
DEMONSTRATIO MATHEMATICA 
Vol. XXXIV No 4 2001 

H. K. Pathak, S. N. Mishra 

SOME RESULTS RELATED TO CARISTI'S FIXED POINT 
THEOREM AND EKEL AND'S VARIATIONAL PRINCIPLE 

1. Introduction and preliminaries 
Caristi's fixed point theorem [3, Theorem (2.1)'] and its equivalent Eke-

land's vaxiational principle [6, Theorem 1.1], which was not basically formu-
lated as a fixed point theorem, and is an abstraction of a lemma of Bishop 
and Phelps [1] (see also [2]), have been of continuing interest in fixed point 
theory because of their numerous applications (see [4], [5], [8]—[10], [14]-[17]). 
Recently Jung et. al [11], [12] have obtained some minimization theorems 
and coincidence theorems for mappings in fuzzy metric spaces. Further, they 
utilized their results to obtain analogues of Caristi's fixed point theorem, the 
well-known Downing and Kirk theorem [5, Theorem 2.1], and a more general 
type of Ekeland's variational principle in fuzzy metric spaces. The purpose 
of this paper is to generalize the above results of Jung et. al [11], [12] in 
the same direction. The results obtained herein improve and include many 
known results. 

For the sake of completeness, we shall recollect some definitions and 
results from [13]. We denote the set of all upper semi-continuous normal 
convex fuzzy numbers by E and the set of all non-negative fuzzy members 
in E by G respectively. The additive and multiplicative identities of fuzzy 
numbers are denoted by 0 and 1, respectively. 

The a-level set [x]Q of a fuzzy number x £ E is a closed interval [aa, 6a], 
where the values aa = — oo and ba = oo, are admissible. When aa = — oo, 
for instance, then [aQ,6Q] means the interval [—oo,,ba]. 
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DEFINITION 1.1. A partial ordering < in E is defined by x < y if and only 
if a? < af and < for ail cc € (0,1], where x,y € E, [x]a = [af, bf] and 
[y}a = [a%,b%]. 

DEFINITION 1.2. A sequence { x n } in E is called a-level convergence to x G 
E, if limn a" = aa and limn b% = ba for ail a G (0,1], where [x„]Q = 
and [x]a = [aa,ba}. 

Throughout, the set E will be endowed with the above partial ordering 
and the a-level convergence. 

DEFINITION 1.3. Let X be a non-empty set, ci be a mapping from X x X 
into G and the mappings L,R : [0,1] x [0,1] —> [0,1] be symmetric, non-
decreasing in both arguments and satisfy L(0,0) = 0, R(l, 1) = 1. Denote 
by [d(x,y)]a = [Xa(x,y), pa(x,y)} for all a e (0,1] and x,y € X. Then the 
quadruple (X, d, L, R) is called a fuzzy metric space and d a fuzzy metric, if 

(1) d(x, y) = 0 if and only if x = y, 
(2) d(x, y) = d(y, x) for all x, y E X, 
(3) for all x,y,z € X\ 

(i) d(x,y)(s + t) >L{d(x,z)(s),d{z,y)(t)). 
whenever s < A i ( x , z ) , t < A i ( z t y ) and s + i < Ai (x ,y ) , 

(ii) d(x,y)(s + t) < R(d(x, z)(s),d(z,y)(t)) whenever s > Xi(x,z),t > 
Ai ( z ,y ) and s + t > Ai (x ,y ) . 

The triangle inequality (3) resembles the Menger triangle inequality in 
a probabilistic metric space (PM-space). The following two-place functions, 
which are frequently used in the study of PM-spaces, are possible choices 
for L and R: 

Ty_(a, b) = Max(o + 6 - 1 , 0 ) (Max(Sum-l, 0), 
T2(a,b) = ab (Product), 
T3(a, b) = Min(a, b) (Min), 
T4(a, b) = Max(a, b) (Max), 
Î5 (a, b) = a + b — ab (Sum-Product), 
T6(a, b) = Min (a + b, 1) (Min(Sum, 1)). 

