

v0e(o,7r)3Mp(0)>o ll(-^u)lt||/:(LP(n)>LP(n)) < Mp(9)eet, t € R. 
Therefore we have a characterization (8) of the domains = D ( - A f l ) a 

and, in particular, 

(9) x% = [LP(fl), w2*{si) n w ^ i i ) ] « c H2a(n), a e (o, 1). 

Using (9) and the embeddings for the spaces H2a(il) of Bessel potentials 
(see [TR]), we obtain strict inclusions: 

i Ws'q(£l) if 2 a - - > s - ~ , 2 <p<q< +oo, 
(10) X£P C < _ p

n
 q 

L Ck+fl(n) if 2a - - > k + n, k G N, fi € (0,1). 
^ V 

Note that e.g. for p = 2 with further assumption dCl 6 C2+v, rj > 0, the 
inclusion in (9) turns to the equality 

(11) X£2 = H2%(n), a € [0,1], 2a # i 

(see [GU 1], [C-D 1] for details). 

2. Part II. Examples 
We provide here two special examples of equations having fractional 

powers of elliptic operators as the main part. Another equations and their 
physical motivation may be found in [B-P-F-S] and [F-S-Z]. 
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EXAMPLE 1. As a first example consider a variant of an equation of anoma-
lous diffusion studied e.g. in [B-K-W 2], that is the equation of the form: 

(12) ut + (-AD)au + b ( z ) • V(f(u)) = 0, ¿ > 0 , i 6 f l , 

where a 6 b : iJn D ii - t fl" is a differentiate, bounded vector 
function and /(u) was originally equal to u|u|r_1 with some r > 1. Here 
/ : R —• R is C1 with / ' locally Lipschitz continuous function and we 
require that 
(13) div b(x) = 0, i € i i . 

The equation (12) will be studied in a bounded domain with the boundary 
dil € C2+v, TJ > 0, together with homogeneous Dirichlet initial-boundary 
conditions 

f u ( 0 , x) = UQ(X), i G f l , 

K n = 0-
Equation (12) in L^fi). The problem (12), (14) will be considered first as 
an abstract parabolic equation (3) in the base space X = LP [SI] with p> n 
and A = (—A£>)a, Ad being the Laplacian with homogeneous Dirichlet 
boundary condition, in which case (10) gives 

D((-ADf) = X% C W l*(fl) C C((2), 0 > 

Define 
(15) F(u) = b-V(f(u)) 

and take a bounded set U C W1,p(ii). For <f>,ip e i / , we obtain 

(16) ||F(0)-F(V)IUP(fi) 
< Mf'w - s ' m b • v<a n £ p ( i i ) + \\fw)b • v{<t> - £,(„) 

< l|b||[L«(n)]n(||/'̂ ) - f ' m L ~ ( n ) M w i » m 

< Cu\\<f> - tPWw^M, 
where local Lipschitz continuity of / ' has been used. As a consequence of 
Proposition 2, to any uq G (3 6 (5, a), corresponds a unique X^p solu-
tion of (12), (14). According to the theory developed in [C-D 1], for global 
solvability we need an additional a priori estimate of the local solutions in 
an auxilliary Banach space Y. In this example we shall choose Y = L°°(il). 

L°°(Q) estimate. Multiplying (12) by u2k~l, k = 1 ,2 , . . . , and integrating 
over ft we obtain 

(17) \ u2kdx = - J ( - A D ) a u u 2 k ~ l d x - J b ( x ) • V(f{u))u2k~ldx. 
2 k d t n n i1 
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Note that we have the equality 

S b ( x ) • V i f i u f i u ^ d x = J b ( x ) • V(gk(u))dx, 
n fi 

where gk(s) = JQ f'(z)z2k~1dz. Now the properties Sfc(0) = 0 and (13) ensure 
that the last integral in (17) vanishes. The first right hand side term in (17) 
will be transformed based on the Kato-Beurling-Deny inequality (40) with 
q = 2k: 

(18) - \(-AD)auu2k~l dx = - J ( -A i 3 ) a u | i i | 2 f c - 1 sgnudx 
n n 

- \ l ( _ A ^ ( M f c ) l 2 d a : -

Note, that for arbitrary t > 0 the local solution u to (12), (14), /3 € 
(±,a), belongs to C W1*^) C C(H), so that |u|fc <E k G N. 
Now, continuity of the inclusion D((—Ajj)a) C L2(Q) allows us to complete 
the L2k(Q) estimate 

rr-r- \ u2kdx < —const. „ I u2kdx 2 kdtl - k2 3 

and to get the inequality 

(19) l|u(t>t*>)||L»(n) < I N I I ^ e " « ™ ^ . 

