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ON THE ZEROS OF SOLUTIONS 
OF T H E D I F F E R E N T I A L EQUATION u/2 m) +p(z)u> = 0 

1. We consider a linear differential equation of order n: 

where the complex-valued functions Pk(z), k = 1 ,2 , . . . ,n are analytic func-
tions which are regular in a region D of the complex plane. 

The differential equation (1) is said to be disconjugate in D if no nontriv-
ial solution of (1) has more than n—1 zeros (where the zeros axe counted with 
their multiplicities) in D. The equation (1) is said to be (m, m)-disconjugate 
in D if n — 2m and if no nontrivial solution of (1) has two zeros of order m 
in D. 

In [1] the following result for differential equations of arbitrary even order 
was obtained: 

THEOREM A. The differential equation 

where the function p(z) is analytic in \z\ < 1, is (m,m)-disconjugate, if 

(1) W(n) + Pl(z)u/n-1) + . . . + pn(z)<jJ = 0, 

(2) w(2m) +p(z)u = 0, 

\P(Z)\ < 

where B(2) = 1, B(4) = 9 and 

m 
B(2m) = 9 JJ(4A; — 3), m = 3 ,4 , . . 

fc=3 

In [2] the following result was obtained: 
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THEOREM B. The differential equation (2), where the function p(z) is ana-
lytic in \z\ < 1, is (m,m)-disconjugate, if 

i p M i - w 

In this paper using integral inequalities we prove the theorem: 

THEOREM 1. The differential equation (2), where the function p(z) is ana-
lytic in \z\ < 1, is (m,m)-disconjugate, if 

( 3 ) * ( 1 - $ ) " » ' W < 

where 

U) rim) -12" n™=l(4fe -1)(4fc)' if m = 2n' 

2. In a recent paper [3] there was established an integral inequality involving 
a function and its second derivative of the form 

(5) J sh2 dt < j rh"2 dt, h e H, 
i i 

where I = (a,b), — oo < a < b < oo,r and s are real functions of the variable 
t, H is a class of functions absolutely continuous on I. We denote by AC {I) 
the class of real functions defined and absolutely continuous on the interval 
J, and by AC1 (I) the class of functions f e AC {I) such that / ' e AC (I). 

Let us take I = ( - 1 , 1 ) and the function r = (1 - t2)~a (a > 0). Prom 
Theorem [3] we obtain that the inequality of the form (5) holds: 

L emma 1. If a > 0 and the function h 6 AC1{{—1,1)) satisfies the integral 
condition 

1 h"2 

and the limit conditions 

h{-1) = / i ' ( - l ) = h{l) = h'{ 1) = 0 

then the inequality 
1 h"2 1 h2 

( 6 ) S ( j — ^ d t ~ 2 ( 2 Q + 3 ) ( 2 Q + 4 ) [ ( 1 - # ) ' + * d t 

holds. The inequality (6) becomes an equality if and only i f h = c(l — t2)a+2, 
where c — const. 
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LEMMA 2. If a nontrivial real function h of Cm[-1,1] has two zeros of order 
m att = — 1 and t = 1, then 

I h2 

(7) 

where r(m) is defined by (4). 

P r o o f . By the inequality (6), we have the sequence of inequalities for 
m = 2 n: 

1 1 [i.(2n—2)l2 
J [h^2n^]2dt > 2 • (2 • 0 + 3)(2 -0 + 4) J ^ — ^ d t , 

5 i ^ ^ d t > 2 . ( 2 . 2 + 3)(2.2 + 4) ^ ^ ^ dt, 

1 h"2 1 h2 

\ i ^ ¥ ^ d t > 2 . [ 2 . ( 2 n - l ) + 3][2.(2n-l) + 4) ^ j ^ ^ d t . 