The above T-functions are listed in increasing order of strenght h in the 
sense that Ti(a,b) > Tj(a, b) for all a,b € [0,1] (abbreviated % > Tj) if 
i > j-

LEMMA 1.4. In the fuzzy metric space (X, d, L, R) with R = Max, the trian-
gle inequality (3) (ii) in Definition 1.3 is equivalent to the triangle inequality: 

(1.1) pa(x,y) < pa(x,z) + pa(z,y) for alia e(0,1] and x,y,z&X. 
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THEOREM 1 .5 . Let (X, d, L, R) be a fuzzy metric space with lima_+o+ -R(a> a) 
= 0. Then the family 0 = {U{e,a) : e > 0,0 < a < 1} of sets U(e,a) = 
{(x,j/) € X x X : pa(x,y) < e} form a base for a Hausdorff uniformity on 
X x X. Moreover, the sets A/x(e,a:) = {y € X : pa{x,y) < e} form a base 
for a Hausdorff topology on X and this topology is metrizable. 
DEFINITION 1 .6 . The convergence in a fuzzy metrix space ( X , d , L , R ) is 
defined by limn xn = x if and only if limn d(xn, x) = 0. 

From the definition of the convergence in G and Theorem 1.5, it follows 
that in the fuzzy metric space (X, d, L, R) with l im^o -R(a, o) = 0, the limit 
is uniquely determined and all subsequences of a convergent sequence are 
convergent as well. 

DEFINITION 1 .7 . A sequence {xn} in X is called a Cauchy sequence if 
limm>n d(xm , xn) = 0. 

A fuzzy metric space X is complete if every Cauchy sequence in X con-
verges. From the inequality (1.1) in Lemma 1.4, it follows that in the fuzzy 
metric space (X, d, L, Max), every convergent sequence is also a Cauchy se-
quence. 

2. Main results 
Throughout this section, we denote by R the set of real numbers, and 

assume that k : (0,1) —> (0, oo) is a non-increasing function satisfying the 
following condition: 

(2.1) M = sup k(r) < oo 
re(o,i) 

The following theorem generalizes [11, Theorem 3.1]. 
THEOREM 2 .1 . Let (X{,di, L, Max) be two complete fuzzy metric spaces such 
that limt di(x,y)(t) = 0 for all x,y € X,, i = 1,2. Let D be a non-empty 
subset of Xi and let h : D —> X\,g : h(D) —• Xi be two functions and 
g be surjective. Let f : Xi —> X2 be a closed mapping. Let 8 : Xi —» R 
and (j> : f(Xi) —• M be lower semi-continuous functions, each bounded from 
below. Let {Se}tei be a family of set-valued mappings Se : h(D) —• 2X 1\{<£}. 
Suppose further that if for each x 6 D and given constans a,b,c> 0, 

( s o / O ^ R I 5 ^ ) ) , 
eel 

then there exists an £Q 6 I and ay € Se0(h(x)) \ {(5 o h)(x))} such that 
max{pla((goh)(x),y),cp2a(f{(g°h)(x),f(y))} 

< k(r). min{a(9(g o h)(x)) - %)), b(cf>(f((g o h)(x))) - 4>(f(y))} 
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for all a G (0,1] and r G (0,1), where Pia{x,y) are the right end-points of 
the a-level interval ofd{(x, y), ¿ = 1,2. Then there exists a coincidence point 
u G X\ of g oh and {S(.}t£i, that is, there exists a u G X\ such that 

(goh){u)e[)l€lSt(h(v)). 

P r o o f . Since lim tdi(x,y)(t) = 0 for x,y G Xi, i — 1, 2, it follows that 
Pia{x,y) < oo for all a G (0,1], ¿ = 1,2. Hence by Lemma 1.4, we define a 
partial ordering " < " on X\ as follows 

(2.2) x < y if and only if max{pla(x,y),cp2a(f{x)J{y))} 
< k(r). min(a(0(x) - % ) ) , 6(0(/(s)) - <Kf(y)))} 

for all a G (0,1] and fixed constans a,b,c> 0. 
It follows from (2.2) that if x < y for x, y G Xi, then we have 

(2.3) 0(y) < 6{x) and 9(f(y)) < 6(f(x)). 