Letting k tend to infinity, one finds 

(20) IK*,uo)||£~(fi) < ||wolli~(n), 

so that the solutions axe estimated globally in time in L°°(Cl). 

REMARK 1. The a priori estimates (19), (20) are formally valid also when (3 € 
(0,^], provided that solutions under consideration are sufficiently 
smooth. However, for such range of the parameter /3, equation (12) changes 
its type since the nonlinearity is not subordinated to the main linear part. 
In that case we do not have local existence of solutions within the approach 
used in this paper. 

The subordination condition for the nonlinear term (see [C-D 1, condition 
(3.1.4)]) may now be written in the form: 
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(21) \\F(u(t,u0))\\LP{n) 

= \\f'(u{t,uo))b • Vu(£,uo)||i,p(fi) 
< sup |/'(s)|||b||[Loo(n)]n||ii(i,no)||^i.p(i)), 

M^IHt.tio)!!«^ 

thus the local X^p solution to (12), (14) is in fact global in time for any 
0 6 (J, a). 

Having (20) and (21) we know that the problem (12), (14) generates on 
a compact C° semigroup {T(t)} of global solutions (see Remark 2 (i)), 

which has bounded orbits of bounded sets. This and (19) guarantee next 
that for each uo 6 x f p the w-limit set a»v(a (no) consists of a single element 
0, which is the unique equilibrium of (T(i)} and, furthermore, 

T(t)u0 0 in X^p as t —• +oo. 

We thus conclude that: 

THEOREM 1. For each (5 G ( 5 , a ) the problem (12), (14) generates on X^p 

a C° semigroup of global solutions. The stationary solution 0 is globally 
asymptotically stable. 

REMARK 2. For f(s) = s | s | r _ 1 Example 1 reduces to the problem studied 
in [B-K-W 2]. However, for the validity of the above calculations we need 
to take r > 2 which is not the case considered in [B-K-W 2]. To cover the 
case when / is only of class C 1 ( i l ) (e.g. f(s) = s | s | r _ 1 with r € (1,2)) we 
shall refer to Proposition 3. For this we need to check that: (i) the resolvent 
of (—Ap)01 is compact and that (ii) F : —• X defined in (15) is a 
continuous function which takes bounded subsets of X^P, 0 € (5, a) , into 
bounded subsets of 1^(0,). 

Property (i) is immediate, since ((—AJJ)01)'1 = (—Ao)~a is a bounded 
linear operator defined on the whole of X and (—A£>)~a(X) = X£p is com-
pactly embedded in X. 

For the proof of (ii) we rewrite (21) in a form 

(22) | |F(^)| |LP(n) < sup |/ ,(S)|||b||[Loo( i l ) ]n||0||u,1,p(n), 4 > € W ^ ( i l ) . 
M<MC(n) 

Since p > n and / ' is locally bounded it is clear from (22) that F(B) 
is bounded in LP(il) whenever B is bounded in W1 ,p(fi). Also, as seen 
from the second inequality in (16), convergence of {(/>„} in W1 , p(fi) C C(H) 
ensures convergence of {F{<f>n)} in 1^(0,), p> n, which shows continuity of 
F : X^p —* X. Consequently, recalling Proposition 3, the problem (12), (14) 
possesses a (not necessarily unique) mild solution U(-,UQ) for each UQ E X^P. 
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Equation (12) in L2(Q). It may be interesting to consider Example 1 in a 
larger base space, like L2(Q). We shall outline below solvability of (12), (14) 
in this case. Unlike in the case X = V^l), p > n, we need here to restrict 
the growth of the nonlinear term / according to the condition 
(23) I f'(Sl) - f'(s2)I < c|si - «2|(1 + Mir - 1 + W - 1 ) , 51, 52 € R, 
where 
. ^ I arbitrarily large if 4/3 > n, 

