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Abstract. In the paper hedging a contingent claim in the Cox-Ross-Rubinstein model
under concave transaction costs is studied. Sufficient conditions for the optimality of
the replicating strategy for the European option are given. The problem of describing
of portfolios which allow, starting from a given moment to hedge a contingent claim is
considered for both the European and American options.

1. Introduction

In the paper we consider a discrete time financial market where two as-
sets are given for trading, a riskless bond and a risky stock whose price is
characterized by the so-called Cox-Ross-Rubinstein (CRR) model. Transfers
of wealth from one asset to another take place only at the discrete moments
and the concave transaction costs for these transfers are incurred. We con-
tinue to study the problems from [1], (2], {3] where the CRR model with
proportional transaction costs was considered.

We show that under some mild assumptions a replicating strategy is
optimal for a special class of European options. Next, we prove that if the
transaction costs are sufficiently small, a replicating strategy is optimal for
any European option. Moreover, for both European and American option
simple descriptions of the set of capitals which are sufficient, starting from
a given moment to hedge a contingent claim are given.

The problem studied in the paper was posed by prof. L. Stettner to
whom the author wishes to express his thanks.
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2. The model

Let (2, F, P) be a probability space such that Q = {a,b}T where —1 <
a < 0 and b > 0. We consider a market with two assets, a risky stock and a
riskless bond with the constant price assumed to be equal to one. We assume
that all assets are infinitely divisible.

Throughout this paper (in)equalities or other statements depending on
w € Q if not stated otherwise will be understood in the P almost sure
sense. Sometimes we shall emphasize it and write that such (in)equalities or
statements are up to P null events.

Let s; denote the price of the stock at time £,t = 0,...,T. We assume
that s; satisfies the following recursive formula:

st41 = (L +m41)s,t =0,...,T — 1,50 € R*\{0} where 3, t =1,...,T
is a sequence of i.i.d. random variables such that P(n; = a)+ P(mp: =b) =1
and0< P(py =a)<lforeacht=1,...,T.

The above recursive formula for the price of the stock characterizes so
called Cox-Ross-Rubinstein model.

For any w = (w1, ...,wr) € 2, we put w§ = (e,ws,...,wr) and

wf = (w1,...,w, 6 wWey2,...,wr) fort=1,..., T -1, e=a,b.

Let F = {¥,t=0,...,T} be a family of increasing sub o-algebras such
that F; = 0(84,0 <u <t),t =0,...,7. We assume that F = Fr.

For any F;,1 measurable random variable p;,1 we define F; measurable
random variables p} and p} as follows: pf(w) = pio1(wi(w)) and pi(w) =
pr1(wWWw)),t=0,...,T - 1.

Moreover, let pi*? = (p§');2, for e1,e2 € {a,b} and t=1,...,T -1

Selling bonds worth B(z) we get stocks worth z, and selling stocks worth
A(z) we get bonds worth z, where z > 0.

The functions A and B, defined on Rt are concave, nondecreasing and
satisfy B(0) = 0, A(0) = 0. Moreover, there exist right-hand derivatives in
zero B'(0), A'(0) and min{B(z), A(z)} > z for z > 0.

Let B'(0) =1+ A and A'(0) = 1.

Let us introduce the function 7 as follows:

T(z)={ B(z) if;fZO

—-A Y -2)if 2 <0,

7(z) can be interpreted as the cost of getting stocks worth z (z negative

means that we sell |z| stocks).

REMARK 2.1. Let p,q € R. Then, 7(p) + 7(q) > 7(p + 9).

For any F; measurable r.v. p; we define a function ¥,, as follows:
Up,(2) = 7((p)_1 — 2)s8_1) — 7((pf_1 — 2)sf-1), 2 € Rforeach t = 1,..., T.
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A trading strategy (z,y) is a pair of processes {(z¢,yt),t = 0,...,T}
where z;,y; are F; measurable for each ¢t = 0,...,T. Here, z;,y; denote
numbers of units of bonds and stocks respectively, held by the seller of the
option at time ¢ (after transaction at this moment). Moreover, for a strategy
(z,y) let z_1,y-1 € R denote initial holdings (in units) of bonds and shares
of the stock respectively.