(8) 

Multiplying these inequalities, we get 
1 h 1 n 1 , 2 

\[h™}> dt > 2" -1)(4*)- S ( T T ^ r d t • 

If m = 2n + 1, then by the inequality (6) we have 
1 1 l / 2 

(9) J [^2"+1)]2 dt > 2" 11(4* - l)(4fc) J _ dt. 
- l l - l ^ 1 > 

But 
1 h'2 1 /j,2 

(1 0) \ * 2(2» + !) ( 1 _ t 2 ) 2 . + 1 

Indeed, we have 

n < t 1 ( u , , 2(2n + l ) < L V J j 

1 /i'2 1 h2 

= i i r Z ^ < f t - 2 ( a » + 1) ( l - t 2 ) 2 n + l ^ 

the last step following from an integration by parts. From the inequalities 
(8), (9) and (10) we have the inequality (7). Lemma is proved. 
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3. Now we prove Theorem 1 using Lemma 2. 

Proof of Theorem 1. Suppose the theorem is false and there exists a so-
lution u>(z) of (2) with two zeros, z = zi, z = z^ of order m in the unit 
disk. Then there exists a unique circle which passes through this two points 
and is orthogonal to the circle \z\ — 1. The circle passing through z\ and 
Z2 orthogonal to \z\ = 1 is divided by \z\ = 1 into two arcs. We denote the 
arc inside \z\ < 1 by C. Without loss of generality, we may assume that C 
is on the upper half plane Re z > 0, and is symmetric with respect to the 
imaginary axis Im z of the complex plane. In the opposite case by a rotation 
C = otz, |a | = 1, the points z\, z2 can be brought into a position on the 
upper half plane symmetric with respect to the imaginary axis. Hence we 
will assume that the arc C is this position. 

The lineax transformation 

(11) c = 
z-i/3 
l + ipz' 0 < / 3 < 1 

maps \z\ < 1 on |e| < 1 and C on the linear segment —1 < C < 1, and the 
equation (2) is transformed into the equation 

(12) y{2m)(0 + q(0y(0 = o, 
where y(() = (1 — iP()u(z(Q), and 

(13) 9 ( 0 = P W 0 ) ( | ) 
2m 

Moreover, for a linear mapping the unit circle into itself, the relation 

dz 
dC 

l-\z\2 

1- ICI 2 

holds. 
We now show that \z\ > |£|. Set C = £ + ¿V, then we have 

M 2 - | C | 2 = l-W - ICI* = 
2 K + »f t l a - Kl2- | i -«ffCl a _ 

< 2 + / ? 2 - c 2 ( i + / 3 2 e 2 ) /32(i — c4) 
\1-W I1-1/3CI 2 -

> 0. 

Since \z\2 > |e|2, we have 

(14) 
dz 
dc 

l - 1 4 
i - I C I 2 — < 1. 
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Now using (13), (14) and (3) we estimate q(() 
2m 

< m I = |p(«(0)l 
dz 

dÇ 

< 

< 

r(m) l - / ? 2 m 
dz 

a 1 ^ I5 
\L \i-i0O (1 - m 2 d( 

r{m){ 1 m 

< 

\i-iPC\2-\C + iP\2}m 

r(m)( l - / ? 2 ) m r(m) 

[ ( i - / 3 2 ) ( i - C 2 ) ] m ( l - C 2 ) " 1 ' 
This follows from the fact that the restriction (3) is translated to the re-
striction 

(15) |p(C)l < 
r(m) 

( i - C 2 ) m ' 
The linear transformation (11) maps zeros z\ and z2 of the solution u>{z) 
equation (2) on the zeros £ = — p and £ = p of the solution y(() of the 
equation (12), where 0 < p < 1. 

Multiplying the equation (12) by y(()d( and integrating from £ = — p to 
C = p along the real axis, we obtain 

(16) ( - l ) m J |y (m)(OI2dC= 5 9(C)l»(C)|2dC-
-p -p 

We set y(C) = u(C) + iv(C). Then 

|y(C)l2 = u2(0 + *2(C), |ym(C)l2 = Mm )(C)]2 + b(m)(C)]2> 
and (16) becomes 

<»> ( - T 5 [ ( p ) 2 + J « + 
-P -P 

Using (15), from (17) we get 
P r / dm.. \ 2 / am.. \ 2 

s [ ( I P O + ( £ £ ) ] " C < s i9(c)i[u2(o+»2(c)]<ic < 

< r ( m ) j h M G . c < 
-p (1 - t2Y 

<> r(m\n2m [ U + W (0 Jf 
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However, this contradicts with the inequality (7), according to which 

of u,v G Cm[—p,p] and u and v have zeros of order m at ( = —p and 
C = +p. This contradiction proves the theorem. 