1 i f 4/3 < n < 8/3 — 2. 
Using Holder inequality and the assumptions (23), (24), one can check Lip-
schitz continuity of the nonlinear term (15) acting from to L2(ii), 
/3 e (5,a). This justifies local solvability of (12), (14) in x f 2 , 0 e 

For global solvability and the existence of a global attractor it suffices to 
find time independent estimate of ||jF(u(i, tio))||z,2(ii)- Considerations similar 
to those justifying the Lipschitz continuity of F in L2(Cl) give for n > 2 

I T O ) l l * » ( n ) < c o n s i . | | ( 1 + | ^ r ) | V 0 | | | £ a ( n ) 

< const. (|||V^|||La(n) + ll</>IIW(n)|||Vtf>|||L2,(n)) , 
n+— 4. with p = 9 = 2r+n' w^ich leads to the estimate 

(25) \\F(<j>)\\LHn) < 9(\\<1>\\ ) M ^ , 
l »-a (n) w -t^P» (n) 

with certain nondecreasing function g : R+ —» R+. When r fulfills (24), the 
a , 2 n ( r + l ) 

inclusion XL2 C W ' 2r+n (fi) allows us to extend (25) to a subordination 
condition of type (6). The uniform in time and asymptotically independent 
of uq 6 Xj2 estimate of ||it(t,uo)|| 2n(r+i; follows as in (17)-(19). L »-5 (i2) 

For n = 1,2 one may use the estimate 

ITO)llL'(n) < con5i.(|||V^|||L2(n) + s > 2 ' L3—2(w) 
together with the embedding X^2 c W1,s(ii), valid for n = 1,2, ¡3 > \ and 
s > 2 sufficiently close to 2, to get the similar conclusion. 

Therefore, Theorem 1 remains true also when X = L2(Q) is the base 
space. 
REMARK 3. It is possible to extend further the base space X. As a result 
of [GU 2, Theorem 1.7], the Cauchy problem for (12) in half space (i.e. 
when (t,x) 6 R+ x Rn) may be studied in L1(Rn). In that case our abstract 
approach meets the considerations of [B-K-W 1], [B-K-W 2]. Since the space 
average of the solution is preserved in time (see [B-K-W 1]), the asymptotic 
behavior in Lx(iin) is no more trivial. 
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EXAMPLE 2. As a second example consider the fractional dissipative equa-
tion (see [VA]): 

iut = ~{-AD)au + g(u), t > 0, x e n , 

\it(0,x) = uo(x), i £ i l , U|an = 0, 

where i) is a bounded domain in Rn with dil 6 C2 and a € (0,1). We 
assume that g : R —> R is a locally Lipschitz function and choose p > 2 such 
that 2a - 2 > 0. 

The equation (26) may be rewritten as an abstract problem in X = 1^(0) 
with corresponding to g Nemytskii operator G : —> X being Lipschitz 
continuous on bounded sets. Here X^p denotes the domain of (—A^)^ in 
LP(P) and ¡3 is such that 

(27) 2/3 - - > 0, (3 € 
P 

so the embedding X^p C C(ii) is continuous. The above justifies existence 
of the local X^p solutions to (26). 

Global solutions to (26). For the global solvability and the existence of a 
global attractor we shall assume additionally that g fulfills the dissipative-
ness condition: 

(28) l i m s u p ^ < 0 . 
|s| —+oo s 

As in the case of a scalar parabolic equation (see [HA, p. 75]), for /3 given 
in (27) the formula 

1 * 
(29) C{4>) = ^ S [("A d)H}2 d x ~ \ \ g(s) ds dx, <j> € x£ p , 

n no 

defines a Lyapunov function on X^p. Since C(u(t, uq)) is decreasing in time 
we have an a priori estimate 

^ u(t,u0) 
(30) -5[(-AD)fu(i , t io)] 2da;<£(«o) + i \ 9{s)dsdx. 