A trading strategy (z,y) is said to be self-financing if :

zy — i1+ 7((yt — Ye-1)8t) <0, t=0,...,T.

The above inequality means that at every trading moment, the sales
must finance the purchases.

Denote the set of all self-financing, trading strategies by A.

3. European options

A European contingent claim (or a European option) f is a pair f =
(f1, f2) of Fr measurable random variables. Here, fi, fo denote number of
units of bonds and stocks respectively, that are paid to the buyer of the
option at time T'.

We say that a self-financing, trading strategy (z,y) hedges a contingent
claim f if f; — zr_1 + 7((fo — yr-1)s7) < 0.

We say that a trading strategy (z,y) € A is replicating for a contingent
claim f if:

ot — e+ 7((ye — ye-1)st) =0, ¢ =0,...,T and (z7,yr) = (f1, f2).

For any (p,q) € R? we define a set Cy 4 as follows:

Cipg) = {(v,v) e R?*: p—u+7(g—v) <0}

REMARK 3.1. For any (p,q) € R? if (u,v) € C(p ) then C(y 4y C Cipg)-

The seller’s price of a European option f is defined by:

7(f) = inf{zg + T(y0s0), (z,y) € A and hedges f}.

Given an option f, we say that a hedging strategy (z,y) € A is optimal
if for any other hedging strategy (Z,9) € A we have C(z,5.s0) € Clzo,y0s0)-

It is not difficult to see that if a strategy (z,y) € A is optimal for an
option f then the value z¢ + 7(yoso) connected with this strategy is equal
to the price of f.

Foranyw € andt =0,...,T—1 we define sets H¢(t)(w) and H}(t)(w)
as follows:

H(t)(w) = {(u,v) € R?: there exists (x,y) € A such that
(Tt-1,Yt-15¢)(w) = (u,v) and P(f1—zr_1+7((f2—yr-1)57) <0 | Fi](w)=1}.

Hy(t) is a set of pre-transaction portfolios that at time ¢ guarantee hedg-
ing the claim f at time T'.

H}(t)(w) = {(u,v) € R? : there exists (x,y) € A such that (zy, y;s:)(w)
= (u,v) and P(f1 —zp-1 + 7((fo — yr-1)s7) < 0| Fl(w) = 1}.
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H}(t) is a set of post-transaction portfolios that at time ¢ guarantee
hedging the claim f at time T'.

Moreover, let H¢(T') = C4, f,5,)- Hf(T) is a set of pre-transaction port-
folios that at the moment T guarantee hedging the claim f(T') at time T.

For eacht=0,...,T — 1 we have the following fact:

LEMMA 3.2. Let u,v be real numbers and w € Q be fized. If (u,vsi(w)) €
Hf (t) (w) and Hf (t) (w) - C(u,vsg(w)) then Hf(t) (w) = C(u,vsg(w))'

Proof. To simplify notation we will omit the dependency on w in this proof.
It is not difficult to see that C, ys,) C Hf(t). We only have to prove
that Hp(t) C Cluws,)- Let u1,v1 be real numbers such that (u1,v18) €
H{(t). Then, there exists (u2,v2) € R? such that (uz,v2s:) € H}(t) and
ug — uy + 7((v2 — v1)s:) < 0. Since H}(t) is contained in C(y ,5,) We have an
inequality v — ug2 + 7((v — v2)s¢) < 0.
The last two inequalities imply u—u; +7((v—v2)st) +7((vg —v1)se) < 0.
Thus, by Remark 2.1 we get u — u; + 7((v — v1)s¢) < 0.
Therefore (u1,v15¢) € C(y,us,) and finally we obtain Hy(t) C Ciy ps,)-

The proof is therefore completed. m

Now for each t = 1,...,T we define a set II; consisting of a special type
of pairs of random variables.

Let II;,;t = 1,...,T denote a set of all pairs of random variables

(p(st),q(st)) such that ¢ is a nondecreasing real function and there exists a
random variable w(s;—1) such that

7'((‘1?—1 - w(st—l))sg—l) = 7((gfy — w(se-1))sf_1) = pf_1 — P?—l
and g2 ; < w(se-1) < gf_;.