On the other hand, the reflexivity and anti-symmetry of " < " are obvious. 
Now we prove the transitivity of " < " . If x < y and y < z for x,y,z G X\ 
then, by (2.3), we have 

0(z) < 9(y) < 6(x) and cf>(f(y)) < <j>{f{x)). 

Further, by (2.2) we have 

max{p lQ(x, y), cp2a{f{x), f(y))} 

< k(r). mm{a(e(x) - d(y)), b(<f>(f(x)) - <f>(f(y))} 

and 

max{pla(y, z),cp2a(f(y), f(z)} 

< k(r). min{a(0(y) - 9(z)), b(<f>(f(y)) - </>(f(z)))} 

for all a G (0,1], r G (0,1) and fixed constans a,b,c> 0. Thus we obtain 

(2.4) pia(x,z) < pla(x,y) + pia(y,z) 
< max{piQ(x, y), cp2a(f(x)> f(v))} + max{(pia(2/, z), cp2a(f(y),f(z))} 

< k(r). min{o(0(s) - 9(y)), b{cj>{f{x)) - <t>(f(y)))} 
+k(r). m i n { a ( % ) - 0(z)), b(<f>(f(y)) - <f>(f(z)))} 

= k(r). min{a(0Or) - 6(z)), bfflf(x)) - 4>{f{z)))} 
and 

(2.5) cp2a(x, z) < k(r). min{a(0(x) - 9(z))t b(<j>(f(x)) - cf>(f(z)))} 

for all a G (0,1], r G (0,1) and fixed constans a,b,c> 0, that is, x < z. This 
shows that " < " is a partial ordering on X\. 
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Now we prove that there exists a maximal element in X\. Let { x ^ } ^ / 
be any totally ordered subset of (Xi , < ) , where I is an indexing set. Define 

Xy. < x„ if and only if // < v. 

Then (I, < ) is a directed set and {9(x/1)}liei, {4>(f(xtl))}fiei are monotoni-
cally decreasing nets in M. By the boundedness from below of 0 and 4>, there 
exist finite numbers 7 , <5 > 0 such that (x^) > 7 and ^ ( / ( x ^ ) ) > 6. Hence 
for all A > 0 and e > MA. min{a, b}, there exists ¿¿0 6 / such that p. > [¿o 
implies 

7 < 0 ( Z / J < 7 + A, 6 < Wixp)) < 6 + A, 
where M is the constant as defined by (2.1). Thus for any /¿, 1/ G I with 
Mo < M < vi w e have 

0 < 0(xM) - 6{xu) < A, 0 < <£(/(%)) - < A, 
Pla(Xfi,Xu) < max.{pia(xy,xv),cp2a(f{xy.),f{xu))} 

< k(r).mm{a(e(xj - 0 ( x v ) ) , b - 0(/(®„)))} 

< M. min{a, 6} < e, 

and 

P2MM, /(*„)) < k(r). min{o(0(zM) - 0(x„)), 6 (0 ( / (x M ) ) - < e 

for all cc € (0,1] and r € (0,1). Thus (xM) is a Cauchy net in Xi, while 
{ / ( x M ) } is a Cauchy net in X2. By completeness, there exist x G X\ and 
y E X2 such that X ^ —» x and / ( x M ) —> y. Since / is a closed mapping, 
f(x) — y. Prom the lower semi-continuity of 6 and <f>, it follows that 

(2.6) 0(2) < liminf 0{xu) = l i m ^ x j = 7 < 0(®„) 

and 

(2.7) 0 ( / ( x ) ) < lim inf = lim 0 ( / ( x M ) ) 
m v-

- 6 < <i>(f(xv)) for a 1 1 M ^ / . 

Next we show that x is an upper bound of { x m } m £ j . In fact, for any / j , i / 6 / 
with (j, < v, we have, by (2.6) and (2.7), that 

max{pi Q (x p , x„), cp2a{f(xft),f(xv))} 

< fcirj.minio^^) - 0(s„)) ,&(0(/ (s M ) - ¿ ( / ( s „ ) ) ) } 

< fc(r), min{o(0(s^) - 7), ~ * ) } 

for all q € (0,1] and r G (0,1). Taking limits with respect to u, we obtain 
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max{p2a(xll,x), cp2a(f(xn)»/(z))} 
< fc(r).min{a(0(x„) - 7 ) , b ( < f > ( f M ) ~ *)} 

< fc^-minM^) - 0(x)),b(<KfM) - ¿( / (x)) )} 

for all a G (0,1] and r G (0,1). This implies that Xp ^ X for n G I. Therefore, 
x is an upper bound of {x^J^gj. Hence by Zorn's Lemma, (-X"i,<) has a 
maximal element z G X1. 