n n o 
Following [HA, p. 76], the dissipativeness condition implies that 

z 
\g(s)ds <ez2 + Ce, z e R , 
o 

with arbitrary e > 0 and a corresponding constant CE > 0. Therefore, (30) 
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extends to the estimate 
(31) J [(-Afl)tti(t, u0)]2 dx < 4(£(ii0) + canst.|il|), 

n 
a 

being the required a priori estimate of the solutions in X£2. 
When |G(s)| < c(l + |s|r) with 

r < 1 + jzz and ft in (27), n > 2a, 
r arbitrarily large, n < 2a, 

the X£2 estimate (31) is sufficient for global solvability of (26) (see 
[C-D 1, Section 5.2]). To avoid the growth restriction on g we need to 
strengthen the estimate (31). Since (31) implies the L2(f2) estimate, an 
L°°(fi) estimate of the solutions to (26) will follow from Lemma 1 (see 
Appendix). 
Asymptotic behavior of solutions to (26). As known, the existence of 
a Lyapunov function having all properties of [HA, pp. 49-50] determines 
the asymptotic behavior of solutions. Following closely the presentation of 
[HA, pp. 76-77] one can check that the problem (26) generates on X^p (¡3 
satisfying (27)) a gradient system whenever g is a C2 function. 

All w-limit sets of points are contained in the set E of stationary solutions 
to (26), that is in the set of solutions to 

(32) i(-AD)av = g(v), veX%P, 

Whenever the set E is bounded in compactness of the resolvent of 
(—Ac)0 (see Remark 2) ensures the existence of a global attractor A for 
the semigroup generated by (26) on X^p, ft as in (27) (see [HA, Theorem 
3.8.5]). 
Boundedness of the set E. First we show that the set E of solutions v 
to (32) is bounded in L2(Cl). Multiplying (32) by v, integrating and using 
(43), we find that 
(33) \{-AD)avvdx < C\v2dx + D\Q\, 

n n 
and since r 12 3L 

const, j <f>2dx < \ (-Ad)M dx, <f> G X£2, 
n n 

then (33) provides an L2(fi) estimate of v for C — ^const.. 
Using the recurrence technique of Moser-Alikakos, the L2(Q) estimate of 

the set E may next be sharpened to an L°°(i2) estimate, analogously as in 
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the proof of Lemma 1 (see [C-D 1, Lemma 6.2.2] for details). Finally from 
(32) we find 

(34) j \{-AD)av\pdx = J \g{v)\pdx < consi.(||v||i0o(ii)) < +oo, 
n n 

which shows that E is bounded in X*p. 
We shall summarize the above studies in the following: 

THEOREM 2. The problem, (26) studied on LP(f i) , p > 2, 2ot - j* > 0 under 
the assumption (28) generates on P as in (27), a C° semigroup 

which has a global attractor. Whenever g 6 C2, this semigroups is a C1 

gradient system. 
REMARK 4. Within the above approach one can similiarily consider an ab-
stract paxabolic equation 

n 

ut = J2Aiiu+f(x^u'D0u)' 
i=1 

where the main part is a sum of fractional powers of elliptic operators (see 
Observation 2). 

3. Part III. Appendix 
Various definitions of generators of analytic semigroups. We first 
compare Definition 2 of a sectorial positive operator by [HE] and Definition 1 
of an operator of type (u, M{9)). 

For o G R and 4> € (0, f ) , by denote a sector of the complex plain 

Sa,<p :={\€C:<t>< \arg(X - o)| < TT, A # a}. 
DEFINITION 2. A linear, closed, densely defined operator A : X D D{A) —• 
X acting in a Banach space X, is a sectorial operator if and only if there 
exist a € R, <p G (0, f ) and M > 0 such that the resolvent set p(A) contains 
the sector S a j and 

||(A/ - A)'11| < — — for each A e 5a>0. 
|A — a| 

We shall show that for a = 0 and w < f Definitions 1 and 2 are equiva-
lent, i.e. an operator A is of type (oj, M{0)) if and only if A is sectorial with 
sector Sq^. This will be a simple consequence of the proposition below. 
PROPOSITION 5. Let A : X —• X be a closed linear operator in a Banach 
space X, <f> € [0,7r] and Sq^ C p(A). The following two conditions are 
equivalent: 

(35) ||(A7 - 4) -11| < ^ ^ for each A e S0j such that arg A = 0, 
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M 
(36) | | ( A / - A ) _ 1 | | < — for each A e S0j. 

