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Zdenka Rieéanova

ORTHOGONAL SETS IN EFFECT ALGEBRAS

Abstract. We show that for a lattice effect algebra two conceptions of completeness
(o-completeness) coincide. Moreover, a separable effect algebra is complete if and only if
it is o-complete. Further, in an Archimedean atomic lattice effect algebra to every nonzero
element z there is a @-orthogonal system G of not necessary different atoms such that
T = @ G. A lattice effect algebra FE is complete if and only if every block of E is complete.
Every atomic Archimedean lattice effect algebra is a union of atomic blocks, since each of
its elements is a sum of a @-orthogonal system of atoms.

1. Introduction and basic definitions

Effect algebras (introduced by Foulis D.J. and Bennett M.K. in [3]
(1994)) generalize orthoalgebras (including orthomodular lattices) and MV-
algebras [2], providing an instrument for studying quantum effects that may
be unsharp.

DEFINITION 1.1. A structure (E; ®,0,1) is called an effect algebra if 0,1 are
two distinguished elements and & is a partially defined binary operation on
E which satisfies the following conditions for any a,b,c € E:

(Ei) b®@a=adb, if a® b is defined,
(Eil) (ea®b)dc=ad (b c), if one side is defined,
(Eiii) for every a € P there exists a unique b € P such that a® b =1, we
put a’ = b,
(Eiv) if 1 & a is defined then a = 0.
In every effect algebra (E; &, 0, 1) the partial binary operation © and the
partial order < can be defined by

a<candc©a=>b ifandonlyif a@®bisdefinedandadb=c.
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If E with the defined partial order is a lattice then (E;@®,0,1) is called a
lattice effect algebra. Examples of lattice effect algebras are direct products
or horizontal sums of an orthomodular lattice and MV-algebra or horizontal
sum of two MV -algebras.

In [7] compatibility of two elements of an effect algebra E was introduced.
We say that a,b € E are compatible (written a « b) if there exist u,v,w € P
such that a = u @ w, b = v ® w and u ® w @ v is defined. If E is a lattice
effect algebra then a < b if and only if (a Vb)©a = b6 (a Ab). A lattice
effect algebra in which every pair a,b € E is compatible is called a Boolean
effect algebra ([12]).

2. @p-orthogonal systems of elements

Let F = {a1,as2,...,a,} be a finite sequence of not necessarily different
elements of E. If a; ® a2 & ... D a, (remind that here & is commutative and
associative) exists, then F is called orthogonal and the element a; @ a2 ®

.. ® ay, is denoted by € F.

An arbitrary system G = {a, }»en Of not necessarily different elements
of F is called ®-orthogonal if and only if for every finite set K C H the
element @{a,. | » € K} exists in E. For a @-orthogonal system G the
element @ G exists if and only if \/{@{ax | » € K} | K C H is finite} exists
in E. We say that an orthogonal system G is a subsystem of G = (U, )sxen
if and only if there is H; C H such that G; = (uy)xen, (written G; C G).

Assume that (E; ®,0,1) is a lattice effect algebra and P = {z,}32, is an

n

arbitrary sequence of elements of E. Let for n = 2,3,..., z}, := ( V :vk) )
k=1

n—1 n n
(kvla:k) and z} = z;. Then for n = 1,2... we have 1?1:6; = \_/ T

Moreover, for every finite Q@ C P, @ Q exists and P Q < @ z, for some

ng € N (N is the set of all positive integers). It follows that P“' = (z})2
is @-orthogonal and \/ P exists if and only if @ P* exists, in which case
V P = @ P*. We have proved the following lemma.

LEMMA 2.1. For a lattice effect algebra (E;®,0,1) the following conditions
are equivalent:

(i) For every at most countable set P C E, \/ P exists in E.

(ii) For every at most countable ®-orthogonal system G of elements of
E, @G ezists in E.

A lattice effect algebra (E;®,0,1) is called o-complete if F is a o-
complete lattice (equivalently, for every at most countable set P C E, \/ P
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exists in E). E is called complete if E is a complete lattice (equivalently, for
every P C E, \/ P exists in E).

DEFINITION 2.2. An effect algebra (E;®,0,1) is called Archimedean if for
no nonzero element e € E, ne:=e®e® ... D e (n-times) exists for every
n € N. An Archimedean effect algebra is called separable if every @-ortho-
gonal system of elements of E is at most countable.

Note that every complete effect algebra is Archimedean ([11]).

THEOREM 2.3. Let (E; ®,0,1) be a separable o-complete effect algebra. Then
to every set P C E there is an at most countable set Py such that \/ P} =

V P.
Proof. Let 0 # P C E. Let £ = {& C P | « is finite} and for every a € £

zq =V a. Let a; € €. If for every = € P z < z,, then z,, = \/ P. Assume
that there is an a € £ such that z, %_ Tq, and put oz := ayUa. If B € € such
o0

that zg £ Z, then we put a; := a2 UB, .... Let y, := \ za,. If for every
n=1

a € £ we have z, < y, then y, := |/ P. Assume that there is an o, € £
such that =, %_ Yo and let us put Y41 = Y V Ta,,, hence yu41 Sy, # 0.
If for every countable transfinite number 3 we have y,4+1 > y, then the
system {Y,+1 O Y | 3¢ < 359}, where 37 is the first uncountable transfinite
ordinal number, is an uncountable @-orthogonal system of elements of E,
a contradiction. We conclude that there is an at most countable set P; of
elements of E such that \/ P, = \/ P.

