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SOME RESULTS RELATED TO CARISTI'S FIXED POINT
THEOREM AND EKELAND’S VARIATIONAL PRINCIPLE

1. Introduction and preliminaries

Caristi’s fixed point theorem [3, Theorem (2.1)'] and its equivalent Eke-
land’s variational principle [6, Theorem 1.1], which was not basically formu-
lated as a fixed point theorem, and is an abstraction of a lemma of Bishop
and Phelps [1] (see also [2]), have been of continuing interest in fixed point
theory because of their numerous applications (see [4], [5], [8]-[10], [14]-[17]).
Recently Jung et. al [11], [12] have obtained some minimization theorems
and coincidence theorems for mappings in fuzzy metric spaces. Further, they
utilized their results to obtain analogues of Caristi’s fixed point theorem, the
well-known Downing and Kirk theorem [5, Theorem 2.1], and a more general
type of Ekeland’s variational principle in fuzzy metric spaces. The purpose
of this paper is to generalize the above results of Jung et. al [11], [12] in
the same direction. The results obtained herein improve and include many
known results.

For the sake of completeness, we shall recollect some definitions and
results from [13]. We denote the set of all upper semi-continuous normal
convex fuzzy numbers by E and the set of all non-negative fuzzy members
in E by G respectively. The additive and multiplicative identities of fuzzy
numbers are denoted by 0 and 1, respectively.

The a-level set [z], of a fuzzy number z € E is a closed interval [a®, b%],
where the values a® = —oo and b* = oo, are admissible. When a® = —o0,
for instance, then [a*, b*] means the interval [—oo,, b*].
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DEFINITION 1.1. A partial ordering < in F is defined by =z < y if and only
if af < af and b < bF for all a € (0,1], where z,y € E, [z]o = [af, b] and
[v]a = [a3, b3].
DEFINITION 1.2. A sequence {z,} in E is called a-level convergence to = €
E, if lim, % = a* and lim, b% = b* for all a € (0, 1], where [2,]o = [a%, bS]
and [z], = [a®, b°].

Throughout. the set E will be endowed with the above partial ordering
and the a-level convergence.

DEFINITION 1.3. Let X be a non-empty set, d be a mapping from X x X
into G and the mappings L, R : [0,1] x [0,1] — [0,1] be symmetric, non-
decreasing in both arguments and satisfy L(0,0) = 0, R(1,1) = 1. Denote
by [d(z,¥)]a = [Ma(Z,¥), pa(z,y)] for all @ € (0,1] and z,y € X. Then the
quadruple (X, d, L, R) is called a fuzzy metric space and d a fuzzy metric, if
(1) d(z,y) =0 if and only if z = ¥,
(2) d(z,y) =d(y,z) for all z,y € X,
(3) for all z,y,z € X;

(i) d(z,y)(s +1) > L(d(z, 2)(s),d(z,9)(t))-

whenever s < A\i(z, 2),t < Ai1(z,y) and s+t < Ai(z,y),

(ii) d(z,y)(s +t) < R(d(z, z)(s),d(z,y)(t)) whenever s > Ai(z,z),t >

A(z,y) and s+t > A (z,y).

The triangle inequality (3) resembles the Menger triangle inequality in

a probabilistic metric space (PM-space). The following two-place functions,

which are frequently used in the study of PM-spaces, are possible choices
for L and R:

Ti(a,b) = Max(a +b—-1,0) (Max(Sum-1,0),

T2(a,b) = ab (Product),

T3(a,b) = Min(a,b) (Min),

T4(a,b) = Max(a,b) (Max),

Ts(a,b) =a+b—ab (Sum-Product),

Te(a,b) = Min(a + b,1) (Min(Sum, 1)).
The above T—functions are listed in increasing order of strenght h in the
sense that Ti(a,b) > Tj(a,b) for all a,b € [0,1] (abbreviated T; > Tj) if
i> 7.
LEMMA 1.4. In the fuzzy metric space (X,d, L, R) with R = Max, the trian-
gle inequality (3)(ii) in Definition 1.3 is equivalent to the triangle inequality:

(1.1) palz,y) < palz, 2) + palz,y) foralae(0,1] and z,y,z € X.
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THEOREM 1.5. Let (X, d, L, R) be a fuzzy metric space with lim,_,o, R(a,a)
= 0. Then the family B = {U(e,a) : € > 0,0 < a < 1} of sets U(e,a) =
{(z,y) € X x X : pa(z,y) < €} form a base for a Hausdorff uniformity on
X x X. Moreover, the sets Nx(¢,a) = {y € X : pa(z,y) < €} form a base
for a Hausdorff topology on X and this topology is metrizable.