Using [4] we have the following fact:

THEOREM 3.3. For any European option f there exists a replicating strategy.
If %I—g > % then a replicating strategy is unique.
Moreover, if f € Il7 and a strategy (z,y) € A is replicating for f, then

(x,y) satisfies the inequalities y¢ < y; <y} for eacht=0,...,T — 1.
From now on in this paper we make the following assumption:
(31) b—A>0and p+a<0.

THEOREM 3.4. Let f be a European option such that f € Ilp. Then, there
exists a unique replicating strategy (z,y) € A which is optimal.
Moreover, Hy(t) = C(g, ys,) for eacht=0,..., T — 1.

Proof. By Theorem 3.3 there exists a unique strategy (z,y) € A which is
replicating for f and satisfies inequalities y# <y; <y? for each t=0,...,T—1.
It is clear that Cg,4,) & Hy(t) for each ¢t = 0,...,T — 1 and
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Clzpyrsy)=Hf(T). Suppose, for some t=0,...,T—1 we have Cz,,, 4, ,15141)
= Hf(t +1).

From now on we fix an w € § in this proof.

Let u,v be real numbers such that (u,vs;) € H} (t). Then, by definition

of H}(t) we have the inequalities:
(3.2) =z u+7((vf —v)sf) <O,
(3.3) 2} u+7((yf —v)s}) 0.
Since the strategy (z,y) is replicating we have:
(3-4) xf -z +7((7 — ve)st) =0,
(85) o} —ze+7((y) —w)st) = 0.
We will prove now that
(3.6) - u+r((ye —v)se) <O.

There are two cases:
l.v < Yt.
From (3.3) and (3.5) we have

(3.7) ze— u+7((yf —v)st) — T((¥¢ — ye)st) < 0.
Since y; < y? we have the following inequalities:

(ye —v)s? < (5 — v)st) = (w8 — ve)sh), T((ye — v)se) < T (ye — v)s.

Therefore, by (3.1) we obtain 7((y? — v)s?) — 7((¥ — y)s?) > 7((y — v)s¢)-
The above inequality and (3.7) imply (3.6).
2. v>y.
From (3.2) and (3.4) we have

(3.8) @~ u+7((yf —v)st) — 7((vf —we)st) <O.
Since y¢ < y: we have the following inequalities:

(¢~ y)s8) = 7((4F ~ v)s8) < (v —ye)sf, T7a (v — g)sf < —7((3e — v)se)-
Therefore, by (3.1) we obtain 7((yf — v)sf) — 7((y¢ — ye)s¥) > 7((yr — v)se)-

From the above inequality and (3.8) we get (3.6).

By (3.6) we have H'( t) C Clay,y.s,)- Therefore since (z4,yis¢) € Hy(t),
by Lemma 3.2 we see that H{(t) = C(z,y.s,)- By backward induction, we get
Hg(t) = C(z, ys:)» P a.s. for each t = 0,...,T — 1. For any other hedging
strategy (Z,7) € A we have (Tp,Jps0) € H f(O). Therefore the strategy (z,y)
is optimal by Remark 3.1.

The proof is now completed. m
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3.1. Small transaction costs
In this subsection we will show that if the transaction costs are suffi-
ciently small, i.e.
(39) min{l+b, 5} > 12
then, for any European contlngent claim f there exists an optimal, self-
financing, trading strategy which replicates the portfolio (fi, f2) at time T
We have the following fact:
THEOREM 3.5. If the condition (3.9) is satisfied, then for any European

option f there exists a replicating strategy (z,y) € A which is optimal.
Moreover, Hy(t) = C(g, y,s,) for eacht =0,...,T — 1.

Proof. Let f be a given European option. By Theorem 3.3 there exists
a unique strategy (z,y) € A which is replicating for f. It is clear that
Clarysr) © Hy(t) foreacht =0,...,T—1and C(gy yrsry = Hf(T). Suppose,
for somet=0,...,T —1 we have C'(,ct+1 verisear) = Hp(t+1).