COROLLARY 2.4. A separable effect algebra (E;®,0,1) is complete if and
only if E is o-complete.

LEMMA 2.5. Assume that (E;@®,0,1) is a lattice effect algebra, z € E and
U C E is such that for allu e U, u < z. Then A{rOu|veU} =0=
VU=rz.

Proof. Let d € E such that u < d for every u € Y. Then u < r Ad < z,

which gives z © (z A d) < z © u. It follows that z © (z A d) = 0 and hence
z =z A d. We conclude that £ < d and thus z = \/ U.

THEOREM 2.6. For an Archimedean lattice effect algebra (F;,0,1) the fol-
lowing conditions are equivalent:

(i) For every non-empty subset P of E, \| P ezists in E.

(i) For every @-orthogonal system G of elements of E, @ G exzists in E.
Proof. (i)=(ii): This is obvious.

(ii)=>(i): Assume that ) # PC Eand \/P#0.Let V={ve E |z <w
for every x € P}. Let M = {(ux)xen | (ux)xcH is a @-orthogonal system
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of nonzero elements of E such that for every finite K C H and every v € V,

@ u, < v}. Evidently M is a poset in which every chain has an upper
xeK
bound. By Zorn’s Lemma there exists a maximal element (u,),en, € M.

Put G ={ @ u, | K C Hy, K is finite}. Assume that thereis an e € E\{0}
»x€eK
such that e < v©g for every v € V and every g € G. It follows that e®g < v

for every g € G and every v € V. By the maximality of (us)scH, We obtain
that there is a 33 € Hy such that e = u,,. Moreover, for every g € G and
every v € V we have e® g € G which implies that e < v© (e ® g) and hence
(e ®e) ® g < v. By induction we obtain that ne =e®e® ... ® e (n-times)
exists for every n € N, a contradiction. We conclude that A{fv© g | v €

V,g € G} =0. By (ii), @ ux =V G = g exists in E. Evidently go < v
»€Hy
for every v € V. Let d < v for every v € V. Then go V d < v which gives

(goVd)©g <veg for every g € G. Hence A{(go Vd)© g | g€ G} =0,
which by Lemma 2.5 implies that go = \/ G = dV go. Thus d < gy and hence
go=AV=VP.

Throughout the proof of the next theorem we will use the symbol G < v
if and only if g < v, for every g € G. Similarly we shall write z « G if and
only if ¢ « g, for every g € G.

THEOREM 2.7. An Archimedean lattice effect algebra (E; ®,0,1) is complete
if and only if every block of E is complete.

Proof. Assume first that E is complete. By [10], Corollary 4.4,if M C E is
ablock and P C M is such that \/ P and A P exist in E then AP, AP € M.
Hence M is a complete lattice.

Assume now that every block of E is a complete lattice. Let (us)xen

be a @-orthogonal system of elements of E. Let G :={ @ | K C H, K
x€EK
is finite} and let z,y € G. Then there are finite sets K3, Ko C H such

thatz= @ u,andy= @ ux.Letu= P up,w= @ u,,

»€K, »EKy xeKl\Kz »€EK1NK,
v= @ ux. Thenzr=udwandy=wodvanduPwdv= @ u,,
XGKg\Kl »€K1UK>

which gives z — y ([7], [8]). We conclude that G is a set of mutually com-
patible elements. Let D = {D C E | D is a set of mutually compatible upper
bounds of G}. Hence for D € D and d;,d; € D we have G < d;, G < d; and
d; <« dywhich implies that G U D is a set of mutually compatible elements.
Moreover, D with partial order D; < Ds if and only if D, C D, is a poset
in which every chain D; C D has an upper bound [JD;. By Zorn’s Lemma
there exists a maximal element Dy € D. since G U Dy is a set of mutually
compatible elements, there is a block M C E such that GUDyg C M. M
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is complete, therefore there is vg = A Do in M. Let w € F be such that
G < w. Then G < vy Aw < vy < Dy. It follows that vg A w « Dy. By
the maximality of Dy we obtain that vg A w € Dy which gives vg < vg A w
and hence vy < w. This proves that \/ G = vy in E. We conclude that there

exists @ u, and @ u, = vg. By Theorem 2.6, for every non-empty sub-
»€EH »EH
set P of E, \/ P exists in E, which implies that E is complete.

Assume that L is a lattice (not necessarily complete). F' C L is called a
Jull sub-lattice of L if for all P,Q C F such that \/ P and A Q exist in L we
have V P,AQ € F.

Assume that (E;®,0,1) is a lattice effect algebra. Let us put

Es:={weE|wAw =0}, the set of sharp elements of E,
B:={z € E |z « y for all y € E}, the compatibility center of E,
C(E):={z€E|z=(xA2)V(zAZ)forall z € E}, the center of E,

M denotes an arbitrary maximal set of mutually compatible elements of F,
a block of E.

