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G E N E R A T I N G RELATIONS INVOLVING 
H Y P E R G E O M E T R I C FUNCTIONS 

B Y M E A N S OF I N T E G R A L O P E R A T O R S 

Abstract. In this paper, the focus is on the results which involve exponential func-
tions. The results of Pathan and Yasmeen [6] and Exton [3] are used with a view to 
obtaining generating functions which are partly unilateral and partly bilateral. 

1. Introduction 
Pathan and Yasmeen ([6]; p. 241 (1.2)) modified the result of Exton ([3]; 

p. 147(3)) in the form 

(1.1) exp (s + t - ^ ) = f ; f ; sMtNFx (x), 
M = -oo N = M' 

where M* = max{0, —M} and 

^ - / ¿ l E ^ f c S S S if N>M* f m ( t , W W r ± r=M' (M+r)!r! 
if 0 < N < M*. 

No factorials of negative integers occur in this definition, so all the terms 
have meaning. 

Further, we know that if a three variables function H(x,s,t) can be 
expanded in powers of t in the form 

oo 
H(x,s,t) = Y/hMX^n(s)tn, 

n = 0 

where hn is independent of x,s and t, and /n(x) and gn(s) are different 
functions then H(x,s,t) is called a bilateral generating function. We re-
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mark that the right hand side of result (1.1) is termed as paxtly unilateral 
and partly bilateral because one of the series from —oo to oo is bilateral 
and the second one is unilateral but the double series is neither bilateral 
nor unilateral. See, for example Exton [3] and Pathan and Yasmeen [6]. 
This result has been attracted a great deal of interest by several authors, 
for example, see Pathan and Yasmeen [6]-[8], Goyal and Gupta [1], Srivas-
tava et al. [11]. An increasing number of such problems and properties are 
now capable of being elegantly represented by their use. A number of such 
generating functions are obtained in this paper. In Section 2, a theorem on 
Laplace transform is given. Further by invoking this theorem in Section 3, 
we derive generating relations involving hypergeometric functions and poly-
nomials of Jacobi, Bessel and Schultz-Piszachich which are partly unilateral 
and partly bilateral. 

2. Theorem on Laplace transform 

THEOREM. If Re(p) > 0, Re(p-s-t + > 0 and L[f(u) : p] = <f>(p), then 
00 00 M+N 

M* = max{0, -M}, N > M*, 

provided that |/(it)| and |tiM+7VL^r^(yu)/(u)j exist and series involved in 
(2.1) are absolutely convergent. 

Proof . Since <f>(p) = L[f(u)\p] then on using ([2]; p. 129(5)), we have 

<t>(p + a) = L[e-auf(uy,p}. 

Therefore for a = — s — t + we get 

¿ ( p - s - t + ypj^Lie^-^ttu^p}. 

Now using the result (1.1), we obtain (2.1). 

3. Applications 
We shall now apply theorem of Section 2, to obtain the generating rela-

tions which axe partly unilateral and partly bilateral. 
Let 

f(u) = 1in +"-2(l - xu)n. 

Now consider the polynomial of degree n ([5]; p. 118) defined as 
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(3.1) ^ ( ^ ( - l l V r " - 1 ^ ^ 1 ) 

= / n \ (—l)"~fc(n + /x - 1) • •. (n + » + k - 2) 

" k = o W 

The generating function for the polynomial P i f i \x ) is given by 

2 ^ e x p ( ( ^ ) ( y ( n 4 ^ ) - l ) ) = ~ tn 

and we note that the polynomial has the following integral repre-
sentation ([5]; p. 125 (5.2.10)) 

(3.3) Pj?\x) = \ > J « " + ^ ( 1 - a u ) " e - <*u. 
r{n + p - l ) J 

Using this integral representation with u replaced by pu and x replaced 
by expanding (1 —xu)n, and using the results ([2]; P.174(29)) and (2.1),we 
obtain (after making suitable adjustment in parameters and taking p — 1) 

= E E E ' - ' ^ y ^ y ^ K i - ^ w 
M——00 N=M' k=0 "V '' 

- N , 2 - N - n - n - k : 1 
X 2^1 

2 — M - 2N — n — p — k\ \ — y 

Re(l - s - t + y p j > 0 , Re(p) > 1, y > 0. 

Now using the relation between hypergeometric function 2 Pi and Jacobi 
polynomial Pi m ' c \x ) ([9]; p. 255 (9)), equation (3.4) can alternatively be 
written as 

(3.5) ft-«-«*?)—*>((1 

Z^ Z^ (M + N)\ 
M=-ooN=M' k=0 v y 

x xksMtNP^n+tl+k~2)(l - 2y), 

Re{n) > l,y >0. 

The following special cases of (3.5) are worthy of note. 
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I . On taking s = t = equation (3.5) gives us 

(3.6) P j f \ x ) 

^ ^ (-l)"+ f e(]?)(n + /z - 1 W + f c * f c ( f 
2^ 2^ 2^ (M + N)\ M=-oo N=M' k=0 v ' 

X P r + " + M ( l - 2y), i?e(M) > 1, V > 0. 

Since PQ2^(i) = 1, so for n = 0 and /x = 2, equations (3.5) and (3.6) 
reduce to special cases of ([6]; p.242(2.2)) and ([6]; p.242(2.3)) respectively, 
( for a = c = 1 and x = y). 

I I . Taking s = £ = /x = 2 and replacing x by in (3.5), we get 

( ' j " U J (M + N)Wx« 

x p ( M , n + f c ) ( 1 _ 2 j / ) ) y > Q 

An important consequence of (3.7) concerns 

and 
(3.9) ^ 2 ) ( ^ ) = ( - l ) n I / n ( x ) , 

where Sn(x) axe the polynomials introduced by Schultz-Piszachich [10] and 
their series representaton is given by Werner and Pietzch ([12]; p. 167 (9)), 
and yn(x) are the familiar Bessel polynomials ([4]; p. 101(3)). By use of 
relation (3.8), equation (3.7) becomes 

oo oo 

M=—oo N=M' fc=0 
x p ( M , n + f c ) ( 1 _ 2 y ) ( y > ( ) ) 

which after replacing x by \ and using the relation (3.9) yields 
X 

oo oo 

ynW- (M + N)\ 
M=—oo N=M' fc=0 
x p ( M , n + f c ) ( l _ 2 y ) ) y > Q 
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