DEFINITION 1.6. The convergence in a fuzzy metrix space (X,d, L, R) is
defined by lim, z, = z if and only if lim, d(z,,z) = 0.

From the definition of the convergence in G and Theorem 1.5, it follows
that in the fuzzy metric space (X, d, L, R) with lim,_,¢ R(a,a) = 0, the limit
is uniquely determined and all subsequences of a convergent sequence are
convergent as well.

DEFINITION 1.7. A sequence {z,} in X is called a Cauchy sequence if
limp, 5 d(Tm, zn) = 0.

A fuzzy metric space X is complete if every Cauchy sequence in X con-
verges. From the inequality (1.1) in Lemma 1.4, it follows that in the fuzzy
metric space (X, d, L, Max), every convergent sequence is also a Cauchy se-
quence.

2. Main results
Throughout this section, we denote by R the set of real numbers, and
assume that & : (0,1) — (0,00) is a non-increasing function satisfying the
following condition:
(2.1) M = sup k(r) < o
r€(0,1)
The following theorem generalizes [11, Theorem 3.1].

THEOREM 2.1. Let (X;, d;, L, Max) be two complete fuzzy metric spaces such
that lim, d;(z,y)(t) = 0 for all z,y € X;, i = 1,2. Let D be a non-empty
subset of Xy and let h : D — Xy,9 : h(D) — X; be two functions and
g be surjective. Let f : X1 — X, be a closed mapping. Let 8 : X; — R
and ¢ : f(X1) — R be lower semi-continuous functions, each bounded from
below. Let {Ss}ecr be a family of set-valued mappings Sy : h(D) — 2X1\{¢}.
Suppose further that if for each z € D and given constans a,b,c > 0,

(goh)(z) & () Se(h(x)),
tel
then there exists an £y € I and a y € Sy, (h(z)) \ {(g o h)(z))} such that
max{p1((g © k)(),v), cp2a(f (g © B)(z), f(¥))}
< k(r). min{a(6(g o h)(x)) - 6(y)), b(8(f ((g © 2)(z))) — &(f(¥))}
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for all o € (0,1] and r € (0,1), where pio(z,y) are the right end-points of
the a-level interval of d;(z,y), ¢ = 1,2. Then there exists a coincidence point
u € X; of goh and {Se}ecr, that is, there exists a u € X; such that

(g0 h)(u) € ()€ € ISy(h(u)).

Proof. Since lim;d;(z,y)(t) = 0 for z,y € X;, i = 1, 2, it follows that
pia(z,y) < oo for all a € (0,1}, ¢ = 1,2. Hence by Lemma 1.4, we define a
partial ordering “<” on X; as follows
(22) z S Yy if and only if ma‘x{pla(zv y)’ cp2a(f(x)af(y))}
< k(r). min{a(6(z) — 0(y)), b(¢(f(z)) — ¢(f(¥)))}
for all @ € (0,1] and fixed constans a, b,c > 0.
It follows from (2.2) that if z < y for z,y € X;, then we have

(2.3) 0(y) < 6(z) and 6(f(y)) < 6(f(z))-

On the other hand, the reflexivity and anti-symmetry of “<” are obvious.
Now we prove the transitivity of “<”. If z < y and y < z for z,y,2 € X3
then, by (2.3), we have

6(z) < 6(y) < 6(z) and ¢(f(y)) < ¢(f())-
Further, by (2.2) we have

ma‘x{pla (.’L’, y)’ sza(f(ili), f(y))}
< k(r). min{a(6(z) — 0(v)), b(#(f(2)) — &(f(v))}

and

max{p1a(y, 2), cr2a(f(y), £ (2)}
< k(r). min{a(6(y) — 6(2)), b((f (y)) — #(f(2)))}
for all a € (0,1], r € (0,1) and fixed constans a, b,c > 0. Thus we obtain

