Zdenka Riečanová

ORTHOGONAL SETS IN EFFECT ALGEBRAS

Abstract. We show that for a lattice effect algebra two conceptions of completeness (σ -completeness) coincide. Moreover, a separable effect algebra is complete if and only if it is σ -complete. Further, in an Archimedean atomic lattice effect algebra to every nonzero element x there is a \oplus -orthogonal system G of not necessary different atoms such that $x=\bigoplus G$. A lattice effect algebra E is complete if and only if every block of E is complete. Every atomic Archimedean lattice effect algebra is a union of atomic blocks, since each of its elements is a sum of a \oplus -orthogonal system of atoms.

1. Introduction and basic definitions

Effect algebras (introduced by Foulis D.J. and Bennett M.K. in [3] (1994)) generalize orthoalgebras (including orthomodular lattices) and MV-algebras [2], providing an instrument for studying quantum effects that may be unsharp.

DEFINITION 1.1. A structure $(E; \oplus, 0, 1)$ is called an *effect algebra* if 0, 1 are two distinguished elements and \oplus is a partially defined binary operation on E which satisfies the following conditions for any $a, b, c \in E$:

- (Ei) $b \oplus a = a \oplus b$, if $a \oplus b$ is defined,
- (Eii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$, if one side is defined,
- (Eiii) for every $a \in P$ there exists a unique $b \in P$ such that $a \oplus b = 1$, we put a' = b,
- (Eiv) if $1 \oplus a$ is defined then a = 0.

In every effect algebra $(E; \oplus, 0, 1)$ the partial binary operation \ominus and the partial order < can be defined by

 $a \le c$ and $c \ominus a = b$ if and only if $a \oplus b$ is defined and $a \oplus b = c$.

¹⁹⁹¹ Mathematics Subject Classification: 006C15, 03G12, 81P10.

Key words and phrases: effect algebras, orthogonal systems, MV-algebras, completeness.

The paper has been supported by grant 1/7625/20 of MŠ SR.

If E with the defined partial order is a lattice then $(E; \oplus, 0, 1)$ is called a lattice effect algebra. Examples of lattice effect algebras are direct products or horizontal sums of an orthomodular lattice and MV-algebra or horizontal sum of two MV-algebras.

In [7] compatibility of two elements of an effect algebra E was introduced. We say that $a,b \in E$ are compatible (written $a \leftrightarrow b$) if there exist $u,v,w \in P$ such that $a=u\oplus w,\ b=v\oplus w$ and $u\oplus w\oplus v$ is defined. If E is a lattice effect algebra then $a\leftrightarrow b$ if and only if $(a\vee b)\ominus a=b\ominus (a\wedge b)$. A lattice effect algebra in which every pair $a,b\in E$ is compatible is called a Boolean effect algebra ([12]).

2. -orthogonal systems of elements

Let $F = \{a_1, a_2, \ldots, a_n\}$ be a finite sequence of not necessarily different elements of E. If $a_1 \oplus a_2 \oplus \ldots \oplus a_n$ (remind that here \oplus is commutative and associative) exists, then F is called *orthogonal* and the element $a_1 \oplus a_2 \oplus \ldots \oplus a_n$ is denoted by $\bigoplus F$.

An arbitrary system $G = \{a_{\varkappa}\}_{\varkappa \in H}$ of not necessarily different elements of E is called \oplus -orthogonal if and only if for every finite set $K \subseteq H$ the element $\bigoplus \{a_{\varkappa} \mid \varkappa \in K\}$ exists in E. For a \oplus -orthogonal system G the element $\bigoplus G$ exists if and only if $\bigvee \{\bigoplus \{a_{\varkappa} \mid \varkappa \in K\} \mid K \subseteq H \text{ is finite}\}$ exists in E. We say that an orthogonal system G_1 is a subsystem of $G = (u_{\varkappa})_{\varkappa \in H}$ if and only if there is $H_1 \subseteq H$ such that $G_1 = (u_{\varkappa})_{\varkappa \in H_1}$ (written $G_1 \subseteq G$).

Assume that $(E; \oplus, 0, 1)$ is a lattice effect algebra and $P = \{x_n\}_{n=1}^{\infty}$ is an arbitrary sequence of elements of E. Let for $n = 2, 3, ..., x_n^* := \left(\bigvee_{k=1}^{N} x_k\right) \ominus$

$$\left(\bigvee_{k=1}^{n-1}x_k\right)$$
 and $x_1^*=x_1$. Then for $n=1,2\ldots$ we have $\bigoplus_{k=1}^nx_k^*=\bigvee_{k=1}^nx_k$.