Finally, we prove the existence of a coincidence point u G X\ of g and 
In fact, since g : h(D) —•> X\ is surjective, there exists a u G D 

such that (g o h)(u) = z. Suppose that (g o h)(u) 0 n*ej5f(/i(ii)). Then, by 
assumption, there exist an £q G I and a y G Se0(h(u)) — {goh(u)} such that 

max{/>ia((s o h)(u),y), cp2a(f({g o h){u), f{y))} 
< k(r).min{a(6(g o h)(u) - %)), b(<j>(f((9 ° *)(«))) - 0(/(y)))} 

for all a G (0,1] and r G (0,1), and so (goh)(u) < y. But, since (g°h)(u) = z 
is a maximal element in Xi, we obtain 

z = (g o h)(u) = ye Sio(h(u)) - {(5 o h)(u)}, 
which is a contradiction. Therefore we have 

( s o / O M e f l 5 ^ ) ) ' 
tei 

that is, u is a coincidence point of g o h and o • 

As a consequence of Theorem 2.1, we have the following: 

COROLLARY 2.2. Let (Xi,di,L, Max), D, h, g, f , 6, <t> be as in Theorem 2.1 
fori = 1,2. Let S : h(D) —• X\ — {<(>} be a set-valued mapping. Suppose that 
for each x G D and fixed constans a,b,c > 0, (g o h)(x) £ S(h(x)). Then 
there exists ay € S(h(x)) such that: 

max{pia((g o h)(x),y), cp2a(f((g o h)(x),f(y))} 
< k(r). min{a(0((<7 o h)(x) - %)), b{<j>{f{g o h){x) - ¿( / (y)))} 

for all a G (0,1] and r G (0,1). Then there exists a u G X\ such that 
(goh)(u)eS(h(u)). 

COROLLARY 2.3 Let (Xi,DI,L,Max), f , 0, <t> be as in Theorem 2.1 for 
i = 1, 2. Let S : X\ —» Xi be a mapping such that for each x G X\ and 
fixed constans a,b,c> 0, 

max{pia(x, 5(x)), cp2a(f( x), / (S(x)))} 
< fc(r).min{a(0(x) - 0(S(x))),6(<K/(S(x))))} 

for all a G (0,1], and r G (0,1). Then S has a fixed point in X\. 
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P r o o f . The result follows from Corollary 2.2 with D — X\, h = g = I (the 
identity mapping). • 

The following theorem is a generalization of [11, Theorem 3.4]. 

THEOREM 2.4. Let (X, d, L, Max) be a complete fuzzy metric space such that 
l i m t d ( x , y ) ( t ) = 0 for all x,y G X. Let D be a non-empty subset of X and 
let h : D —• X. Let g : h(D) —• X be a surjective function. Let <p : X —• M 
ba a lower semi-continuous function, bounded from below and let {Se}tei be 
a family of set-valued mappings Si : h(D) -»• 2X - {</>}. Suppose that for 
each x G D with (g o h)(x) # r\i^iSi(h(x)), there exists an ¿Q G I and a 
y G St0(h(xQ) — {(5 o h)(x)} such that 

Pa{(g o h)(x),y) < k(r).(<f>((g o h)(x)) - 4>(y)) 

for all a G ( 0 , 1 ] and r G ( 0 , 1 ) . Then there exists a coincidence point u G X 
of go h and {Se o h}eei, that is, there exists a u G X such that 

(goh)(u) G nteiSe{h(v)). 