(2.4)  pra(z,2) < pralz,y) + P1a(y, 2)
< max{p1a(z,y), cp2a(f(z), f(y))} + max{(p1a(y, 2), cp2a(f (¥), f(2))}
< k(r). min{a(8(z) — 0(y)), b(¢(f(z)) — &(f(¥)))}
+k(r). min{a(8(y) — 6(2)), b(¢(f(y)) — &(f(2)))}
= k(r). min{a(6(z) — 6(2)), b(¢(f(z)) — ¢(f(2)))}
and
(2.5) cp2a(, z) < k(r). min{a(0(z) — 6(2)), b(¢(f(z)) — ¢(f(2)))}

for all @ € (0,1], 7 € (0,1) and fixed constans a,b,c > 0, that is, z < z. This
shows that “<” is a partial ordering on X;.
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Now we prove that there exists a maximal element in X;. Let {z,}uer
be any totally ordered subset of (X3, <), where I is an indexing set. Define

z, <z, ifandonlyifu<v.

Then (I, <) is a directed set and {8(z,)}uer, {#(f(zn))}uer are monotoni-
cally decreasing nets in R. By the boundedness from below of § and ¢, there
exist finite numbers v, > 0 such that (z,) > vy and ¢(f(z,)) > 6. Hence
for all A > 0 and € > M. min{a, b}, there exists pg € I such that g > po
implies
y<O0(zy) <+ A 5L ¢(6(zu)) <6+ A,

where M is the constant as defined by (2.1). Thus for any p,v € I with
o < < v, we have

0<0(x,) —0(z,) <A, 0 @(f(z) — d(f(z0)) < A
P1a(Zu, Tv) < max{pra(zyu, zv), cp2a(f(zu), f(z0))}
< k(r). min{a(8(z,) — 0(z.)), b(¢(f (z,)) — &(f(z2)))}
< M.min{a, b} <,

and

p2a(f(@n), f(z0)) S k(r). min{a(0(z,) — 0(z.)), b(¢(f(24)) — ¢(f(2.)))} <€

for all @ € (0,1] and r € (0,1). Thus (z,) is a Cauchy net in X;, while
{f(z.)} is a Cauchy net in X,. By completeness, there exist Z € X; and
7 € X, such that X, — T and f(x,) — 7. Since f is a closed mapping,
f(T) = 7. From the lower semi-continuity of 6 and ¢, it follows that

(2.6) 0(z) < linhinfe(:c#) = liFG(mu) =7 <6(z,)
and
(27 0(7(@)) < liminf 6(/(z,)) = lim $(/ (z,)

=6 < ¢(f(z,)) forall pel.

Next we show that Z is an upper bound of {z,}.cs. In fact, for any p,v € I
with 4 < v, we have, by (2.6) and (2.7), that

max{p1a(Tu, Tv), cp2a(f(zyu), f(20))}
< k(r). min{a(0(z,) — 6(zv)), b(¢(f(z,) — ¢(f(zv)))}
< k(r),min{a(8(z,) — 7), b(¢(f(z.) — 6)}
for all o € (0,1] and r € (0,1). Taking limits with respect to v, we obtain
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max{pza(zyu, F), cp2alf(z,), £(Z))}
< k(r). min{a(8(z4) — 7), b($(f(zn)) — 6)}
< k(r). min{a(6(z,) — 6(2)), b(6(f(z,)) — ¢(f(2)))}
foralla € (0,1] and r € (0, 1). This implies that z, < Z for u € I. Therefore,
T is an upper bound of {z,},cr. Hence by Zorn’s Lemma, (X, <) has a
maximal element z € X;.

Finally, we prove the existence of a coincidence point © € X; of g and
{St}eer- In fact, since g : h(D) — X is surjective, there exists a u € D
such that (g o h)(u) = z. Suppose that (g o h)(u) & NeerSe(h(u)). Then, by
assumption, there exist an £y € I and a y € Sg,(h(w)) — {go h(u)} such that

max{p1a((g 0 h)(u),v), co2a(f((g 0 h)(u), f(¥))}

< k(r). min{a(6(g o k)(v) - 8(y)), b(¢(f((g 0 R} (u))) — #(f(¥)))}
forall a € (0,1] and € (0, 1), and so (goh)(u) < y. But, since (goh)(u) = 2z
is a maximal element in X, we obtain
z=(goh)(u) =y € Sg (h(w)) - {(g 0 A)(u)},
which is a contradiction. Therefore we have
(90 R)(w) € () Se(h(w)),
tel
that is, u is a coincidence point of go k and {(S¢) o h}ecr. =