Moreover, for every finite $Q \subseteq P$, $\bigoplus Q$ exists and $\bigoplus Q \leq \bigoplus_{k=1}^{n_0} x_k^*$ for some $n_0 \in N$ (N is the set of all positive integers). It follows that $P^* = (x_n^*)_{n=1}^{\infty}$ is \oplus -orthogonal and $\bigvee P$ exists if and only if $\bigoplus P^*$ exists, in which case $\bigvee P = \bigoplus P^*$. We have proved the following lemma.

LEMMA 2.1. For a lattice effect algebra $(E; \oplus, 0, 1)$ the following conditions are equivalent:

- (i) For every at most countable set $P \subseteq E$, $\bigvee P$ exists in E.
- (ii) For every at most countable \oplus -orthogonal system G of elements of E, $\bigoplus G$ exists in E.

A lattice effect algebra $(E; \oplus, 0, 1)$ is called σ -complete if E is a σ -complete lattice (equivalently, for every at most countable set $P \subseteq E, \bigvee P$

exists in E). E is called *complete* if E is a complete lattice (equivalently, for every $P \subseteq E$, $\bigvee P$ exists in E).

DEFINITION 2.2. An effect algebra $(E; \oplus, 0, 1)$ is called *Archimedean* if for no nonzero element $e \in E$, $ne := e \oplus e \oplus \ldots \oplus e$ (n-times) exists for every $n \in N$. An Archimedean effect algebra is called *separable* if every \oplus -orthogonal system of elements of E is at most countable.

Note that every complete effect algebra is Archimedean ([11]).

THEOREM 2.3. Let $(E; \oplus, 0, 1)$ be a separable σ -complete effect algebra. Then to every set $P \subseteq E$ there is an at most countable set P_1 such that $\bigvee P_1 = \bigvee P$.

Proof. Let $\emptyset \neq P \subseteq E$. Let $\mathcal{E} = \{\alpha \subseteq P \mid \alpha \text{ is finite}\}$ and for every $\alpha \in \mathcal{E}$ $x_{\alpha} := \bigvee \alpha$. Let $\alpha_1 \in \mathcal{E}$. If for every $x \in P$ $x \leq x_{\alpha_1}$ then $x_{\alpha_1} = \bigvee P$. Assume that there is an $\alpha \in \mathcal{E}$ such that $x_{\alpha} \nleq x_{\alpha_1}$ and put $\alpha_2 := \alpha_1 \cup \alpha$. If $\beta \in \mathcal{E}$ such that $x_{\beta} \nleq x_{\alpha_2}$ then we put $\alpha_3 := \alpha_2 \cup \beta$, Let $y_{\omega} := \bigvee_{n=1}^{\infty} x_{\alpha_n}$. If for every $\alpha \in \mathcal{E}$ we have $x_{\alpha} \leq y_{\omega}$ then $y_{\omega} := \bigvee P$. Assume that there is an $\alpha_{\omega} \in \mathcal{E}$ such that $x_{\alpha_{\omega}} \nleq y_{\omega}$ and let us put $y_{\omega+1} = y_{\omega} \vee x_{\alpha_{\omega}}$, hence $y_{\omega+1} \ominus y_{\omega} \neq 0$. If for every countable transfinite number \varkappa we have $y_{\varkappa+1} > y_{\varkappa}$ then the system $\{y_{\varkappa+1} \ominus y_{\varkappa} \mid \varkappa < \varkappa_0\}$, where \varkappa_0 is the first uncountable transfinite ordinal number, is an uncountable \oplus -orthogonal system of elements of E, a contradiction. We conclude that there is an at most countable set P_1 of elements of E such that $\bigvee P_1 = \bigvee P$.

COROLLARY 2.4. A separable effect algebra $(E; \oplus, 0, 1)$ is complete if and only if E is σ -complete.

LEMMA 2.5. Assume that $(E; \oplus, 0, 1)$ is a lattice effect algebra, $x \in E$ and $\mathcal{U} \subseteq E$ is such that for all $u \in \mathcal{U}$, $u \leq x$. Then $\bigwedge \{x \ominus u \mid u \in \mathcal{U}\} = 0 \Rightarrow \bigvee \mathcal{U} = x$.