P r o o f . The result follows from Theorem 2.1 with X\ = X2 = X, d\ = ¿2 = 
d, 0 = <p, a = b = c = 1 and f — I (the identity mapping). • 

As a direct consequence of Theorem 2.4, we have the following: 

COROLLARY 2.5. Let (X,d,L, Max), D, h, g, <j> be as in Theorem 2-4-
Let S : h{D) —> 2X — {<f>} be a set-valued mapping. Suppose that if for 

each x € D with (g o h)(x) £ S(h(x)), there exists a y G S(x) such that: 

pa{{g o h)(x),y) < k(r).(4>(g o h(x)) - </>(#)) 

for all a G ( 0 , 1 ] and r G ( 0 , 1 ) . Then there exists a u G D such that 
(goh)(u)ES(h(u)). 

COROLLARY 2.6. Let (X,d, L, Max), and <p be as in Theorem 2-4• Let S : 
X X be a mapping such that for each x G X, 

pa(x,S(x))<k(r).(cl>(x)-<j>(S(x))) 

for all a G ( 0 , 1 ] and r G ( 0 , 1 ) . Then S has a fixed point in X. 

P r o o f . The result follows from Corollary 2.5 with D = X and g = h = I 
(the identity mapping). • 

REMARK 2 . 7 (i) The Downing-Kirk fixed point theorem [5] in a fuzzy metric 
space is obtained as a special case of Corollary 2.3 if k(r) = 1 for all r G 
(0,1), 6 = 1 and 6 = 4>o f . Caristi's fixed point theorem [3] in a fuzzy metric 
space is a special case of Corollary 2.6 if k(r) — 1 for all r G (0,1). 
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(ii) Since the usual metric space is a special case of a fuzzy metric space 
(see [13]), therefore when X is a complete metric space, the corresponding 
results of [3 - 5] and [16, 17] may be recovered as a special cases of our 
results. 

3. A variational principle 
In this section, we study a more general type of Ekeland's variational 

principle [6] in a fuzzy metric space. 

THEOREM 3.1. Let ( X , d, L, Max) be a complete fuzzy metric space such that 
limtd{x,y){t) = 0 for all x,y 6 X. Let f : X —> X be a continuous mapping 
and let (f> : f ( X ) —> M be a lower semi-continuous function, bounded from 
below. Suppose that for any e > 0, there exists a u G X such that: 

(3.1) <f>(f(u)) < mi d>(f(x)) + e. 
IGA 

If k : (0,1) —> (0, oo) is a non-increasing function satisfying the condition 
(3.1), then there exists an xq G X such that: 

(1) p a ( / ( x o ) , / ( n ) ) < fc(r).M/(u)) - 4>(f(x„))) for all a G (0,1] and 
( 0 , 1 ) , 
(2) pa(f(x0), /(u)) < k(r) for all a € (0,1] and r G (0,1), 
(3) for any w G X, w ^ xq, there exists an ro G (0,1) such that 

P M M J H ) > k(r0).{<f>{f{x0) - <t>(f(w)) for all a G (0,1], 

P r o o f . Note that pa(f(x),/(y)) < oo for all a G (0,1] and x,y G X. 
Denote by Xf = {x G X : pQ(/(x), /(«)) < k(r).(<t>(f (u)) - 4>(f(x)))} for all 
a G (0,1] and r G (0,1). Observe that u € X f , so Xf / We shall show 
that Xf is closed. 

Let {xn} be a sequence in Xf such that xn —> x. Then, since / is contin-
uous and limn pa(f(xn),f(x)) - pa(f(limn xn), f{x)) = pa(f(x),f(x)) = 0 
for all a G (0,1], then from (1.1) of Lemma 1.4 it follows that pa(f(x),f(u)) 
< lim„ sup pa{f{Xn), (f{u)) for all a G (0,1]. So by lower semi-continuity of 
(f> we have 

(3.2) Pa{f(x),f{u)) < l imsupp a ( f {xn), f (u)) 
n 

< lim sup k(r).(4>(f{u)) - <t>(f(xn))) 
n 

= fc(r).(0(/(«))-liminf(0(/(xB))) 
n 

<fc( r ) . (0 ( / (u ) ) -0 ( / (x ) ) ) 

for all a G (0,1] and r G (0,1). This implies that x E Xf and Xf is closed. 
Therefore (Xf,d,L, Max) is a complete fuzzy metric space. 
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Now we define a partial ordering "<" on Xf by 

(3.3) x < y if and only if pa(f(x)J(y)) < k(r) .(<P(f (x)) - <fi(f(y))) 
for all a G (0,1] and r G (0,1). Then ( X f , <) has a maximal element, say, 
XQ in X. Thus we have 
(3.4) P«(/(*o), / («) ) < fc(r)(</>(/(«)) - J>(f(x0))) 
for all a G (0,1] and r G (0,1), and this implies that the assertion (1) is 
true. 

