

G. M. Muminov

ON THE ZEROS OF SOLUTIONS
 OF THE DIFFERENTIAL EQUATION $\omega^{(2m)} + p(z)\omega = 0$

1. We consider a linear differential equation of order n :

$$(1) \quad \omega^{(n)} + p_1(z)\omega^{(n-1)} + \dots + p_n(z)\omega = 0,$$

where the complex-valued functions $p_k(z)$, $k = 1, 2, \dots, n$ are analytic functions which are regular in a region D of the complex plane.

The differential equation (1) is said to be disconjugate in D if no nontrivial solution of (1) has more than $n-1$ zeros (where the zeros are counted with their multiplicities) in D . The equation (1) is said to be (m, m) -disconjugate in D if $n = 2m$ and if no nontrivial solution of (1) has two zeros of order m in D .

In [1] the following result for differential equations of arbitrary even order was obtained:

THEOREM A. *The differential equation*

$$(2) \quad \omega^{(2m)} + p(z)\omega = 0,$$

where the function $p(z)$ is analytic in $|z| < 1$, is (m, m) -disconjugate, if

$$|p(z)| \leq \frac{B(2m)}{(1 - |z|^2)^{2m}}, \quad |z| < 1,$$

where $B(2) = 1$, $B(4) = 9$ and

$$B(2m) = 9 \prod_{k=3}^m (4k - 3), \quad m = 3, 4, \dots$$

In [2] the following result was obtained:

THEOREM B. *The differential equation (2), where the function $p(z)$ is analytic in $|z| < 1$, is (m, m) -disconjugate, if*

$$|p(z)| \leq \frac{\prod_{k=1}^m (2k-1)^2}{(1-|z|^2)^{2m}}, \quad |z| < 1.$$

In this paper using integral inequalities we prove the theorem:

THEOREM 1. *The differential equation (2), where the function $p(z)$ is analytic in $|z| < 1$, is (m, m) -disconjugate, if*

$$(3) \quad |p(z)| \leq \frac{\Gamma(m)}{(1-|z|^2)^m}, \quad |z| < 1,$$

where

$$(4) \quad \Gamma(m) = \begin{cases} 2^n \prod_{k=1}^m (4k-1)(4k), & \text{if } m = 2n, \\ 2^{n+1} (2n+1) \prod_{k=1}^m (4k-1)(4k), & \text{if } m = 2n+1. \end{cases}$$

2. In a recent paper [3] there was established an integral inequality involving a function and its second derivative of the form

$$(5) \quad \int_I sh^2 dt \leq \int_I rh''^2 dt, \quad h \in H,$$

where $I = (a, b)$, $-\infty \leq a < b \leq \infty$, r and s are real functions of the variable t , H is a class of functions absolutely continuous on I . We denote by $AC(I)$ the class of real functions defined and absolutely continuous on the interval I , and by $AC^1(I)$ the class of functions $f \in AC(I)$ such that $f' \in AC(I)$.

Let us take $I = (-1, 1)$ and the function $r = (1-t^2)^{-\alpha}$ ($\alpha \geq 0$). From Theorem [3] we obtain that the inequality of the form (5) holds:

LEMMA 1. *If $\alpha \geq 0$ and the function $h \in AC^1((-1, 1))$ satisfies the integral condition*

$$\int_{-1}^1 \frac{h''^2}{(1-t^2)^\alpha} dt < \infty$$

and the limit conditions

$$h(-1) = h'(-1) = h(1) = h'(1) = 0$$

then the inequality

$$(6) \quad \int_{-1}^1 \frac{h''^2}{(1-t^2)^\alpha} dt \geq 2(2\alpha+3)(2\alpha+4) \int_{-1}^1 \frac{h^2}{(1-t^2)^{\alpha+2}} dt$$

holds. The inequality (6) becomes an equality if and only if $h = c(1-t^2)^{\alpha+2}$, where $c = \text{const.}$

LEMMA 2. If a nontrivial real function h of $C^m[-1, 1]$ has two zeros of order m at $t = -1$ and $t = 1$, then

$$(7) \quad \int_{-1}^1 [h^{(m)}]^2 dt > \Gamma(m) \int_{-1}^1 \frac{h^2}{(1-t^2)^m} dt,$$

where $\Gamma(m)$ is defined by (4).