Proof. Let $d \in E$ such that $u \leq d$ for every $u \in \mathcal{U}$. Then $u \leq x \land d \leq x$, which gives $x \ominus (x \land d) \leq x \ominus u$. It follows that $x \ominus (x \land d) = 0$ and hence $x = x \land d$. We conclude that $x \leq d$ and thus $x = \bigvee \mathcal{U}$.

THEOREM 2.6. For an Archimedean lattice effect algebra $(E; \oplus, 0, 1)$ the following conditions are equivalent:

- (i) For every non-empty subset P of E, $\bigvee P$ exists in E.
- (ii) For every \oplus -orthogonal system G of elements of E, $\bigoplus G$ exists in E.

Proof. (i)⇒(ii): This is obvious.

(ii) \Rightarrow (i): Assume that $\emptyset \neq P \subseteq E$ and $\bigvee P \neq 0$. Let $\mathcal{V} = \{v \in E \mid x \leq v \text{ for every } x \in P\}$. Let $\mathcal{M} = \{(u_{\varkappa})_{\varkappa \in H} \mid (u_{\varkappa})_{\varkappa \in H} \text{ is a } \oplus \text{-orthogonal system}$

of nonzero elements of E such that for every finite $K \subseteq H$ and every $v \in \mathcal{V}$, $\bigoplus_{\varkappa \in K} u_{\varkappa} \leq v$. Evidently \mathcal{M} is a poset in which every chain has an upper bound. By Zorn's Lemma there exists a maximal element $(u_{\varkappa})_{\varkappa \in H_0} \in \mathcal{M}$. Put $G = \{\bigoplus_{\varkappa \in K} u_{\varkappa} \mid K \subseteq H_0, K \text{ is finite}\}$. Assume that there is an $e \in E \setminus \{0\}$ such that $e \leq v \ominus g$ for every $v \in \mathcal{V}$ and every $g \in G$. It follows that $e \oplus g \leq v$ for every $g \in G$ and every $v \in \mathcal{V}$. By the maximality of $(u_{\varkappa})_{\varkappa \in H_0}$ we obtain that there is a $\varkappa_1 \in H_0$ such that $e = u_{\varkappa_1}$. Moreover, for every $g \in G$ and every $v \in V$ we have $e \oplus g \in G$ which implies that $e \leq v \ominus (e \oplus g)$ and hence $(e \oplus e) \oplus g \leq v$. By induction we obtain that $ne = e \oplus e \oplus \ldots \oplus e$ (n-times) exists for every $n \in \mathcal{N}$, a contradiction. We conclude that $\bigwedge \{v \ominus g \mid v \in \mathcal{V}, g \in G\} = 0$. By (ii), $\bigoplus_{\varkappa \in H_0} u_{\varkappa} = \bigvee G = g_0$ exists in E. Evidently $g_0 \leq v$ for every $v \in \mathcal{V}$. Let $d \leq v$ for every $v \in \mathcal{V}$. Then $g_0 \vee d \leq v$ which gives $(g_0 \vee d) \ominus g \leq v \ominus g$ for every $g \in G$. Hence $\bigwedge \{(g_0 \vee d) \ominus g \mid g \in G\} = 0$, which by Lemma 2.5 implies that $g_0 = \bigvee G = d \vee g_0$. Thus $d \leq g_0$ and hence $g_0 = \bigwedge \mathcal{V} = \bigvee P$.

Throughout the proof of the next theorem we will use the symbol $G \leq v$ if and only if $g \leq v$, for every $g \in G$. Similarly we shall write $x \leftrightarrow G$ if and only if $x \leftrightarrow g$, for every $g \in G$.

THEOREM 2.7. An Archimedean lattice effect algebra $(E; \oplus, 0, 1)$ is complete if and only if every block of E is complete.

Proof. Assume first that E is complete. By [10], Corollary 4.4, if $M \subseteq E$ is a block and $P \subseteq M$ is such that $\bigvee P$ and $\bigwedge P$ exist in E then $\bigwedge P$, $\bigwedge P \in M$. Hence M is a complete lattice.