By the condition (3.1) we have 

(3.5) 0 < <t>(f(u)) - 4>(f(x0)) < 4>(f(u)) - inf 0(/(x)) < e. 

Thus, by (1), we have 

PM(XO)J(U)) < e.k(r) 
for all a G (0,1] and r G (0,1), and this shows that the assertion (2) is true. 

Suppose that the assertion (3) is not true. Then there exists a non-
increasing function k : (0,1) —• (0, oo) such that for each x G X there exists 
a w € X, f(w) f(x) and 

P * ( f ( x ) J W ) < k(r).(<f>(f(x)) - <K/H)) 
for all a G (0,1] and r G (0,1). Define S : Xf -> Xf by S(f{x)) = f(w). 
Then S satisfies the following condition 

pa(f(x),S(f(x))) < k(r).(4>(f(x)) - (f>(S(f(x)))) 
that is, 

Pa{x',S(x')) < k(r).(4>(x') - <KS(x'))) 
for all a G (0,1], r G (0,1) and f{x) = x' G X. Hence, by Corollary 2.6, S 
has a fixed point in X f , a contradiction with the definition of S. Therefore 
the assertion (3) is true. • 

By choosing, in the above theorem, / to be an identity mapping on X 
we recover the following result of Jung et.al [11, Theorem 4.1] which, in 
turn, generalizes among others certain results of [6, Theorem 1.1] and [12, 
Theorem 5]. 
C O R O L L A R Y 3 . 2 . Let (X, d, L, Max) be a complete fuzzy metric space such 
that lim td(a;,y)(i) = 0 for all x,y G X and let <f> : X —> R be a lower 
semi-continuous function, bounded from below. Suppose that for any e > 0 
there exists a u G X such that: 

(3.1) <p{u) < inf <t>(x) + e. 
x£X 

If k : (0,1) —> (0, oo) is a non-increasing function satisfying the condition 
(3.1), then there exists an xo & X such that: 
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(1) pa(x0,u) < k(r).(<f>(u) - <f>(x0)) for all a £ (0,1] and r £ (0,1), 
(2) pa{xo,u) < e.k(r) for all a £ (0,1] and r £ (0,1), 
(3) for any w € X, w ^ XQ, there exists an ro £ (0,1) such that 

pa(xo,w) > k(ro)(<fi(xo) - <j>(w)) for all a £ (0,1]. 

4. An equivalence 
THEOREM 4.1. Theorem 2.4 and Corollary 3.2 are equivalent. 
Proof . By taking f = I (the identity mapping) and using the proof tech-
niques of Theorem 3.1, it follows immediately that Theorem 2.4 implies 
Corollary 3.2. 

Conversely, for any x* € X, 4>{x*) ^ oo if <fr(x*) = inf x € x 4>{x)- So, since 
h : D —• X and g : h(D) —• X is surjective, by assumptions of Theorem 2.4, 
there exists an u £ D such that g(h(u)) = x*. The latter implies that 

(4.1) <Kg(h(u))) = <t>{x*) < my)) 
for all y e r\ieISe(h(u)). If g(h(u)) & neeISe(h(u)) then, by Theorem 2.4, 
there exists an ¿o £ I and a yo £ St0(h(u)) — (go h)(u) such that 
(4.2) pa(g(h(u)),y0) < k(r).(<fi(g(h(u))) - 0(M«o))) 
for all a £ (0,1] and r £ (0,1). Thus, it follows, from (4.1) and (4.2), that 

pa(g(h(u)),h(y0)) = 0 
for all a £ (0,1]. Thus g(h(u)) = h(y0) £ Sto(h(u)) - {g{h(u))}, a contra-
diction. 