As a consequence of Theorem 2.1, we have the following:

COROLLARY 2.2. Let (X;,d;, L,Max), D, h, g, f, 0, ¢ be as in Theorem 2.1
fori=1,2. Let S : h(D) — X1 —{¢} be a set-valued mapping. Suppose that
for each x € D and fized constans a,b,c > 0, (g o h)(x) & S(h(zx)). Then
there ezists a y € S(h(z)) such that:
max{p1a((g © k)(z),¥), cp2a(f((g © h)(z), f(¥))}
< k(r). min{a(8((g o h)(z) — 0(y)), b(¢(f (g © h)(z) — #(f(¥)))}
for all & € (0,1] and r € (0,1). Then there erists a u € X; such that
(g 0 h)(u) € S(h(u)).
COROLLARY 2.3 Let (X,,d;,L,Max), f, 0, ¢ be as in Theorem 2.1 for
i=1, 2. Let S : X; — X, be a mapping such that for each z € X; and
fized constans a,b,c > 0,
max{p1a(2, 5(2)), cp2a(f(z), f(5(2)))}
< k(r). min{a(6(z) — 8(S(2))), b(6(£(5())))}
for all a € (0,1], and r € (0,1). Then S has a fized point in X;.
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Proof. The result follows from Corollary 2.2 with D = X3, h = g = I (the
identity mapping). =

The following theorem is a generalization of [11, Theorem 3.4].

THEOREM 2.4. Let (X,d, L,Max) be a complete fuzzy metric space such that
lim; d(z,y)(t) = 0 for all z,y € X. Let D be a non-empty subset of X and
let h: D — X. Let g : h(D) — X be a surjective function. Let ¢ : X — R
ba a lower semi-continuous function, bounded from below and let {Ss}ecr be
a family of set-valued mappings Sy : h(D) — 2X — {¢}. Suppose that for
each z € D with (g o h)(z) & NeerSe(h(z)), there exists an £y € I and a
y € Sg, (h(z()) — {(g o h)(z)} such that

pa((g 0 h)(z),y) < k(r).(¢((g o h)(2)) — ¢(v))

foralla € (0,1] and r € (0,1). Then there exists a coincidence point u € X
of goh and {S¢ o h}ecr, that is, there exists a u € X such that

(9 0 R)(u) € NeerSe(h(u)).
Proof. The result follows from Theorem 2.1 with X; = Xo = X,d; =ds =
d,0=¢,a=b=c=1and f = I (the identity mapping). =
As a direct consequence of Theorem 2.4, we have the following:
COROLLARY 2.5. Let (X,d, L,Max), D, h, g, ¢ be as in Theorem 2.4.

Let S : h(D) — 2% — {¢} be a set-valued mapping. Suppose that if for
each x € D with (go h)(z) € S(h(z)), there exists a y € S(z) such that:

pa((g o h)(z),y) < k(r).(¢(g o h(z)) — 8(y))
for all o € (0,1] and r € (0,1). Then there exists a w € D such that
(g0 h)(u) € S(R(u)).
COROLLARY 2.6. Let (X,d,L,Max), and ¢ be as in Theorem 2.4. Let S :
X — X be a mapping such that for eachz € X,
pa(z,5(z)) < k(r).(4(z) — (S(2)))
foralla € (0,1] and r € (0,1). Then S has a fized point in X.

Proof. The result follows from Corollary 2.5 with D = X and g=h =1
(the identity mapping). =

REMARK 2.7 (i) The Downing—Kirk fixed point theorem [5] in a fuzzy metric
space is obtained as a special case of Corollary 2.3 if k(r) = 1 for all r €
(0,1),b=1and 6 = ¢o f. Caristi’s fixed point theorem [3] in a fuzzy metric
space is a special case of Corollary 2.6 if k(r) = 1 for all r € (0,1).
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(ii) Since the usual metric space is a special case of a fuzzy metric space
(see [13]), therefore when X is a complete metric space, the corresponding
results of [3 — 5] and [16, 17] may be recovered as a special cases of our
results.

