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GENERATING RELATIONS INVOLVING
HYPERGEOMETRIC FUNCTIONS
BY MEANS OF INTEGRAL OPERATORS

Abstract. In this paper, the focus is on the results which involve exponential func-
tions. The results of Pathan and Yasmeen [6] and Exton [3] are used with a view to
obtaining generating functions which are partly unilateral and partly bilateral.

1. Introduction
Pathan and Yasmeen ([6]; p. 241 (1.2)) modified the result of Exton ([3];
p. 147(3)) in the form

t [e o] o0
(1.1) exp(s+t— %) = Z Z sMNFM (z),
M= —-coN = M*

where M* = max{0,—M} and

M »
= B0 (4T e
(M +N)! 0 ifO<SN< M~
No factorials of negative integers occur in this definition, so all the terms
have meaning.
Further, we know that if a three variables function H(z,s,t) can be
expanded in powers of ¢ in the form

(o o]
H(z,s,t) = E by fa(z)gn(s)t™,
n=0
where h, is independent of z,s and t, and f,(z) and g,(s) are different
functions then H(z,s,t) is called a bilateral generating function. We re-
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mark that the right hand side of result (1.1) is termed as partly unilateral
and partly bilateral because one of the series from —oco to oo is bilateral
and the second one is unilateral but the double series is neither bilateral
nor unilateral. See, for example Exton [3] and Pathan and Yasmeen [6].
This result has been attracted a great deal of interest by several authors,
for example, see Pathan and Yasmeen [6]-[8], Goyal and Gupta [1}, Srivas-
tava et al. [11]. An increasing number of such problems and properties are
now capable of being elegantly represented by their use. A number of such
generating functions are obtained in this paper. In Section 2, a theorem on
Laplace transform is given. Further by invoking this theorem in Section 3,
we derive generating relations involving hypergeometric functions and poly-
nomials of Jacobi, Bessel and Schultz-Piszachich which are partly unilateral
and partly bilateral.

2. Theorem on Laplace transform
THEOREM. If Re(p) > 0, Re(p—s—t+ *’"—) > 0 and L{f (u) : p] = ¢é(p), then

(2.1) ¢(p—s—t+§’-s-t-) Z Z M+N)' LiuM+N LM (yu) £ (u); ),

M=—0c0 N=M*
M* = max{0,-M}, N > M"*,

provided that |f(u)| and |[uM+V Lg\j,w)(yu) f (u)l ezist and series involved in
(2.1) are absolutely convergent.
Proof. Since ¢(p) = L[f(u);p] then on using ([2]; p. 129(5)), we have

¢(p +a) = L[e™* f(u); pl.

Therefore fora = —s —t + ys—‘, we get

o(p-s-t+ L) = LeCH B sl

Now using the result (1.1), we obtain (2.1).

3. Applications

We shall now apply theorem of Section 2, to obtain the generating rela-
tions which are partly unilateral and partly bilateral.

Let

f(u) = u™TH (1 — zu)™.

Now consider the polynomial Pi¥ (11—,) of degree n ([5); p. 118) defined as
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(3.1) P (%) = (=1)"e Ppntr- I;n (ePp~ K1)

- Z ( )( D" *ntp—1). .(n4pt+k=2)

pk

k=0
The generating function for the polynomial P )( ) is given by

2¢~Zexp((55)(v/(1 - 4tx) — 1)) Z PO (2
(V(1—4tx) + 1)#-2/(1 - 4tx) T,

and we note that the polynomial P (z) has the following integral repre-
sentation ([5]; p. 125 (5.2.10))

( l)n T n+pu—2 n,—u
I‘(n+p,—1)xu (1 - zu)"e ™ du.

(3.2)

(3.3) P#(z) =

Using this integral representation with u replaced by pu and z replaced
by £, expanding (1—zu)", and using the results ([2]; P-174(29)) and (2.1),we
obtain (after making suitable adjustment in parameters and taking p = 1)

C—t 4 Yionoup) z
(34) (1 t+2) Pl ((1-s—t+ﬂ£))

i i )n+k(l}:3‘("3;‘_:"N)1)M+2N+k[(1 )V gk M
N=M*
—N,

2N——nuk1
2Mank,1—y

t
Re(l—s—t-i—y:) >0, Re(u) >1, y>0.

XzFl[

Now using the relation between hypergeometric function 5 F; and Jacobi
polynomial P{™(z) ([9]; p. 255 (9)), equation (3.4) can alternatively be
written as

t 1—n— T
(3.5) (1—s—t+§’s—)1 #P'(’“)((l—s—t—i-yi))
i Z Z( —1)"HE( ()E:Z;I)M+N+k
M=—o0 N=M* k=0 '
X T SMtNP(Mn+#+k 2)(1 2y)

Re(p) > 1,y > 0.

The following special cases of (3.5) are worthy of note.
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I. On taking s = t = £, equation (3.5) gives us
(36) P¥(z)

00 00 n -1 n+k(n( + _1) k(y\M+N
>y 3 et ()

M=—co N=M* k=0

x PMOmHetE=2 () _9y), Re(u)> 1, y> 0.

Since P0 )(a:) =1, so for n = 0 and p = 2, equations (3.5) and (3.6)
reduce to special cases of ([6]; p.242(2.2)) and ([6] p-242(2.3)) respectively,
(fora=c=1and z =y).

IL. Taking s =t = £, u = 2 and replacing = by 32 in (3.5), we get

= (™) (n yyM+N
(3.7) pm( ) $ 3 oy <k)§M++1x;!+2,Z;:(2)

M=-—0c0 N=M* k=0

x PMmHR) (1 _9y),  y>0.

An important consequence of (3.7) concerns

(3.8) p® (;2-;1_) _ %%)» |
and
9) PO () = (-1wmla),

where S, (z) are the polynomials introduced by Schultz-Piszachich {10} and
their series representaton is given by Werner and Pietzch ([12]; p. 167 (9)),
and y,(z) are the familiar Bessel polynomials ([4]; p. 101(3)). By use of
relation (3.8), equation (3.7) becomes

n n—ko—k (Y
So(z) = Z Z Z(k +1)M-ENM+l_c:’N)!2 (3)

M==c0 N=M* k=0
X PI(VM’"M)(I -2y), y>0,

M+N

which after replacing = by % and using the relation (3.9) yields
e (=) n k M+N
() (n+ Darenvx($)* (%)
W@ = 3. 3 3 |
M=—o00 N=M"* k=0 (M + N)!
X P,(VM’"H)(I -2y), y>0.
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