Therefore g(h(u)) £ C\iejSe(h(u)), and Theorem 2.4 is proven. 
If <f>(x*) > inf x £ x <f>(x), let e = (¡>{x*) — inf x €x <j)(x). Then, by Corollary 

3.2, for any non-increasing function k : (0,1) —» (0, oo) satisfying the condi-
tion (2.1), there exists an XQ £ X such that for any w £ X, w ^ XQ, there 
exists an ro £ (0,1) such that 

(4.3) pa(xo, w) > k(r0).{<t>(x0) - <f>{w)) 
for all a £ (0,1]. Since the function g : h(D) —• X is surjective, there exists 
a u £ D such that g(h(u)) = XQ. If g(h(u)) £ r\e^iSe(h(u)), by Theorem 
2.4, there exists an £Q € I and a j/o € St(h(u)) — {g(h(u))} such that 

pa(g{h(u)),y0) < k(r).(cf>(g(h(u)) - <f>(y0))) 
for all a £ (0,1] and r £ (0,1), or equivalently, 
(4.4) pa{xo, j/o) < fc(r).(0(xo) - 4>(vo)) 
for all a £ (0,1] and r £ (0,1). Since y0 £ Se0(h(u)) - {g(h(u))} = 
Se0(h(u)) — {/i(xo)}, we have yo ^ xo- Thus (4.4) contradicts with (4.3). 
Therefore g(h(u)) £ neeISe(h(u)). • 
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REMARK 4 .2 . Theorem 4 . 1 includes [11, Theorem 5.1] and improves [12, 
Theorem 6] , which, in turn, generalize the corresponding results of [4], [7] 
and [16]. 

5. Applications to Menger Spaces 

DEFINITION 5.1. Let X be a non-empty set. For each pair ( x , y ) G X x X , 
consider a left continuous distribution function Fxy such that: 

(1) Fxy(t) = 1 for all t > 0 if and only if x = y, 
(2) ^ „ ( 0 ) = 0, 
(3) Fxy = Fyx f o r a l l x , y e X , 

(4) Fxy(s + r) > A ( F j ; \ F$i) for all x, y, z, G X, 

where A : [0,1] x [0,1] [0,1] is a t-norm. Then we call (X , F, A) a 
Menger space (see [18]). 

Kaleva and Seikkala [13], have shown for a given Menger space (X, F, A) 
that (X, d, L, R) is a fuzzy metric space with d : X x X —> G defined by 

( 5 . 1 ) * . » > < * > - { ? _ , . , < , ) V t V z 

where t x y = sup{i : Fxy(t) — 0} and 

( 5 . 2 ) L(a,b) = 0 . i ? ( a , b) = 1 - A ( 1 - a , 1 - b). 

In this space, we have 

(5.3) pa(x,y) = sup{i : d(x,y)(t) > a} 
= sup{i : Fxy(t) < 1 - a} 

for all a G (0,1]. Therefore, as in [8], we have evidently the following equiva-
lent assertion: "For any e > 0 and any a € (0,1], there exists an N > 0 such 
that FXmXn (e) > 1 — a, whenever m > n > N "if and only if" for any e > 0, 
there exists an N > 0 such that sup{i : FXmXn (t) < 1—a} = pQ(xm, x„) < e, 
whenever m > n > N, a G (0,1]". 

Thus {xn} is a Cauchy sequence in the Menger space (X, F, A) if and 
only if { i n } is a Cauchy sequence in the corresponding fuzzy metric space 
(X,d,L,R) obtained by (5.1) and (5.2). Therefore (X,F, A) is complete if 
and only if ( X , d , L , R ) is complete. Thus, applying Theorem 2.1 to 
(X,d,L,R) and using (5.3), we have the following result. 