Assume now that every block of E is a complete lattice. Let $(u_{\varkappa})_{\varkappa\in H}$ be a \oplus -orthogonal system of elements of E. Let $G := \{ \bigoplus \mid K \subseteq H, K \in H \}$ is finite and let $x, y \in G$. Then there are finite sets $K_1, K_2 \subseteq H$ such that $x = \bigoplus u_{\kappa}$ and $y = \bigoplus u_{\kappa}$. Let $u = \bigoplus u_{\kappa}$, $w = \bigcup u_{\kappa}$ \oplus $\varkappa \in K_1 \backslash K_2$ $\varkappa \in K_1 \cap K_2$ \oplus u_{\varkappa} . Then $x = u \oplus w$ and $y = w \oplus v$ and $u \oplus w \oplus v = v$ \oplus $\varkappa \in K_2 \backslash K_1$ $\varkappa \in K_1 \cup K_2$ which gives $x \leftrightarrow y$ ([7], [8]). We conclude that G is a set of mutually compatible elements. Let $\mathcal{D} = \{D \subseteq E \mid D \text{ is a set of mutually compatible upper }$ bounds of G. Hence for $D \in \mathcal{D}$ and $d_1, d_2 \in D$ we have $G \leq d_1, G \leq d_2$ and $d_1 \leftrightarrow d_2$ which implies that $G \cup D$ is a set of mutually compatible elements. Moreover, \mathcal{D} with partial order $D_1 \leq D_2$ if and only if $D_1 \subseteq D_2$ is a poset in which every chain $\mathcal{D}_1 \subseteq \mathcal{D}$ has an upper bound $\bigcup \mathcal{D}_1$. By Zorn's Lemma there exists a maximal element $D_0 \in \mathcal{D}$, since $G \cup D_0$ is a set of mutually compatible elements, there is a block $M \subseteq E$ such that $G \cup D_0 \subseteq M$. M

is complete, therefore there is $v_0 = \bigwedge D_0$ in M. Let $w \in E$ be such that $G \leq w$. Then $G \leq v_0 \wedge w \leq v_0 \leq D_0$. It follows that $v_0 \wedge w \leftrightarrow D_0$. By the maximality of D_0 we obtain that $v_0 \wedge w \in D_0$ which gives $v_0 \leq v_0 \wedge w$ and hence $v_0 \leq w$. This proves that $\bigvee G = v_0$ in E. We conclude that there exists $\bigoplus_{\kappa \in H} u_{\kappa}$ and $\bigoplus_{\kappa \in H} u_{\kappa} = v_0$. By Theorem 2.6, for every non-empty subset P of E, $\bigvee P$ exists in E, which implies that E is complete.

Assume that L is a lattice (not necessarily complete). $F \subseteq L$ is called a full sub-lattice of L if for all $P, Q \subseteq F$ such that $\bigvee P$ and $\bigwedge Q$ exist in L we have $\bigvee P, \bigwedge Q \in F$.

Assume that $(E; \oplus, 0, 1)$ is a lattice effect algebra. Let us put

$$E_S := \{ w \in E \mid w \wedge w' = 0 \},$$
 the set of sharp elements of E ,

$$B := \{x \in E \mid x \leftrightarrow y \text{ for all } y \in E\}, \text{ the compatibility center of } E,$$

$$C(E) := \{z \in E \mid x = (x \land z) \lor (x \land z') \text{ for all } x \in E\}, \text{ the center of } E,$$

M denotes an arbitrary maximal set of mutually compatible elements of E, a block of E.

THEOREM 2.8. Let $(E; \oplus, 0, 1)$ be a lattice effect algebra and let $(a_{\varkappa})_{\varkappa \in H}$ be a \oplus -orthogonal system such that $\bigoplus_{\varkappa \in H} a_{\varkappa}$ exists in E. Let $D \in \{E_S, B, C(E), M\}$.

Then

- (i) $(a_{\varkappa} \in D \text{ for all } \varkappa \in H) \Rightarrow \bigoplus_{\varkappa \in H} a_{\varkappa} \in D$,
- (ii) E is σ -complete \Rightarrow D is σ -complete,
- (iii) E is complete \Rightarrow D is complete.