Since (z,y) is replicating the following inequalities hold:
(3.10) zf —z¢ + 7((4f — ve)st) =0,
(38.11) af — x4+ 7((wf — wt)s}) = 0.

From now on we fix an w € §2 in this proof.

Let u,v be real numbers such that (u,vs;) € H} (t). Then, by definition
of H}(t) we have the inequalities:
(3.12) zf— u+7((y¢ —v)s?) <0,
(3.13) - u+7((3} —v)sb) <0.

We will prove now that
(314) Ti— U+ ’T((yt — ’U)St) <0
There are a six cases:

Luv<y <y

In this case the proof of (3.14) is analogous to the proof of (3.6) in case 1

of Theorem 3.4.
2. Y <v<y

From (3.11) and (3.13) we get
(3.15) ze— u+7((yf —v)sp) — T((4 — we)st) <O
From the properties of the functions A and B we have the following inequal-
ities:

(98 — v)sp) — T((y8 — we)sp) 2 (1 — w)(ye — v)s?,
(3 —v)st > FE27((ye — v)se)-
Therefore, by (3.9) we obtain:
T((yf —v)st) — (¥ — ye)st) = 7((ye ~ v)st)-
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From the last inequality and (3.15) we get (3.14).

vy <y
By (3.11) and (3.13) we get (3.15).
By (3.9) we have (b—A)(yf —v) 2 0 > ((1+X) = (1 - p)(1+b)) (% — 4).
From the above we get:

(3.16) (1+b)(yr —v) = (L= p) (X +b)(y —ye) = (1 + N (e — v)-
By the properties of the function 7 we have:
((yg — v)sp) = (1 +b)(y7 — v)st,
(¥~ 9)8}) < (1 - w)(X+ 1) (¥} — w)se,
T((yr — v)st) < (1 + A)(ye — v)se.
By the last three inequalities and (3.16) we obtain:
T((y) — v)st) = (4 — w)st) 2 7((ye — v)st)-

From the last inequality and (3.15) we get (3.14).

4 yp <w <.

In this case the proof of (3.14) is analogous to the proof of (3.6) in case 2
of Theorem 3.4.

5.yt S v < yf
From (3.10) and (3.12) we have

(3.17) z— u+7((Wf —v)sf) — T((vf —w)sf) < 0.
From the properties of the functions A and B we have the following
inequalities:
T((y¢ —v)st) — 7((yf — ye)st) = (1 + M) (ye — v)st,
(32 — v)sf > 1227 ((3 — v)se)-
Therefore, by (3 9) we obtain 7((yg —v)sf)—7((yf —yt)s¢) = 7((ye—v)se).
From the last inequality and (3.17) we get (3.14).
6. <y <w
From (3.10) and (3.12) we get (3.17).
By (3.9) we have (a+p)(v—9f) <0 < ((1-p)~ (1+A)(1+a))(¥f —u)-
From the above we get:
(3.18) (1+a)(yf —v) - (1+ )L +a)f —w) = (1~ p)(ye — v).
By the properties of the function 7 we have:
T((vf —v)s?) = (1 +a)(y? —v)se,
T((wf —we)st) < (14 A) (1 + a)(wf — ye)st,
T((ye — v)se) < (1 — p)(ye — v)se-
By the last three inequalities and (3.18) we obtain
(W —v)st) — T((¥F — we)st) 2 7((ye — v)se)-
From the last inequality and (3.17) we get (3.14).
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By (3.14) we have H}(t) C C(gy,y1s:)- Therefore since (¢, yist) € Hp(t),
by Lemma 3.2 we see that Hf(t) = C(s,4,s,)- By backward induction, we
have H¢(t) = C(g, y5,), P a.s.foreacht=0,...,T~1. For any other hedg-
ing strategy (Z,7) € A we have (Zg,F50) € H(0). Therefore the strategy
(z,y) is optimal by Remark 3.1.

The proof is therefore completed. n

4. American options

We define an American option (or an American contingent claim) ¢ as
a pair {p(f) = (p1(t), p2(t)),t = 0,...,T} of F adapted processes. Here,
©1(t), p2(t) denote number of units of bonds and stocks respectively, that
are paid to the option’s buyer assuming he exercises the option at time ¢.