THEOREM 2.8. Let (E; ®,0, 1) be a lattice effect algebra and let (a,.)er be a
@-orthogonal system such that @ a,, ezistsin E. Let D€ {Eg, B,C(E), M}.

»x€H
Then
(i) (ax €D forall x€e H)= @ ax €D,
»xcH
(ii) E is o-complete = D is o-complete,
(i) E is complete = D is complete.

Proof. In [15] it was shown that if z < a for all a € A C E and \/ A exists
in E then z —\/ A. Moreover, by [10] for every finite K, a, < z for every

» € K implies @ a, < z. It follows that B and M are full sub-lattices
»eK
of E. Further Eg is a full sublattice of E (see [15]) and hence also C(E) =

EgN B (see [14]) is a full sublattice of E. Thus every D € {Eg, B,C(E), M}
is a full sublattice of E which proves (ii) and (iii). Moreover, every D €
{Es,B,C(E), M} is a sub-effect algebra of E (see [10]-[15]), which gives
that if K C H is finite and a,, € D for every s € H then @ a, € D. and

. »x€K
thus also @ a. =V{ @ ax | K C H is finite} € D.
x€EH »EK

Note that every M is a maximal Boolean sub-effect algebra of E, and
hence B = (J{M | M is a block in E} is also a Boolean sub-effect algebra
of E, Eg is an orthomodular lattice (see [15]) and hence C(E) = BN Egs is
a Boolean algebra.
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3. Atoms and finite elements in effect algebras

An element p of an effect algebra (E;®,0,1) is called an atom if 0 #
b<p=b=p. E is called atomic if for every z € E \ {0} there is an atom
p € E such that p < z. An element u € E is called finite if there is a finite
sequence {p1,p2,...,Pn} of not necessarily different atoms of E such that
u=p1Op2®d... D pn.

THEOREM 3.1. Let (E;®,0,1) be an Archimedean atomic lattice effect alge-
bra. Then for every z € E \ {0}

(i) there is a @-orthogonal system (as).eu of atoms of E such that

z= P a,,

xEH
(i) ¢ =V{u € E|u < z,u is finite}.

Proof. Assume that z € E \ {0}.
(i) Put M = {(@s)seH | (ax)xecH is a @-orthogonal system of atoms

such that @ a, < z for every finite K C H}. Then M is a poset in
»xEK
which every chain has an upper bound and hence by Zorn’s Lemma there

is a maximal element (a).cH, € M. Now in much the same way as in
the proof of Theorem 2.6, the assumption that there is an e € F such that

e<zO @ a for every finite K C Hy implies that e = 0. By Lemma 2.5,
»eK

we conclude that \/{ @ a, | K C Hy is finite} = z.
xEK
(if) As we can see above, for every K C Hj the element ugx = @ a, is

»€K
finite and z = \/{ux | K C Hj is finite}, which gives z = \/{u € E | u < z,
u is finite}.

Assume that (E;®,0,1) is a lattice effect algebra. G C FE is a set of
mutually compatible elements if and only if for every pair z,y € G, z « y. If
E is a set of mutually compatible elements then E is called a Boolean effect
algebra (8], (12] [13]. Every set G C F of mutually compatible elements of a
lattice effect algebra FE is a subset of a maximal set of mutually compatible
elements called a block. Every lattice effect algebra E is a union of its blocks.
In fact blocks are maximal Boolean sub-effect algebras of E.

It has been shown in [10] that, for elements of a lattice effect algebra,
z « z and y < 2 implies that z Vy « 2z and if = @ y exists then also
z @y « z. Moreover, if 2 « z for every z € A and \/ A exists in E then
ze A

It is worth noting that every Boolean effect algebra can be organized
into an MV -algebra and vice versa (see [8], [13]). Thus every Boolean effect
algebra is called also an MV -effect algebra (D. Foulis).
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THEOREM 3.2. Let (E;®,0,1) be an Archimedean atomic lattice effect al-
gebra. Let A := {p € E | p is an atom} and A := {A, C A| A, isa
mazimal set of mutually compatible atoms}. Let M := {M,, C E | M,, 2
A, € A, M, is a block of E}. Then E =JM.

Proof. Let 0 # = € E. By Theorem 3.1, there is a @-orthogonal system
(a4)yeq of atoms such that z = @ a,. Let A,. € A be such that for every
v€G
v € G, ay € A, and let M,, € M be such that A,. C M,,. For every y € M,,
we have y <> a., forevery y€e Gand hencey o z=\V{@P o, | KCH K
vEK
is finite}. By the maximality of M,, we conclude that z € M,,.

COROLLARY 3.3. Let (E;®,0,1) be an Archimedean atomic lattice effect
algebra. Let the set of all atoms of E be mutually compatible. Then E is a
Boolean effect algebra.

QUESTION. Does there exist an atomic Archimedean non-orthomodular lat-
tice effect algebra which has a non-atomic block?
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