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ON THE ZEROS OF SOLUTIONS
OF THE DIFFERENTIAL EQUATION w(®*™) 4 p(z)w =0

1. We consider a linear differential equation of order n:
(1) W™ 4+ p1 (2w . 4 pa(2)w =0,

where the complex-valued functions pi(z), £ = 1,2,...,n are analytic func-
tions which are regular in a region D of the complex plane.

The differential equation (1) is said to be disconjugate in D if no nontriv-
ial solution of (1) has more than n—1 zeros (where the zeros are counted with
their multiplicities) in D. The equation (1) is said to be (m, m)-disconjugate
in D if n = 2m and if no nontrivial solution of (1) has two zeros of order m
in D.

In (1] the following result for differential equations of arbitrary even order
was obtained:

THEOREM A. The differential equation
(2) w®™) 4 p(2)w =0,
where the function p(z) is analytic in |z| < 1, is (m,m)-disconjugate, if

B(2m)

Ip(2)| < A= R’ 2| < 1,

where B(2) =1, B(4) =9 and

B2m)=9]](4k-3), m=34,...
k=3

In [2] the following result was obtained:
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THEOREM B. The differential equation (2), where the function p(z) is ana-
lytic in |2| < 1, is (m, m)-disconjugate, if

[Tiq (2% — 1)
lp(2)| < ﬁz')zT’

In this paper using integral inequalities we prove the theorem:

lz| < 1.

THEOREM 1. The differential equation (2), where the function p(z) is ana-
lytic in |z| < 1, is (m,m)-disconjugate, if

P\2 (m) z
© Pl < T <L

where
2" [T (4k — 1)(4K), if m = 2n,
(4) I(m) = { 2"“'1?277% + 1) [Tre, (4k — 1)(4k), ifm=2n+1.

2. In a recent paper [3] there was established an integral inequality involving
a function and its second derivative of the form
(5) {sh?dt < {ra"?dt, heH,
I

where I = (a,b), —o0 < a < b < o0, r and s are real functions of the variable
t, H is a class of functions absolutely continuous on I. We denote by AC(J)
the class of real functions defined and absolutely continuous on the interval
I, and by AC*(I) the class of functions f € AC(I) such that f' € AC(I).

Let us take I = (—1,1) and the function 7 = (1 — t2)= (o > 0). From
Theorem [3] we obtain that the inequality of the form (5) holds:

LEMMA 1. If @ > 0 and the function h € AC'((—1,1)) satisfies the integral

condition

1 h/IZ

———dt <
— 12\
2, A=)

and the limit conditions
h(-1)=Rh'(-1)=h(1)=h'(1)=0

then the inequality
1

1 hé
©  la-er

dt > 2(2a + 3)(2& + 4) Sl (].——t2)a+—2 dt
holds. The inequality (6) becomes an equality if and only if h = c(1—t2)*+2,
where ¢ = const.
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LEMMA 2. If a nontrivial real function h of C™[—1, 1] has two zeros of order
matt=—-1andt=1, then

h2
(7) S [RU™]2 dt > I'(m) S = dt,

t2)m
-1
where I'(m) is defined by (4).

Proof. By the inequality (6), we have the sequence of inequalities for
m=2n:

(2n)12 [h (2n-2)12
S[h Pdt>2-(2-0+3)(2- 0+4)§ Teron dt,
[h(2n 2)]2 [h (2n— 4)]2
> . .
§ ron dt>2-(2-2+3)(2 2+4)§ Iron dt,
1 - .
—_ _  __dt>2-[2. - . - —__ dt.
_Sl @D dt>2-2-(2n—1)+3|[2- (2n — 1) + 4] _Sl o dt
Multiplying these inequalities, we get
1 2
(8) | (RG22 dt > 2n H(4k —1)(4k) § Lz; dt.
-1 k=1 )
If m = 2n + 1, then by the inequality (6) we have
2
©) g [RCRHD]2 gt > on H(4k — 1)(4k) § —"')—2; dt.
k=1
But
1 17) 1 h2
—_—dt >
(10) _Sl T dt > 2(2n + 1) S Neeoes ———dt.
Indeed, we have
1 2
1 2(2n + 1)t
< ! -
0‘_§1(1—t2)2"(h+ — h) dt
1 1
hl2 h2
= | —grdt-202n+1) | —gdt
— 12)2n — n ’
J 1T-1)2 _Sl (1 —¢2)2nt

the last step following from an integration by parts. From the inequalities
(8), (9) and (10) we have the inequality (7). Lemma is proved.
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3. Now we prove Theorem 1 using Lemma 2.

Proof of Theorem 1. Suppose the theorem is false and there exists a so-
lution w(z) of (2) with two zeros, z = z;, 2 = 23 of order m in the unit
disk. Then there exists a unique circle which passes through this two points
and is orthogonal to the circle |z| = 1. The circle passing through 2; and
2z orthogonal to |z| = 1 is divided by |z| = 1 into two arcs. We denote the
arc inside |z| < 1 by C. Without loss of generality, we may assume that C
is on the upper half plane Rez > 0, and is symmetric with respect to the
imaginary axis Im 2 of the complex plane. In the opposite case by a rotation
¢ = az, |a| = 1, the points 23, 2o can be brought into a position on the
upper half plane symmetric with respect to the imaginary axis. Hence we
will assume that the arc C is this position.