We say that a strategy (z,y) € A hedges an American contingent claim
@ if p1(t) — zt-1 + 7((p2(t) — Y1-1)s¢) < O for each t = 0,...,T.

The seller’s price of an American option ¢ is defined by:

7 (p) = inf{zo + 7(y0%0), (z,y) € A and hedges ¢}.

Given an option ¢, we say that a hedging strategy (z,y) € A is optimal
if for any other hedging strategy (Z,7) € A we have Cz, 5:s0) S Clzo,y050)-

It is not difficult to see that if a strategy (z,y) € A is optimal for an
option ¢ then the value z¢ + 7(yosp) connected with this strategy is equal
to the price of ¢.

Foranyw € Qand ¢t =0,...,T—1 we define sets H,(t)(w) and H;,(t)(w)
as follows:

H,(t)(w) = {(u,v) € R? : there exists (z,y) € A such that
(Tt-1,yt-18¢)(w) = (u,v) and Plpi(n) — zn-1 + 7((¢2(n) — Yn-1)sn)
<0|FAJ(w)=1foreachn=t+1,...,T}.

H,(t) is a set of pre-transaction portfolios that at time ¢ guarantee hedg-
ing the claim ¢(n) at time n foreachn =¢+1,...,T.

H"p(t)(w) = {(u,v) € R? : there exists (z,y) € A such that (z:, ys5¢)(w)
= (u,v) and Plp1(n) —z —1+7((p2(n) —Yn-1)sn) < 0| FtJ(w) = 1 for each
n=t+1,...,T}

H;,(t) is a set of post-transaction portfolios that at time ¢ guarantee
hedging the claim ¢(n) at time n for eachn=¢t+1,...,T.

Moreover, let Hy(T') = Cy, (2),02(t)s7)- He(T) is a set of pre-transaction
portfolios that at the moment T guarantee hedging the claim ¢(7T’) at time T'.

Let I" denote a set of all functions v which satisfy the following conditions:

(C1) zp— 21 < y(22) ~v(21) £ (1+ A)(z2 — 21), for any real, nonnegative
21, 29 such that z; < 2.

(C2) 23 — 21 > v(22) —v(z1) 2 (1 — p)(22 — 21), for any real, nonpositive
21, 2o such that z1 < 2.
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(C3) v(z) < 7(z), for any z € R.

(C4) v(0) =0.
LEMMA 4.1. For any vy € T and u, v € R, if wv < 0 then v(u) + v(v) >
v(u +v).

Proof. Without any loss of generality we assume that v > 0 and v <0
We have two cases.

1. u+v2>0.

By (C1) we have y(u) — v(u + v) > — v. From (C2) and (C4) we get
—v(v) < —v. Combining the last two inequalities we obtain y(u) + y(v) >
v(u + v). :

2. u+ v <L0.

By (C2) we have y(u+v)—~(v) < u. From (C1) and (C4) we get y(u) > u.
Combining the last two inequalities we obtain y(u) + v(v) > y(u + v).

The proof is therefore completed. =

For any (p1,p2) € R? we define sets B_C’(phm) and 9Cp, p,) as follows:

Cpy p) = {(w,v) € R?: p1— u+7(p2 — v) = 0 and v > pa},

9C(py pp) = {(u,v) € R?:p— u+7(p2 —v) =0and v < po}.

For any p = (p1,p2) € R? and q = (q1,q2) € R? we define a set V(p, q)
as follows:

V(p,q) = {(c,d) € 0(C, N Cy) : for any (u,v) € A(CpNCy) if v > d then
(u,v) € 8Cp UBC, and if v < d then (u,v) € 9C, U JC,}. Here 9(Cp N Cy)
denotes a boundary of C, N Cy, i.e. 3(Cp N Cy) = (Cp N Cy)\int(Cp N Cy).

REMARK 4.2. The set V(p, ¢) is non-empty.

LEMMA 4.3. For any (c,d) € V(p,q) there exists v € T such that
CpNCy = {(u,v) € R?: c —u+v(d—-v) <0}.