Proof. By the inequality (6), we have the sequence of inequalities for $m = 2n$:

$$\begin{aligned} \int_{-1}^1 [h^{(2n)}]^2 dt &\geq 2 \cdot (2 \cdot 0 + 3)(2 \cdot 0 + 4) \int_{-1}^1 \frac{[h^{(2n-2)}]^2}{(1-t^2)^2} dt, \\ \int_{-1}^1 \frac{[h^{(2n-2)}]^2}{(1-t^2)^2} dt &\geq 2 \cdot (2 \cdot 2 + 3)(2 \cdot 2 + 4) \int_{-1}^1 \frac{[h^{(2n-4)}]^2}{(1-t^2)^4} dt, \\ &\dots \\ \int_{-1}^1 \frac{h'^2}{(1-t^2)^{2(n-1)}} dt &\geq 2 \cdot [2 \cdot (2n-1) + 3][2 \cdot (2n-1) + 4] \int_{-1}^1 \frac{h^2}{(1-t^2)^{2n}} dt. \end{aligned}$$

Multiplying these inequalities, we get

$$(8) \quad \int_{-1}^1 [h^{(2n)}]^2 dt \geq 2^n \prod_{k=1}^n (4k-1)(4k) \int_{-1}^1 \frac{h^2}{(1-t^2)^{2n}} dt.$$

If $m = 2n+1$, then by the inequality (6) we have

$$(9) \quad \int_{-1}^1 [h^{(2n+1)}]^2 dt \geq 2^n \prod_{k=1}^n (4k-1)(4k) \int_{-1}^1 \frac{h'^2}{(1-t^2)^{2n}} dt.$$

But

$$(10) \quad \int_{-1}^1 \frac{h'^2}{(1-t^2)^{2n}} dt \geq 2(2n+1) \int_{-1}^1 \frac{h^2}{(1-t^2)^{2n+1}} dt.$$

Indeed, we have

$$\begin{aligned} 0 &\leq \int_{-1}^1 \frac{1}{(1-t^2)^{2n}} \left(h' + \frac{2(2n+1)t}{1-t^2} h \right)^2 dt = \\ &= \int_{-1}^1 \frac{h'^2}{(1-t^2)^{2n}} dt - 2(2n+1) \int_{-1}^1 \frac{h^2}{(1-t^2)^{2n+1}} dt, \end{aligned}$$

the last step following from an integration by parts. From the inequalities (8), (9) and (10) we have the inequality (7). Lemma is proved.

3. Now we prove Theorem 1 using Lemma 2.

Proof of Theorem 1. Suppose the theorem is false and there exists a solution $\omega(z)$ of (2) with two zeros, $z = z_1, z = z_2$ of order m in the unit disk. Then there exists a unique circle which passes through these two points and is orthogonal to the circle $|z| = 1$. The circle passing through z_1 and z_2 orthogonal to $|z| = 1$ is divided by $|z| = 1$ into two arcs. We denote the arc inside $|z| < 1$ by C . Without loss of generality, we may assume that C is on the upper half plane $\operatorname{Re} z \geq 0$, and is symmetric with respect to the imaginary axis $\operatorname{Im} z$ of the complex plane. In the opposite case by a rotation $\zeta = \alpha z$, $|\alpha| = 1$, the points z_1, z_2 can be brought into a position on the upper half plane symmetric with respect to the imaginary axis. Hence we will assume that the arc C is this position.

The linear transformation

$$(11) \quad \zeta = \frac{z - i\beta}{1 + i\beta z}, \quad 0 < \beta < 1$$

maps $|z| < 1$ on $|\zeta| < 1$ and C on the linear segment $-1 < \zeta < 1$, and the equation (2) is transformed into the equation

$$(12) \quad y^{(2m)}(\zeta) + q(\zeta)y(\zeta) = 0,$$

where $y(\zeta) = (1 - i\beta\zeta)\omega(z(\zeta))$, and

$$(13) \quad q(\zeta) = p(z(\zeta)) \left(\frac{dz}{d\zeta} \right)^{2m}.$$

Moreover, for a linear mapping the unit circle into itself, the relation

$$\left| \frac{dz}{d\zeta} \right| = \frac{1 - |z|^2}{1 - |\zeta|^2}$$

holds.