The linear transformation
z—1if
11 Nl
(11) ¢ 1+1ip2
maps |z| < 1on |{| <1 and C on the linear segment —1 < ¢ < 1, and the
equation (2) is transformed into the equation

0<pB<1

(12) y®™(¢) + a(¢)y(¢) =0,
where y(¢) = (1 - i8¢)w(2(¢)), and
dz 2m
(13) o) =21 ()
Moreover, for a linear mapping the unit circle into itself, the relation
dz| _1- | 2|2
a¢l 1-[¢l?
holds.
We now show that |z| > [{|. Set { = £ + in, then we have
2o | SHB| e [CHIBR—ICR 11— B¢
_ QB _pa-¢Y)
11 —4B¢J2 I1—ip¢2 ~
Since |z|? > |¢|?, we have
dz| 11—z
(14 &)= ToRe <
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Now using (13), (14) and (3) we estimate g(¢{)

19(0)] = [p((O))]- dz <
< (m) . 1-p m. dz "
S - 1EER |0-B0%| g

. Im@-pm
= 11 =98¢ - ¢ + 1B
_ ImQ-" _ I(m)
(A= -3 Q-3
This follows from the fact that the restriction (3) is translated to the re-
striction
I'(m)

(15) (O] < =

The linear transformation (11) maps zeros z; and 2 of the solution w(z)
equation (2) on the zeros ( = —p and ¢ = p of the solution y(¢) of the
equation (12), where 0 < p < 1.

Multiplying the equation (12) by %({)d¢ and integrating from { = —p to
¢ = p along the real axis, we obtain

p P
(16) 1™ § ™ (Orde = | a(Qly()IPd¢.
~pP it 4
We set y(¢) = u(¢) + iv(¢). Then

(O = 4*() +92(Q), W™ = ™ (P + L™ Q)

and (16) becomes
@ o ] [(Gm) + (G Joc= S QO + P (O,
Using (15), f:om (17) we get
_fp [(%)2 +(50) ]dc < 5 19(QIRA(Q) +v2(Q)ldC <

P2 2

< I“(m)pz"' S ((2) +C1;)Sf) C
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However, this contradicts with the inequality (7), according to which

P2 2 P 2 m, N\ 2
u?(¢) + v*(¢) ™u o™v
— /T - D < il -
HML Q%W1“—L acm) T\aem) | %
of u,v € C™[-p,p] and v and v have zeros of order m at { = —p and
¢ = +p. This contradiction proves the theorem.

Sufficient conditions of a different type can be obtained by means of
the following results [4], [5]: If the function p(z) is analytic in the unit disk
|z] < 1, z =z + iy and |2'| < 1, then

§§ Ip(2)ldzdy

|z]<1

(18) Ip(2")] < (o
and

27 .

! Ip(e*)]d8
(19) lp(z")] < WA= 7P

THEOREM 2. If the function p(z) is analytic in the unit disk |z| < 1, it is
(m, m)-disconjugate if

(20) I\ o) mdzdy < 7 Y/T2(m), |2 <1
|z| <1
or )
2n
(21) | Ip(e”)[*/™d6 < 2m %/T(m).
0

Proof. From (18) and (3), we see that

{5 1p(2)|*/™dzdy
lzl<1 < I'*(m)
m(1—|z2)2 T (122
Therefore, we obtain (20). In an analogous way from (19) and (3) we obtain
(21). This completes the proof.

lp(2)>/™ <

4. Let us denote the non-Euclidean distance of any two points 2; and 23 in
the unit disk |z| < 1 by A(z1, 22). This distance is defined by

dz
Mz = | 5,
[2122]

where the integration is along the orthogonal arc between z and z, which
we denote by [z122].



Zeros of solutions - 47

THEOREM 3. Let p(z) be a regular function |z| < 1 and assume that
a
e 1 1.
(22) P S o 0> bI<

Let the nontrivial solution w(z) of equation (2) have two zeros z; and z3 of
order m in unit disk |z| < 1.
Then

Ya/T 1
(23) A(z1,22) > In __a,um)_+_
Ya/I'(m) -1
Proof. We choose again the transformation (11) so that z; and z; go into

(=xp,0<p< 1
By the invariance of the non-Euclidean distance, we have

P
dz 1+
Az, 22) = A(—p,p) = S =In—2.
-p

1—z2 1-p
Therefore, (23) will be established if we can show that

log 1+p > In Vao/I(m) +1 =ln1+ Va/L(m)
1-p ?a/I'(m)—1 1- %/a/T'(m)’

p> %/T(m)/a.

i.e., that

Assume, conversely, that ‘
(24) ap™ < I'(m).
This implies from 0 < p < 1 that

2\ m

(25) (p2 _ .’l:2)m — p2m (1 _ (Ep) ) < p2m(1 _ z2)m.
Multiplying the last two inequalities (24) and (25) we obtain

a(p? =)™ < pmM(m)(1-2®)™; —p<z<p
with equality possible only at £ = 0. Therefore

a < p™I'(m)

(1—2)™ = (p? - 2™
By the transformation (11), the equation (2) is transformed into (12) with
a solution y(¢) # 0, y(¢) = u(¢) + iv({) such that the solution y({) has

two zeros { = —p and ¢ = p of order m. In fact the condition (22) is again
invariant with respect to the transformation (11), i.e.

a
(27) ’ lg(¢) < (_I—:W

(26)
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Multiplying the equation (12) by %(¢)d¢ and integrating from ¢ = —p to
¢ = p, we obtain
(28) -Hm § ly™(Q)d¢ = § a($)ly(¢)1Pd¢.
Now using the inequal_i:ies (27) and (2;; we estimate (28). Then we have
§ (W™ QP + R (OP)d <
p uw?(¢) +v*(¢)

< [ 1a@IR(©) + 0O < a | =

-p -p

2 u2(C) +v2(C) ¢ w30 +4%(Q)
1 - ) -

-p
This gives a contradiction with the inequality (7). By (7) we have

] P .2 2
J W™ O + ™ (O))d¢ = D(m) § u(_f(él—%)’f"g

—p —-p
This contradiction proves the theorem.

d¢ <

d¢.

d.
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