Proof. In [15] it was shown that if $x \leftrightarrow a$ for all $a \in A \subseteq E$ and $\bigvee A$ exists in E then $x \leftrightarrow \bigvee A$. Moreover, by [10] for every finite K, $a_{\varkappa} \leftrightarrow x$ for every $\varkappa \in K$ implies $\bigoplus_{\varkappa \in K} a_{\varkappa} \leftrightarrow x$. It follows that B and M are full sub-lattices

of E. Further E_S is a full sublattice of E (see [15]) and hence also $C(E) = E_S \cap B$ (see [14]) is a full sublattice of E. Thus every $D \in \{E_S, B, C(E), M\}$ is a full sublattice of E which proves (ii) and (iii). Moreover, every $D \in \{E_S, B, C(E), M\}$ is a sub-effect algebra of E (see [10]-[15]), which gives that if $K \subseteq H$ is finite and $a_{\varkappa} \in D$ for every $\varkappa \in H$ then $\bigoplus_{\varkappa \in K} a_{\varkappa} \in D$. and

thus also
$$\bigoplus_{\varkappa \in H} a_{\varkappa} = \bigvee \{ \bigoplus_{\varkappa \in K} a_{\varkappa} \mid K \subset H \text{ is finite} \} \in D.$$

Note that every M is a maximal Boolean sub-effect algebra of E, and hence $B = \bigcap \{M \mid M \text{ is a block in } E\}$ is also a Boolean sub-effect algebra of E, E_S is an orthomodular lattice (see [15]) and hence $C(E) = B \cap E_S$ is a Boolean algebra.

3. Atoms and finite elements in effect algebras

An element p of an effect algebra $(E; \oplus, 0, 1)$ is called an atom if $0 \neq 0$ $b \le p \Rightarrow b = p$. E is called atomic if for every $x \in E \setminus \{0\}$ there is an atom $p \in E$ such that $p \leq x$. An element $u \in E$ is called *finite* if there is a finite sequence $\{p_1, p_2, \dots, p_n\}$ of not necessarily different atoms of E such that $u = p_1 \oplus p_2 \oplus \ldots \oplus p_n$.

THEOREM 3.1. Let $(E; \oplus, 0, 1)$ be an Archimedean atomic lattice effect algebra. Then for every $x \in E \setminus \{0\}$

- (i) there is a \oplus -orthogonal system $(a_{\varkappa})_{\varkappa\in H}$ of atoms of E such that $x = \bigoplus_{\varkappa \in H} a_{\varkappa},$ (ii) $x = \bigvee \{u \in E \mid u \le x, u \text{ is finite}\}.$

Proof. Assume that $x \in E \setminus \{0\}$.

- (i) Put $\mathcal{M} = \{(a_{\varkappa})_{\varkappa \in H} \mid (a_{\varkappa})_{\varkappa \in H} \text{ is a } \oplus \text{-orthogonal system of atoms } \}$ such that $\bigoplus_{\kappa \in K} a_{\kappa} \leq x$ for every finite $K \subseteq H$. Then \mathcal{M} is a poset in which every chain has an upper bound and hence by Zorn's Lemma there is a maximal element $(a_{\varkappa})_{\varkappa\in H_0}\in\mathcal{M}$. Now in much the same way as in the proof of Theorem 2.6, the assumption that there is an $e \in E$ such that $e \leq x \ominus \bigoplus a_{\varkappa}$ for every finite $K \subseteq H_0$ implies that e = 0. By Lemma 2.5, we conclude that $\bigvee \{ \bigoplus_{\kappa \in K} a_{\kappa} \mid K \subseteq H_0 \text{ is finite} \} = x.$
- (ii) As we can see above, for every $K \subseteq H_0$ the element $u_K = \bigoplus_{\varkappa \in K} a_\varkappa$ is finite and $x = \bigvee \{u_K \mid K \subseteq H_0 \text{ is finite}\}\$, which gives $x = \bigvee \{u \in E \mid u \leq x, u \in K\}$ u is finite}.

Assume that $(E; \oplus, 0, 1)$ is a lattice effect algebra. $G \subseteq E$ is a set of mutually compatible elements if and only if for every pair $x, y \in G$, $x \leftrightarrow y$. If E is a set of mutually compatible elements then E is called a Boolean effect algebra [8], [12] [13]. Every set $G \subseteq E$ of mutually compatible elements of a lattice effect algebra E is a subset of a maximal set of mutually compatible elements called a block. Every lattice effect algebra E is a union of its blocks. In fact blocks are maximal Boolean sub-effect algebras of E.