Sufficient conditions of a different type can be obtained by means of 
the following results [4], [5] : If the function p(z) is analytic in the unit disk 
\z\ < 1, z = x + iy and \z'\ < 1, then 

H \p{z)\dxdy 

and 
2tt 
\ \p(e i 9)\de 

( 1 9 ) \P(Z')\ < 2tt(1 - \z'\2)' 

THEOREM 2. If the function p(z) is analytic in the unit disk \z\ < 1, it is 
(m,m)-disconjugate if 

(20) JS \p(z)\2/mdxdy<Tr^/n{mj, \z\ < 1 
l»l<i 

or 
2ir 

(21) \ |p(eie)|1//md0 < 2tt ^/T(m) . 
o 

P r o o f . Prom (18) and (3), we see that 

JS \p{z)\2'™dxdy 
x,2/m ^ lfl<l ^ r ( m ) 

l P [ Z ) ] ~ t t ( 1 - \Z\*)* S ( 1 - | Z | 2 ) 2 ' 

Therefore, we obtain (20). In an analogous way from (19) and (3) we obtain 
(21). This completes the proof. 

4. Let us denote the non-Euclidean distance of any two points z\ and z2 in 
the unit disk \z\ < 1 by A(zi, z2)- This distance is defined by 

\dz\ 
A(Z2,Z2)= J ^ 

zl2' 

where the integration is along the orthogonal arc between z\ and z2 which 
we denote by [zi^]-
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THEOREM 3. Letp(z) be a regular function \z\ < 1 and assume that 

(22) 1 ^ 1 ^ ( 1 - ^ 2 )m> 0 > 1 > N < L 

Let the nontrivial solution ui(z) of equation (2) have two zeros z\ and Z2 of 
order m in unit disk \z\ < 1. 

Then 

(23) A{zi, z2) > In , , , : • 
K J y/a/r(m) - 1 
Proof . We choose again the transformation (11) so that z\ and Z2 go into 
C = ±p, 0 < p < 1. 

By the invariance of the non-Euclidean distance, we have 
p dx , 1 + p 

P 
A{z1,z2) = A(-p,p)= j = 1*1^ 

-p 

Therefore, (23) will be established if we cam show that 

w i ± £ > In V ^ V H 1 = In 1 + V ^ M 
1 ~P ya/r(m) - 1 1- ,y/ajr{m)' 

i.e., that 
p> y/r(m)/a. 

Assume, conversely, that 

(24) apm < r(m). 
This implies from 0 < p < 1 that 

(25) (p2 - x2)m = P2m ( l - ^ m < P2m( 1 - x2)m. 

Multiplying the last two inequalities (24) and (25) we obtain 

a{p2-x2)m < pmr{m)( l - x 2 ) m ; -p<x<p 

with equality possible only at x = 0. Therefore 

(26) < P " r ( m ) ( l _ x 2 ) m - (p2_a.2)m-

By the transformation (11), the equation (2) is transformed into (12) with 
a solution y(C) ^ 0, y(C) = u(C) + w(C) such that the solution y(Q has 
two zeros C = —p and ( = p of order m. In fact the condition (22) is again 
invariant with respect to the transformation (11), i.e. 

(27) • k(OI < p ^ g p 
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Multiplying the equation (12) by y(()d( and integrating from ( = —p to 
C = P, we obtain 

(28) ( - l ) m J |ym(C)|2dC = f q(0\y(Q\2dC. 
-p -p 

Now using the inequalities (27) and (26) we estimate (28). Then we have 

5 (k (m)(c)]2 + [ « ( m ) ( o i 2 K < -p 

< J k(C)l[«2(C) + « 2 ( C M < a 5 " J l ^ P d C (1 - c*)m ' < 
- p - p 

p „.2/V\ P „,2/V\ _l„,2/ 

< P r ( m ) 1 ( p 2 _ C 2 ) m < r ( m ) J ( / ? 2 _ C 2 ) m ^ 

This gives a contradiction with the inequality (7). By (7) we have 

5 (Mm)(C)]2 + Mm ) (C)] 2K > r{m) \ ^ f ^ S d C --p -p ^ ' 

This contradiction proves the theorem. 
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