W 
P r o o f . It suffices to show that (35) implies (36). Fix <f> <n and 9 € [<j>, 2ir — 
<f>] and let a = arcsin 2m(q) • Take A such that arg A € (9 — a,9 + a). Then 

there exists Ao such that arg Ao = 9, |Ao| > |A| and < 2M(g) • Therefore 
we have 

Using the result of [YO, p. 211] 

(x i - Ar1 = £ ( a „ - v w - ¿ r ( i + l ) 

and the estimate (37), we obtain that 

I K — 

for each A with arg A 6 (9—a, 9+a). Since the interval [<f>, 2ix—<f>) is compact, 
the proof is complete. • 

The Kato-Beurling-Deny inequality. A version of the famous Kato-
Beurling-Deny inequality will be proved below for completeness of the pre-
sentation. We shall focus here on A = —Ad in L2(fi), ii C Rn being a 
bounded C2 domain, which is a special case of the general theory in [DA]. 

It is well known that (si + A) - 1 , s > 0, has a positive symmetric kernel 
Ks = Ks(x,y), x,y € f l , satisfying the estimate in [TA, 5.168, p. 210]. Also, 
the integral formula for fractional powers of A (see [TR, §1.15.1 (6)]) reads: 

+oo 
Aav = ^ ^ \ sa-1A(sI + A)~lvds, v <E D(A), a 6 (0,1). 

^ 6 
Writing below for simplicity of the notation (•, -)l2{U) for the L2(fl) product, 
we obtain 

(Aav,v9~1)L2^ 
foo 
\ sa~1(sl + A - sl)(sl + A)-1vds,vq~1 

I . +oo sin 7r a 
n o / lHO) 

+oo s inxa 
i ^ ( l l ^ l l ^ ^ - ^ s Z + ^ - V ^ - 1 ) ^ ) ) ^ , V6C+, 
0 

where 
C0

+ = {cf> 6 C2(fi) : 4> > 0, <f>,an = 0}. 
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The properties of Ks and an elementary inequality of [DA, p. 68] 

(s - t){s9-1 - i 9 " 1 ) > - ti |2 , s > 0, t > 0, q > 2, 

ensure next that 

Q2 

(38) \\vq\\LHn) - (s(sl + A ) - \ , v«-l)LHU) 

= llv9llLi(fi) ~ « \ vq~1(x)v{y)Ks(x,y)dxdy 
nxn 

= f S M*) - - v*-\y)\Ks(x,y)dxdy 
nxn 
+ IKII lMH) - s \ vg{x)Ks(x,y)dxdy 

ClxCt 

= | 5 M*) - - v*-\y))Ks{x, y) dx dy 
Cly.il 

+ \\vq\\LHn)-s\\(sI + A)-l(v'1)\\LHn) 

j \ V i ( x ) - V i ( y ) \ 2 K t ( X i y ) d x d y 

Q nxn 

where in the last line above we have used additionally the inequality 1 > 
, q > 2, and the contraction property of A in L1(fi) (see [DA, Theorem 

1.3.5]), which guarantees that 

Similar calculations show that 

(Aa(v$),v%)L2(n) 

/ • +oo _ /sin7ra , s a - i ( s I + A _ s / ) ( s / + A y i ( v * ) 

\ "" o 1 V M 
+oo 

s m 7 r a j « " - H K I l L t i n j - W ^ + i i r 1 ^ ) , ^ ) ^ ) ) ^ 
w 0 

sin 7r a + o c 

\ «""Hllw'llLUn) - s \ vi{x)v2(y)K3(x,y)dxdy)ds 
n o nxn 
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+00 

S 
0 N " ilxfi 

• TOW y 
_ sin^ra j sQ-i/|K|Ui( * J \vl{z)-vi(v)\2K.(z,v)dxdy 

" v iixfi 

— s j vq(x)Ka{x,y)dxdy\ds fixii ' 

= — S a»-1 ( J S |« t (x) -v i (y) | a i r < (x l y)d«ciy 
* o ^ nxn 

+ llw«||Li(n) - 4(sl + A y ^ W ^ d s , 

s>0,q>2,ve C+. As a consequence of the relation (38) and the obvious 
estimates when a = 0 or a = 1 we obtain the proposition below. 