Proof. Let (¢,d) € V(p,q). It is not difficult to see that there exists a
continuous function v such that 8(Cp, p,) N Clgy ) = {(u,v) € R?: c—u+
v(d —v) = 0} and Cp, p,) N Cigy.q0) = {(u,v) €ER?*: c—u+ v(d —v) < 0}.
Obviously, v satisfies (C4).

By Remark 3.1 we have 9C 4y C CpNCy. Therefore for any (u,v) € R2?,
if c—u+7(d—v) = 0 then c—u+v(d—v) < 0. Consequently, v satisfies (C3).

Now, we will prove that v satisfies (C1) and (C2). For each z > 0 there
exists € > 0,6 > —z and ¢ € R such that v(e) = 7(e + &) + ¢ for any
e € (z,z + €). Moreover, for each z < 0 there exists ¢ > 0,6 > zand ( € R
such that v(e) = 7(e — §) + ¢ for any e € (z — ¢,2). Thus, because v is
continuous, it satisfies (C1) and (C2) by the properties of 7.

The proof is therefore completed. =
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For each t =1,...,T we have the following fact:

LEMMA 4.4. Let (pi(st),p2(st)), (g1(st),q2(st)) € II;. There exist random
variables (c(s¢), d(st)) such that for any w € Q there is a function vg,(,) € T
with the equality: Cp, pos.)(w) N Clar,gzse)w) = {(%;v) € R? : e(sp)(w) —u +
Vs, (d(st)st — v)(w) < 0}.

Moreover, there ezists a unique r.v. w(si—1) such that
st_l((d?—l —w(st-1))sh_y) — VS?_I((dg-l — w(si-1))sf1) =cfy —cb_; and
df_y Sw(s-1) <y

Proof. To simplify notation we shall write p;, q; respectively, instead of
pi(st), i, (st) i = 1,2. By Remark 4.2 it is easily seen that there exists a
pair of random variables (c(s;), d(s:)) such that

(c(s1), d(st)se) € V((p1,p25¢), (a1, q25¢))-

Therefore, by Lemma 4.3 for any w € 2 there exists a function v, such
that the first equality of Lemma 4.4 holds. Moreover, it is not difficult to see
that 8(Cp, pasi) VClar,aase) = {(:v) € R® : ¢(s1) —u+vs, (d(st) st —v) = 0}.

From now on we fix an w € §2 in this proof.

Let ®; be a function defined as follows:

P4(2) = st_l((dg—l - 2)5?—1) - st_l((dg—l —2)8{_1).

Since vsg_,vp € I' we have ®(2) <{((M+a)— (11— (A +b)z+

(1—w)(+b)de_; — (1+a)dl)ss-1 for z > max{d? ;,d?_;} and ®;(2) >
(L+a)Q+ A —(L+b)z+ (1 +b)de_; — (1 +a)l+ N)diq)st—1 for
z < min{d(sf_;), d(s}-1)}-

Therefore by (3.1) we conclude that
lim,_,00 ®¢(2) = —o0 and lim,_, o P:(2) = 00.
Furthermore, since vsz_,v¢ €T by (3.1) it follows that the function
®, is strictly decreasing. Thus, because ®;(z) is continuous there exists a
unique random variable w(s;_1) such that ®;(w(st—1)) =c?.; —cb_;.

Consequently, it follows immediately that there exists a r.v. u(s¢—1) such
that
(A1) ¢y — ulse-n) + veg_, (d5-y —w(st-1))s61) =0, e=a,b.

To simplify notation we shall write p¢, ¢, u, w respectively, instead of
Pi(st_1),qf(s5_1), u(st-1), w(si-1) i=1,2;e =a,b.

Assume that &0_; < w.

Thus, since (c}_;,dj_;s2_;) € V((}, p3st_1), (¢}, d3sP_1)) by (4.1) it fol-
lows that (u, wsf_l) € 50(1,1; phst ) UEC(qb b b

1#2%¢—1

11925¢-1)"

Assume that (u,ws?_;) € 50(7):1,’1,355 .