We now show that $|z| \geq |\zeta|$. Set $\zeta = \xi + i\eta$, then we have

$$\begin{aligned} |z|^2 - |\zeta|^2 &= \left| \frac{\zeta + i\beta}{1 - i\beta\zeta} \right|^2 - |\zeta|^2 = \frac{|\zeta + i\beta|^2 - |\zeta|^2 \cdot |1 - i\beta\zeta|^2}{|1 - i\beta\zeta|^2} = \\ &= \frac{\zeta^2 + \beta^2 - \zeta^2(1 + \beta^2\zeta^2)}{|1 - i\beta\zeta|^2} = \frac{\beta^2(1 - \zeta^4)}{|1 - i\beta\zeta|^2} \geq 0. \end{aligned}$$

Since $|z|^2 \geq |\zeta|^2$, we have

$$(14) \quad \left| \frac{dz}{d\zeta} \right| = \frac{1 - |z|^2}{1 - |\zeta|^2} \leq 1.$$

Now using (13), (14) and (3) we estimate $q(\zeta)$

$$\begin{aligned}
 |q(\zeta)| &= |p(z(\zeta))| \cdot \left| \frac{dz}{d\zeta} \right|^{2m} \leq \\
 &\leq \frac{\Gamma(m)}{(1 - |\frac{\zeta+i\beta}{1-i\beta\zeta}|^2)^m} \cdot \left| \frac{1-\beta^2}{(1-i\beta\zeta)^2} \right|^m \cdot \left| \frac{dz}{d\zeta} \right|^m \leq \\
 &\leq \frac{\Gamma(m)(1-\beta^2)^m}{[(1-i\beta\zeta)^2 - |\zeta+i\beta|^2]^m} = \\
 &= \frac{\Gamma(m)(1-\beta^2)^m}{[(1-\beta^2)(1-\zeta^2)]^m} = \frac{\Gamma(m)}{(1-\zeta^2)^m}.
 \end{aligned}$$

This follows from the fact that the restriction (3) is translated to the restriction

$$(15) \quad |p(\zeta)| \leq \frac{\Gamma(m)}{(1-\zeta^2)^m}.$$

The linear transformation (11) maps zeros z_1 and z_2 of the solution $\omega(z)$ equation (2) on the zeros $\zeta = -\rho$ and $\zeta = \rho$ of the solution $y(\zeta)$ of the equation (12), where $0 < \rho < 1$.

Multiplying the equation (12) by $\bar{y}(\zeta)d\zeta$ and integrating from $\zeta = -\rho$ to $\zeta = \rho$ along the real axis, we obtain

$$(16) \quad (-1)^m \int_{-\rho}^{\rho} |y^{(m)}(\zeta)|^2 d\zeta = \int_{-\rho}^{\rho} q(\zeta)|y(\zeta)|^2 d\zeta.$$

We set $y(\zeta) = u(\zeta) + iv(\zeta)$. Then

$$|y(\zeta)|^2 = u^2(\zeta) + v^2(\zeta), \quad |y^{(m)}(\zeta)|^2 = [u^{(m)}(\zeta)]^2 + [v^{(m)}(\zeta)]^2,$$

and (16) becomes

$$(17) \quad (-1)^m \int_{-\rho}^{\rho} \left[\left(\frac{\partial^m u}{\partial \zeta^m} \right)^2 + \left(\frac{\partial^m v}{\partial \zeta^m} \right)^2 \right] d\zeta = \int_{-\rho}^{\rho} q(\zeta)[u^2(\zeta) + v^2(\zeta)] d\zeta.$$

Using (15), from (17) we get

$$\begin{aligned}
 \int_{-\rho}^{\rho} \left[\left(\frac{\partial^m u}{\partial \zeta^m} \right)^2 + \left(\frac{\partial^m v}{\partial \zeta^m} \right)^2 \right] d\zeta &\leq \int_{-\rho}^{\rho} |q(\zeta)|[u^2(\zeta) + v^2(\zeta)] d\zeta \leq \\
 &\leq \Gamma(m) \int_{-\rho}^{\rho} \frac{u^2(\zeta) + v^2(\zeta)}{(1-\zeta^2)^m} d\zeta < \\
 &< \Gamma(m)\rho^{2m} \int_{-\rho}^{\rho} \frac{u^2(\zeta) + v^2(\zeta)}{(\rho^2 - \zeta^2)^m} d\zeta.
 \end{aligned}$$