PROPOSITION 6. Let ft c Rn be a bounded domain, dfl e C2, and A = -AD 
on L2(Cl). Then, for a 6 [0,1], q 6 [2, -f-oo) and (j> 6 Cq the following 
inequality holds: 

(39) \ Aa<f> <j>q~ldx = J A f < M f > i i i z i l j [ A t ( ^ ) ] 2 d x . 
n n ® n 

Extension of (39) to funct ions wi th a rb i t ra ry sign. It is well known 
that the resolvent (XI — A p ) - 1 , A > 0, preserves positivity (see [DA, The-
orem 1.3.5]). This property extends directly to the resolvent of (—A/j)0, 
a e (0,1), because of the formula ([KO, p. 319]): 

( A I + H W r 1 

sin7ra r a . , . , 
7r J + 2Ara cos 7ra + T i a 

since the denominator above is positive. Next, for <j> E X£2 with \4>\q~1 € 
X*2, Theorem 1.3.2 of [DA] gives us that \<f>\ G Xj2 and 

\ { - A D ) « m q - l s & < t > d x > J ( - A ) f ( | ^ | ) ( - A z ? ) f ( | ^ | 9 _ 1 ) d x . 
n n 

Together with (39), the last estimate justifies that 
a 

COROLLARY 1. For a € [0,1], q e [2,+oo), <t> G X%2 and G Xfa, the 
following estimate holds: 

(40) ^ - A ^ - W ^ s g n « ^ > ^ ^ $ [ ( -Az? ) tM$)] 2 dx . 
a q n 
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Remark 5. Formulas (39), (40) hold also, with the same proof, for ( -Ap) 
replaced by arbitrary operator A given by a symmetric differential operator 

considered with homogeneous Dirichlet condition in a bounded domain Q. 
with dCl € C2. We need to assume additionally that the coefficients a+j awe 
real, a^ 6 C1(fi), a^ = aji, i,j = l , . . . , n , and the following ellipticity 
condition is satisfied: 

n 

*J=i 
For the weaker possible assumptions on the coefficients and the boundary 

of ii one may refer to [DA]. 
The Moser-Alikakos technique. The lemma below has been used in the 
estimates of Example 2. 
Lemma 1. For Xj?p solutions to (26), (3 as in (27), the following implication 
holds: 
(41) (||u(i, uo)||iii(n) < const., t > 0) 

==> (||u(i,uo)||i,oo(n) < const.', t > 0). 
Proof. For an arbitrary domain Q C ii™ (bounded or not) and any /x > 0 
the interpolation inequality for U spaces 

M l » « ) < \\<I>\\M(Q)M^Iq)' <t>eL\Q)rM?+»{Q), 
and the Young inequality lead to the estimate 

Choosing /x > 0 such that C L2+ti(Q) we obtain 

(42) V£>03ci>o W\h{il) < 4<t>\\2
xP + C'MW^y <t> e 

which is a counterpart of the formula [C-D 1, (9.3.8)]. Observe next that 
the dissipativeness condition (28) implies 
(43) Vc>o3d>oVsGh sg(s) < Cs2 + D, 
which in order corresponds to [C-D 1, (9.3.5)]. 

Finally we recall the estimate (40) with q = 2k: 

n n 
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With the above conditions (42), (43), (44), we are able to repeat step by 
step the calculations of [C-D 1, Lemma 9.3.1] and get (41). The proof is 
complete. • 
Acknowledgement. We are grateful to Professors P. Biler and G. Karch 
for sharing with us their knowledge concerning the literature of the subject. 
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