3. A variational principle

In this section, we study a more general type of Ekeland’s variational
principle [6] in a fuzzy metric space.

THEOREM 3.1. Let (X, d, L,Max) be a complete fuzzy metric space such that
limid(z,y)(t) =0 forallz,y € X. Let f : X — X be a continuous mapping
and let ¢ : f(X) — R be a lower semi-continuous function, bounded from
below. Suppose that for any € > 0, there exists a u € X such that:

(3.1) ¢(f(u)) < inf ¢(f(2)) +e.

If k : (0,1) — (0,00) is a non-increasing function satisfying the condition
(3.1), then there exists an zo € X such that:

((1) P)a(f(wo),f(u)) < k(r).(6(f(w)) — ¢(f(20))) for all & € (0,1] and
r € (0,1),

(2) pa(f(zo), f(u)) < k(r) for all a € (0,1] and r € (0,1),

(3) for any w € X, w # =z, there ezists an r9 € (0,1) such that

0)-(¢(f
(z

pa(f(20), f(w)) > k(r (z0) — ¢(f(w)) for all o € (0,1].

Proof. Note that p,(f(z), f(y)) < oo for all @ € (0,1] and z,y € X.

Denote by Xy = {z € X : pa(f(2), f(u)) < k(r).(8(f () — ¢(f (2)))} for all
a € (0,1} and r € (0,1). Observe that u € Xy, so Xy # ®. We shall show
that X is closed.

Let {z,} be a sequence in Xy such that £, — Z. Then, since f is contin-

uous and limp po(f(2r), f(Z)) = pa(f(limn z,), f(Z)) = Pa( (z), f(Z)) =0
for all & € (0, 1], then from (1.1) of Lemma. 1.4 it follows that p, (f(Z), f(u))
< lim, sup po(f(zr), (f(w)) for all & € (0,1}. So by lower semi-continuity of
¢ we have

(3.2) pa(f(Z), f(v)) < limsup pa(f(zn), f(u))
< limsup k(r).(¢(f () = ¢(f(zn)))
= k(r).(¢(f(v)) — iminf(4(f(zn)))

< k(r)(6(f(w)) — ¢(£(2)))

for all @ € (0,1} and = € (0, 1). This implies that Z € Xy and Xy is closed.
Therefore (X¢,d, L, Max) is a complete fuzzy metric space.
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Now we define a partial ordering “<” on Xy by

(3.3) =z <y ifandonly if pa(f(z), f(y)) < k(r).(6(F(2)) — ¢(f(¥)))

for all & € (0,1} and r € (0,1). Then (Xy, <) has a maximal element, say,
zo in X. Thus we have

(3.4) pa(f(20), f(u)) < k(r)($(f(u)) — ¢(f(20)))

for all @ € (0,1] and r € (0,1), and this implies that the assertion (1) is
true.
By the condition (3.1) we have

(35 0<$(f(w)) - #(F(z0)) < Hf(w)) ~ inf H(f(x)) < e
Thus, by (1), we have

pa(f(xo), f(u)) < ek(r)

for all @ € (0,1] and r € (0,1), and this shows that the assertion (2) is true.
Suppose that the assertion (3) is not true. Then there exists a non-
increasing function k : (0,1) — (0, 00) such that for each z € X there exists

aw€ X, f(w)# f(z) and

pa(f(z), f(w)) < k(r).(8(f(2)) — &(f(w)))
for all @ € (0,1] and r € (0,1). Define S : Xy — Xy by S(f(z)) = f(w).
Then S satisfies the following condition

pa(f(2), S(f(2))) < k(r).(6(f(2)) — #(S(f(2))))
that is,

pa(z’, S(a')) < k(r).(6(z") - ¢(S(z')))
for all @ € (0,1}, r € (0,1) and f(z) = 2’ € X. Hence, by Corollary 2.6, S
has a fixed point in Xy, a contradiction with the definition of S. Therefore
the assertion (3) is true. m
By choosing, in the above theorem, f to be an identity mapping on X
we recover the following result of Jung et.al [11, Theorem 4.1] which, in

turn, generalizes among others certain results of [6, Theorem 1.1] and (12,
Theorem 5).