However, this contradicts with the inequality (7), according to which

$$\Gamma(m) \int_{-\rho}^{\rho} \frac{u^2(\zeta) + v^2(\zeta)}{(1 - \zeta^2)^m} d\zeta \leq \int_{-\rho}^{\rho} \left[\left(\frac{\partial^m u}{\partial \zeta^m} \right)^2 + \left(\frac{\partial^m v}{\partial \zeta^m} \right)^2 \right] d\zeta,$$

of $u, v \in C^m[-\rho, \rho]$ and u and v have zeros of order m at $\zeta = -\rho$ and $\zeta = +\rho$. This contradiction proves the theorem.

Sufficient conditions of a different type can be obtained by means of the following results [4], [5]: If the function $p(z)$ is analytic in the unit disk $|z| < 1$, $z = x + iy$ and $|z'| < 1$, then

$$(18) \quad |p(z')| \leq \frac{\iint_{|z| < 1} |p(z)| dx dy}{\pi(1 - |z|^2)^2},$$

and

$$(19) \quad |p(z')| \leq \frac{\int_0^{2\pi} |p(e^{i\theta})| d\theta}{2\pi(1 - |z'|^2)}.$$

THEOREM 2. *If the function $p(z)$ is analytic in the unit disk $|z| < 1$, it is (m, m) -disconjugate if*

$$(20) \quad \iint_{|z| < 1} |p(z)|^{2/m} dx dy \leq \pi \sqrt[m]{\Gamma^2(m)}, \quad |z| < 1$$

or

$$(21) \quad \int_0^{2\pi} |p(e^{i\theta})|^{1/m} d\theta \leq 2\pi \sqrt[m]{\Gamma(m)}.$$

P r o o f. From (18) and (3), we see that

$$|p(z)|^{2/m} \leq \frac{\iint_{|z| < 1} |p(z)|^{2/m} dx dy}{\pi(1 - |z|^2)^2} \leq \frac{\Gamma^2(m)}{(1 - |z|^2)^2}.$$

Therefore, we obtain (20). In an analogous way from (19) and (3) we obtain (21). This completes the proof.

4. Let us denote the non-Euclidean distance of any two points z_1 and z_2 in the unit disk $|z| < 1$ by $\Lambda(z_1, z_2)$. This distance is defined by

$$\Lambda(z_2, z_1) = \int_{[z_1 z_2]} \frac{|dz|}{1 - |z|^2},$$

where the integration is along the orthogonal arc between z_1 and z_2 which we denote by $[z_1 z_2]$.

THEOREM 3. Let $p(z)$ be a regular function $|z| < 1$ and assume that

$$(22) \quad |p(z)| \leq \frac{a}{(1 - |z|^2)^m}, \quad a > 1, \quad |z| < 1.$$

Let the nontrivial solution $\omega(z)$ of equation (2) have two zeros z_1 and z_2 of order m in unit disk $|z| < 1$.

Then

$$(23) \quad \Lambda(z_1, z_2) > \ln \frac{\sqrt[m]{a/\Gamma(m)} + 1}{\sqrt[m]{a/\Gamma(m)} - 1}.$$

P r o o f. We choose again the transformation (11) so that z_1 and z_2 go into $\zeta = \pm\rho$, $0 < \rho < 1$.