It has been shown in [10] that, for elements of a lattice effect algebra, $x \leftrightarrow z$ and $y \leftrightarrow z$ implies that $x \lor y \leftrightarrow z$ and if $x \oplus y$ exists then also $x \oplus y \leftrightarrow z$. Moreover, if $z \leftrightarrow x$ for every $x \in A$ and $\bigvee A$ exists in E then $z \leftrightarrow \bigvee A$.

It is worth noting that every Boolean effect algebra can be organized into an MV-algebra and vice versa (see [8], [13]). Thus every Boolean effect algebra is called also an MV-effect algebra (D. Foulis).

THEOREM 3.2. Let $(E; \oplus, 0, 1)$ be an Archimedean atomic lattice effect algebra. Let $A := \{p \in E \mid p \text{ is an atom}\}$ and $A := \{A_{\varkappa} \subseteq A \mid A_{\varkappa} \text{ is a maximal set of mutually compatible atoms}\}$. Let $\mathcal{M} := \{M_{\varkappa} \subseteq E \mid M_{\varkappa} \supseteq A_{\varkappa} \in A, M_{\varkappa} \text{ is a block of } E\}$. Then $E = \bigcup \mathcal{M}$.

Proof. Let $0 \neq x \in E$. By Theorem 3.1, there is a \oplus -orthogonal system $(a_{\gamma})_{\gamma \in G}$ of atoms such that $x = \bigoplus_{\gamma \in G} a_{\gamma}$. Let $A_{\varkappa} \in \mathcal{A}$ be such that for every

 $\gamma \in G$, $a_{\gamma} \in A_{\varkappa}$ and let $M_{\varkappa} \in \mathcal{M}$ be such that $A_{\varkappa} \subseteq M_{\varkappa}$. For every $y \in M_{\varkappa}$ we have $y \leftrightarrow a_{\gamma}$ for every $\gamma \in G$ and hence $y \leftrightarrow x = \bigvee \{\bigoplus_{\gamma \in K} a_{\gamma} \mid K \subseteq H, K\}$

is finite}. By the maximality of M_{\varkappa} we conclude that $x \in M_{\varkappa}$.

COROLLARY 3.3. Let $(E; \oplus, 0, 1)$ be an Archimedean atomic lattice effect algebra. Let the set of all atoms of E be mutually compatible. Then E is a Boolean effect algebra.

QUESTION. Does there exist an atomic Archimedean non-orthomodular lattice effect algebra which has a non-atomic block?

References

- [1] G. Birkhoff, Lattice Theory, Providence, Rhode Island, 1967.
- [2] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 89 (1958), 467-490.
- [3] D. Foulis and M. K. Bennett, . Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352.
- [4] S. Gudder, Morphisms, tensor products and σ-effect algebras, Rep. Math. Phys. 42 (1998), 321-346.
- [5] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983.
- [6] G. Kalmbach, Z. Riečanová, An axiomatization for abelian relative inverses, Demonstratio Math. 27 (1994), 769-780.
- [7] F. Kôpka, On compatibility in D-posets, Internat. J. Theor. Phys. 8 (1995), 1525– 1531.
- [8] F. Kôpka, F. Chovanec, Boolean D-posets, Tatra Mt. Math. Publ. 10 (1997), 183-197.
- Z. Riečanová, MacNeille completions of D-posets and effect algebras, Internat. J. Theor. Phys. 39 (2000), 855-865.
- [10] Z. Riečanová, Generalization of blocks for D-lattices and lattice ordered effect algebras, Internat. J. Theor. Phys. 39 (2000), 231-237.
- [11] Z. Riečanová, Archimedean and block-finite lattice effect algebras, Demonstratio Math. 33 (2000), 443-452.
- [12] Z. Riečanová, Sub-effect algebras and Boolean sub-effect algebras, preprint.
- [13] Z. Riečanová, Lattice effect algebras with (o)-continuous faithful valuations, preprint.

- [14] Z. Riečanová, Compatibility and central elements in effect algebras, Tatra Mt. Math. Publ. 16 (1999), 151-158.
- [15] G. Jenča, Z. Riečanová, On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24-29.

DEPARTMENT OF MATHEMATICS
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY
SLOVAK TECHNICAL UNIVERSITY
Ilkovičova 3
812 19 BRATISLAVA, SLOVAK REPUBLIC

Received July 10, 2000.