COROLLARY 3.2. Let (X,d, L,Max) be a complete fuzzy metric space such
that lim; d(z,y)(t) = 0 for all z,y € X and let ¢ : X — R be a lower
semi-continuous function, bounded from below. Suppose that for any e > 0
there erists a u € X such that:

(3.1) ¢(u) < inf é(z) +e.

Ifk:(0,1) — (0,00) is a non-increasing function satisfying the condition
(8.1), then there ezists an xo € X such that:
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(1) pa(zo,u) < k(r).(p(u) — ¢(zo)) for all € (0,1] and r € (0,1),
(2) palzo,u) < €.k(r) for all a € (0,1] and r € (0,1),
(3) for any w € X, w # zo, there exists an ro € (0,1) such that

pa(zo, w) > k(ro)(¢(zo) — d(w)) for all o € (0,1].

4. An equivalence
THEOREM 4.1. Theorem 2.4 and Corollary 3.2 are equivalent.

Proof. By taking f = I (the identity mapping) and using the proof tech-
niques of Theorem 3.1, it follows immediately that Theorem 2.4 implies
Corollary 3.2.

Conversely, for any z* € X, ¢(z*) # oo if ¢(z*) = infyex (). So, since
h:D — X and g : h(D) — X is surjective, by assumptions of Theorem 2.4,
there exists an u € D such that g(h(u)) = z*. The latter implies that

(4.1) $(9(h(u))) = ¢(z") < ¢(h(y))

for all y € NgerSe(h(uw)). If g(h(u)) &€ NecrSe(h(u)) then, by Theorem 2.4,
there exists an £y € I and a yg € S¢,(h(u)) — (g o h)(u) such that

(4.2) pa(9(h(w)), y0) < k(r).(¢(g(h(w))) — ¢(h(uo)))

for all @ € (0,1] and r € (0, 1). Thus, it follows, from (4.1) and (4.2), that

pa(9(h(u)), h(yo)) = 0
for all a € (0,1]. Thus g(h(u)) = h(yo) € Se,(h(u)) — {g(h(u))}, a contra-
diction.

Therefore g(h(u)) € NgerSe(h(u)), and Theorem 2.4 is proven.

If ¢(z*) > infrex ¢(z), let € = ¢(z*) — infrex H(x). Then, by Corollary
3.2, for any non-increasing function % : (0,1) — (0, o) satisfying the condi-
tion (2.1), there exists an zg € X such that for any w € X, w # zo, there
exists an rg € (0, 1) such that

(4.3) pa(zo, w) > k(r0).(#(z0) ~ $(w))

for all a € (0, 1]. Since the function g : h(D) — X is surjective, there exists

a u € D such that g(h(u)) = zo. If g(h(u)) &€ NeerSe(h(w)), by Theorem

2.4, there exists an ¢y € I and a yo € S¢(h(u)) — {g(h(u))} such that
pa(g(h(w)), yo) < k(r)-($(9(h(v)) — ¢(10)))

for all o € (0,1] and r € (0, 1), or equivalently,

(4.4) pa(Z0,y0) < k(r).(¢(z0) — ¢(vo))

for all @ € (0,1] and r € (0,1). Since yo € Sg,(h(u)) — {g(h(u))} =
Seo (h(u)) — {h(z0)}, we have yo # zo. Thus (4.4) contradicts with (4.3).
Therefore g(h(u)) € NeerSe(h(u)). =
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REMARK 4.2. Theorem 4.1 includes [11, Theorem 5.1} and improves [12,

Theorem 6] , which, in turn, generalize the corresponding results of [4], [7]
and [16].

5. Applications to Menger Spaces

DEFINITION 5.1. Let X be a non-empty set. For each pair (z,y) € X x X,
consider a left continuous distribution function F;, such that:

(1) Foy(t) =1for all t > 0if and only if z =y,

(2) Fzy(0) =0,

(3) Fyy = Fys for all 7,y € X,

(4) Foy(s +1) > AFD, FD) for all z,y, 2, € X,

where A : [0,1] x [0,1] — [0,1] is a t-norm. Then we call (X, F,A) a
Menger space (see [18]).