By the invariance of the non-Euclidean distance, we have

$$\Lambda(z_1, z_2) = \Lambda(-\rho, \rho) = \int_{-\rho}^{\rho} \frac{dx}{1 - x^2} = \ln \frac{1 + \rho}{1 - \rho}.$$

Therefore, (23) will be established if we can show that

$$\log \frac{1 + \rho}{1 - \rho} > \ln \frac{\sqrt[m]{a/\Gamma(m)} + 1}{\sqrt[m]{a/\Gamma(m)} - 1} = \ln \frac{1 + \sqrt[m]{a/\Gamma(m)}}{1 - \sqrt[m]{a/\Gamma(m)}},$$

i.e., that

$$\rho > \sqrt[m]{\Gamma(m)/a}.$$

Assume, conversely, that

$$(24) \quad a\rho^m \leq \Gamma(m).$$

This implies from $0 < \rho < 1$ that

$$(25) \quad (\rho^2 - x^2)^m = \rho^{2m} \left(1 - \left(\frac{x}{\rho}\right)^2\right)^m \leq \rho^{2m} (1 - x^2)^m.$$

Multiplying the last two inequalities (24) and (25) we obtain

$$a(\rho^2 - x^2)^m \leq \rho^m \Gamma(m) (1 - x^2)^m; \quad -\rho \leq x \leq \rho$$

with equality possible only at $x = 0$. Therefore

$$(26) \quad \frac{a}{(1 - x^2)^m} \leq \frac{\rho^m \Gamma(m)}{(\rho^2 - x^2)^m}.$$

By the transformation (11), the equation (2) is transformed into (12) with a solution $y(\zeta) \not\equiv 0$, $y(\zeta) = u(\zeta) + iv(\zeta)$ such that the solution $y(\zeta)$ has two zeros $\zeta = -\rho$ and $\zeta = \rho$ of order m . In fact the condition (22) is again invariant with respect to the transformation (11), i.e.

$$(27) \quad |q(\zeta)| \leq \frac{a}{(1 - \zeta^2)^m}.$$

Multiplying the equation (12) by $\bar{y}(\zeta)d\zeta$ and integrating from $\zeta = -\rho$ to $\zeta = \rho$, we obtain

$$(28) \quad (-1)^m \int_{-\rho}^{\rho} |y^m(\zeta)|^2 d\zeta = \int_{-\rho}^{\rho} q(\zeta)|y(\zeta)|^2 d\zeta.$$

Now using the inequalities (27) and (26) we estimate (28). Then we have

$$\begin{aligned} & \int_{-\rho}^{\rho} ([u^{(m)}(\zeta)]^2 + [v^{(m)}(\zeta)]^2) d\zeta \leq \\ & \leq \int_{-\rho}^{\rho} |q(\zeta)|[u^2(\zeta) + v^2(\zeta)] d\zeta \leq a \int_{-\rho}^{\rho} \frac{u^2(\zeta) + v^2(\zeta)}{(1 - \zeta^2)^m} d\zeta < \\ & < \rho^m \Gamma(m) \int_{-\rho}^{\rho} \frac{u^2(\zeta) + v^2(\zeta)}{(\rho^2 - \zeta^2)^m} d\zeta < \Gamma(m) \int_{-\rho}^{\rho} \frac{u^2(\zeta) + v^2(\zeta)}{(\rho^2 - \zeta^2)^m} d\zeta. \end{aligned}$$

This gives a contradiction with the inequality (7). By (7) we have

$$\int_{-\rho}^{\rho} ([u^{(m)}(\zeta)]^2 + [v^{(m)}(\zeta)]^2) d\zeta \geq \Gamma(m) \int_{-\rho}^{\rho} \frac{u^2(\zeta) + v^2(\zeta)}{(\rho^2 - \zeta^2)^m} d\zeta.$$

This contradiction proves the theorem.

References

- [1] M. Lavie, *The Schwarzian derivative and disconjugacy of n-th order linear differential equations*, Canad. J. Math. 21 (1969), 235–249.
- [2] W. J. Kim, *On the zeros of solutions of $y^{(n)} + py = 0$* , J. Math. Anal. Appl. 25 (1969), 189–208.
- [3] B. Florkiewicz and K. Wojcieczek, *On some further Wirtinger-Beesack integral inequalities*, Demonstratio Math. 32 (1999), 495–502.
- [4] D. London, *On the zeros of the solutions of $\omega''(z) + p(z)\omega(z) = 0$* , Pacific J. Math. 12 (1962), 979–991.
- [5] Z. Nehari, *Conformal Mapping*, p. 127, McGraw-Hill, New York, 1952.

ANDIJON STATE UNIVERSITY
FACULTY OF MATHEMATICS
Universitetska 129
ANDIJON, UZBEKISTAN

Received December 18, 2000.