THEOREM 5 . 2 Let (Xi,Fi,Ai) be two complete Menger spaces, where A j = 
M i n , ¿ = 1 , 2 . Let D be a non-empty subset of Xi, h : D —» X be a surjective 
function. Let f : Xi —• X2 be a closed mapping and let <j> : f { X 1 ) —> R 
be a lower semi-continuous function, bounded from below. Let {«S^}^/ be a 
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family of set-valued mappings Se : h(D) —• 2X1 \ {0} . Suppose further that 
for each x G D and any given constant c > 0 with 

(9°h){x) <?neeISe(h(x)), 

there exist an E I and ay 6 Se0(h(x)) — {g(h(u))} such that 

m a x { s u p { i : F1(goh)ix)y(t) < 1 - a } , c . s u p { i : F2f^g0h)(x))f(y){t) <!-«}} 
<k(r).^(f(goh)(x)))-4>(f(y))) 

for all a G ( 0 , 1 ] . Then there exists a coincidence point u G Xi of (g o h) 
and {Se o h}t€j, that is, there exists a u € Xi such that 

(goh)(u) € ne€lSe{h(u)) 

Similarly, we obtain the following: 

COROLLARY 5.3. Let (X^F^AJ), D, f , h, g, <j) be as in Theorem 5.2 for 
i = 1, 2. Let S : h(D) —» 2X1 \ {0} be a set-valued mapping. Suppose that 
for each x € D and any given constant c > 0 with (g o h)(x) £ S(h(x)), 
there exists a y € S(h(x)) such that: 

m a x { s u p { f : F1{goh)ix)y{t) < a } , c . s u p { i : ^ / ( g o h ) ^ ) / ^ ) ^ ) < 1 - « } } 

<k(r).(<f>(f(goh)(x))-cl>(f(y))) 

for all a G (0 ,1 ] and r £ ( 0 , 1 ) . Then there exists a u E D such that 
(goh)(u)ES(h(u)). 

THEOREM 5.4. Let (X, F, A ) be a complete Menger space with A = Min. 
Let D be a non-empty subset of X,h : D —• X and let g : h(D) —> X be 
a surjective function. Let <f> : X —> M. be a lower semi-continuous function, 
bounded from below and let {Se}e^i be a family of set-valued mappings Se : 
h(D) —» 2 X \ { 0 } . Suppose that for eachx € D with (goh){x) fl eeiSe(h(x)), 
there exists an £Q G I and a yo € Se0{h(x)) — {(g o / i ) ( x ) } such that 

sup{f : F{goh){x)y{t) < 1 - a } < k{r){(p{{g o h)(x)) - <f>(y)} 

for all a G (0 ,1 ] and r G ( 0 , 1 ) . Then there exists a coincidence point u G X 
of g oh and (Se o h)e^i, that is, there exists a u G X such that 

(goh)(u) G ne€lSe{h(u)). 

COROLLARY 5.5. Let (X,F, A ) , D, h, g be as in Theorem 5 .4 . Let S : 
h(D) —> 2X \ {0} be a set-valued mapping. Suppose that for each x G D, 
(9 0 h)(x) G S(h(x)), and there exists a y G S(h(x)) such that 

sup{t: F{goh)[x)y(t) < 1 - a} < k{r).(<l>({g o h)(x) - <f>(y)) 

for all a G (0 ,1 ] . Then there exists au G D such that (g o h)(u) G S(h(u)). 
Finally we have the following: 
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THEOREM 5.6. Let (X, F, A ) be a complete Menger space with A = Min, 
and let <j>: X —• R be a lower semi-continuous function, bounded from below. 
Suppose that for any e > 0, there exists a u £ X such that 

4>{u) < inf <f>(x) + e. 
x&X 

If k : (0,1) —> (0, oo) is a non-increasing function satisfying the condition 
(2.1), then there exists an xo E X such that 

(1) sup{i : Ffxofu(t) < 1 - a } < *(r) . (0( / (u))-0( / (xo)) for all a G (0,1] 
and r G (0,1), 

(2) sup{i : FfXofu(t) < 1 - a} < k{r) for all a G (0,1] and r G (0,1), 
(3) for any w G X, w ^ XQ, there exists an ro G (0,1) such that 

sup{t: Ff{xo)f{w){t) < 1-a} > k(ro).(<l>(f(xo))-<f>(f{w)))for all a G (0,1]. 

REMARK 5.7 Our results improve and include the corresponding results in 
[10], [11] and [12]. In particular, by choosing / to be an identity mapping 
on X in Theorem 5.6, we recover [12, Theorem 6.6]. 
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