Kaleva and Seikkala [13], have shown for a given Menger space (X, F, A)
that (X,d, L, R) is a fuzzy metric space with d: X x X — G defined by

(51) de)O={1_p @ Hesit
where t;, = sup{t: F;,(t) = 0} and

(5.2) L(a,b)=0. R(a,b)=1-A(1-a,1-0b).
In this space, we have

(5.3) Pa(z,y) = sup{t: d(z,y)(t) > a}

= sup{t: Fpy(t) <1—a}

for all & € (0, 1]. Therefore, as in [8], we have evidently the following equiva-
lent assertion: “For any € > 0 and any a € (0, 1], there exists an N > 0 such
that Fy, . (€) > 1—c, whenever m > n > N “if and only if” for any € > 0,
there exists an N > 0 such that sup{t : F;_ ., (t) < 1—a} = pa(Tm,zn) <€,
whenever m >n > N, a € (0,1]".

Thus {z,} is a Cauchy sequence in the Menger space (X, F,A) if and
only if {z,} is a Cauchy sequence in the corresponding fuzzy metric space
(X,d, L, R) obtained by (5.1) and (5.2). Therefore (X, F, A) is complete if
and only if (X,d,L,R) is complete. Thus, applying Theorem 2.1 to
(X,d,L, R) and using (5.3), we have the following result.

THEOREM 5.2 Let (X;, F;, A;) be two complete Menger spaces, where A; =
Min, i = 1,2. Let D be a non-empty subset of X1,h : D — X be a surjective
Junction. Let f : X1 — X2 be a closed mapping and let ¢ : f(X;) = R
be a lower semi-continuous function, bounded from below. Let {S¢}ecr be a
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family of set-valued mappings S; : h(D) — 2%X1\ {0}. Suppose further that
for each z € D and any given constant ¢ > 0 with

(g 0 h)(z) & NecrSe(h(z)),
there exist an £y € I and a y € Sy, (h(z)) — {g(h(u))} such that

max{sup{t : Fi(gon)(z)y(t) <1 -}, c.sup{t : Fag((gon)(z))f(s)(t) <1~ a}}
< k(r).(¢(f(g o h)(z))) — ¢(f(¥)))

for all o € (0,1]. Then there exists a coincidence point v € X1 of (go h)
and {S; o h}eer, that is, there erists a u € Xy such that

(goh)(uw) € NeerSe(h(w))

Similarly, we obtain the following:

COROLLARY 5.3. Let (X;, F;,A;), D, f, h, g, ¢ be as in Theorem 5.2 for
i=1, 2. Let S : h(D) — 2X1\ {0} be a set-valued mapping. Suppose that
for each € D and any given constant ¢ > 0 with (g o h)(z) € S(h(z)),
there exists a y € S(h(z)) such that:

max{sup{t : Fi(gon)(z)y(t) < a},c.sup{t : Fas(gon)(z)f(y)(t) < 1 —a}}

< k(r).(6(f(g 0 h)(z)) — 6(f(¥)))
for all & € (0,1] and r € (0,1). Then there ezists a u € D such that
(9 0 h)(u) € S(h(u)).

THEOREM 5.4. Let (X, F,A) be a complete Menger space with A = Min.
Let D be a non-empty subset of X,h : D — X and let g : h(D) — X be
a surjective function. Let ¢ : X — R be a lower semi-continuous function,
bounded from below and let {Se}ecr be a family of set-valued mappings Sy :
h(D) — 2%X\{0}. Suppose that for each z € D with (goh)(z) & Nec1Se(h(z)),
there exists an £y € I and a yo € Sy, (h(z)) — {(go h)(z)} such that

sup{t : Flgon)(@)y(t) < 1 —a} < k(r){8((g 0 h)(2)) — ¢(y)}

for alla € (0,1] and r € (0,1). Then there ezxists a coincidence point u € X
of goh and (S o h)ecr, that is, there erists a u € X such that

(9 0 h)(u) € NeerSe(h(u)).
COROLLARY 5.5. Let (X,F,A), D, h, g be as in Theorem 54. Let S :
h(D) — 2% \ {0} be a set-valued mapping. Suppose that for each z € D,
(g o h)(z) € S(h(z)), and there exists a y € S(h(z)) such that
sup{t : Flgon)(z)y(t) < 1 —a} < k(r).(¢((g o h)(z) — 8(y))
for all o € (0,1]. Then there exists a u € D such that (g o h)(u) € S(h(u)).
Finally we have the following:
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THEOREM 5.6. Let (X, F,A) be a complete Menger space with A = Min,
and let ¢ : X — R be a lower semi-continuous function, bounded from below.
Suppose that for any € > 0, there exists a u € X such that

$(u) < Inf ¢(z) +e.

Ifk:(0,1) — (0,00) is a non-increasing function satisfying the condition
(2.1), then there exists an zg € X such that

(1) sup{t : Fyaopu(t) < 1—a} < k(r).(8(f(w))—¢(f(x0)) for alla € (0,1]
and r € (0,1),

(2) sup{t: Ffzosu(t) <1—a} < k(r) for alla € (0,1] and r € (0,1),

(3) for any w € X, w # xo, there exists an o € (0,1) such that

sup{t : Fy(ao)f(w)(t) < 1—a} > k(ro).(¢(f(z0)) —8(f(w))) for all o € (0,1].

REMARK 5.7 Our results improve and include the corresponding results in
[10], [11] and [12]. In particular, by choosing f to be an identity mapping
on X in Theorem 5.6, we recover [12, Theorem 6.6).

References

{1] E.Bishop and R. Phelps, The support functional of a convez set, in “Convexity”
(Klee, Ed.), Proc. Symp. Pure Math. Vol. 7, 27-35, Amer. Math. Soc., Providence,
RI, 1963.
[2] A. Bregndsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974),
335-341.
[3] J. Caristi, Fized point theorems for mappings satisfying inwardness conditions,
Trans. Amer. Math. Soc. 215 (1976) 241-251.
[4] S.S. Chang and Q. Luo, Set-valued Caristi’s fized point theorem and Ekeland’s
variational principle, Appl. Math. and Mech. 10 (1989) 119-121.
[5] D.Downingand W. A. Kirk, A generalization of Caristi’s theorem with applica-
tions to nonlinear mapping theory, Pacific J. Math. 69 (1977) 339-346.
[6] L Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 324-353.
[7] 1. Ekeland, Nonconver minimization problems, Bull. Amer. Math. Soc. (New Se-
ries) 1 (1979) 443-474.
(8] J.X.Fang, A note on fized point theorems of Hadzic, Fuzzy Sets and Systems 48
(1991) 391-395.
[9] O.Hadzic, Fized point theorems for multi-valued mappings in some classes of fuzzy
metric spaces, Fuzzy Sets and Systems 29 (1989) 115-125.
(10] P.J.He, The variational principle in fuzzy metric spaces and its applications, Fuzzy
Sets and Systems 45 (1992) 289-394.
11} J. S. Jung, Y. J. Cho, 8. M. Kang and S. S. Chang, Coincidence theorems
for set-valued mappings and Ekeland’s variational principle in fuzzy metric spaces,
Fuzzy Sets and Systems 79 (1996), 239-250.



872 H. K. Pathak, S. N. Mishra

(12] J. S. Jung, Y. J. Cho and J. K. Kim, Minimizetion theorems for fized point
theorems in fuzzy metric spaces and applications, Fuzzy Sets and Systems 61 (1994)

. 199-207.

[13] O.Kalevaand S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12
(1984) 215-229.

(14] W. A. Kirk, Caristi’s fized point theorem and the theory of normal solvability,
Seminar on Fixed Point Theory and its Applications, Dalhousie University, 1975.

[15] W. A. Kirk and J. Caisti, Mapping theorems in metric and Banach spaces, Bull.
Acad. Polon. Sci. 32 (1975), 891-894.

(16) N.Mizoguchiand W. Takahashi, Fized point theorems for multivalued mappings
on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177-188.

[17] S. Park, On extensions of the Caristi-Kirk fized point theorem, J. Korean Math.
Soc. 19 (1983) 143-151.

[18] B. Schweizer and A. Sklar, Satstical metric spaces, Pacific J. Math. 10 (1960)
313-334.

H. K. Pathak

DEPARTAMENT OF MATHEMATICS, KALYAN MAHAVIDYALAYA
BHILAINAGAR 490006 (M.P.), INDIA
E-mail: hkpathak@bom6.vsnl.net.in

S. N. Mishra

DEPARTAMENT OF MATHEMATICS, UNIVERSITY OF TRANSKEI
UMTATA 5100, SOUTH AFRICA

E-mail: mishra@getafix.utr.ac.za

Received September 29, 1999.