Consequently, w > p4 and p — u + 7((p} — w)sb_;) = 0.
By (4.1) it is clear that p§ — v + 7((p§ — w)s_;) < 0.
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Consequently,

(42) (B} —w)sp_1) — T((¥§ — w)si_y) 2 p} — 2.

Since (p1,p2) € II;, there exists z € (p%,p) such that T((p§ — z)sb_;) -

(0§ — 2)s¢-1) = pf — 8.

The last equality and (4.2) imply
(P — w)sh_) — 7((P§ — w)st_q) = T((B} — 2)sp_1) — T(( ~ 2)sf4)-
Transforming equivalently we get:

(43) T((P§—2)sf_1) —T((PF —w)si_1) > T((ph — 2)sp_1) — (P} —w)st_y).
By the inequalities p¢ < z < p§ < w and the properties of T we have
T((p — 2)sf-1) — 7((P — w)si_1) < (L +a)(w — 2)s¢1,

(0} — 2)sp_1) — T((P8 —w)sp_1) 2 (1~ ) (1 +b)(w — 2)s¢-1.
From the last two inequalities, (4.3) and since w > z we get (1 +a) >

(1= p)(1+Db). _

In case when (u,ws;—1) € BC(qg,qgsgnl) the proof is the same as above, we

only write p?,p} respectively instead of ¢, ¢5. But the inequality (1 + a) >
(1—p)(1+b) is a contradiction to (3.1) and consequently we have w < d?_,;.
By a similar consideration it can be shown that d} < w, the proof of which
we leave to the reader. s

Using Lemma 4.4 we will prove the following theorem concerning Amer-
ican options with ¢(¢) € Uy, t =1,...,T.

THEOREM 4.5. Let ¢ be an American option such that ¢(t) € II;, for each
t =1,...,T. Then there exists a strategy (z,y) € A which is optimal and
Hy(t) = Cg, yssy) for each t =0,...,T — 1. Moreover, (z:,) € II; for each
t=1,..., T —-1.

Proof. We shall construct our strategy (z, y)={(z:(s¢), yt(st), t=0,...,T)}
using backward induction. We set (zr,yr) = (¢1(sT), w2(s1))-

It is clear that Hy(T) = C(gp yrsp) and (z7,y7) € Il

Assume that for some t = 0,...,T — 1 there exist random variables
T44+1(8t+1), Ye+1(8e4+1) such that Hy(t+1) = Cg, | ve.1s,00) @0d (Tey1, Yer1)
€ Ip41.

Then, for any (u,v) € R? and w € § we have the following equivalence:

(u,vs¢(w)) € H, ; (t)(w) if and only if it satisfies a system of inequalities:

{ zf(w) —u+7((yf —v)sf)(w) <0
p1(sf(w)) — v + 7((p2(sf) — v)sf)(w) < 0.
By Lemma 4.4 there exists a pair random variables (ct+1(st+1), de+1(St+1))
such that for any w € ) there is a function v, ., (,) € I with the following
equivalence:

for any (u,v) € R? a system of inequalities:

e=a,b
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{ Te41(w) — u + T((Ye+1 — v)se41) (w) <0,
P1(st41)(w) — u + T((p2(5¢41) — V)st41)(w) <0
is equivalent to an inequality c(s¢+1)(w)—u+vys,., ((d(St41)=v)st4+1)(w) < 0.
Consequently, for any (u,v) € R? and w € Q we have the following
equivalence:
(u,vsi(w)) € H, »(t)(w) if and only if it satisfies a system of inequalities:

) { (W) = u+ vy p((d — V)N (w) <O
() = u -+ v (6 — v)sF)(w) < 0.
By Lemma 4.4 there exists a unique r.v. y(s;) which satisfies:
Vt,sg((dt yt)st) — Vt,88 o((df —ye)st) = cf — Ct and
(4.5) df <y <dp.

Consequently, there exists a r.v. z;(s;) such that the following equalities
hold:

(4.6) ot =zt + vy g ((d} — ye)st) = 0,
cf =zt + vise((df — ye)sf) = 0.

By (4.6) it follows that z§ — 2y + 7((y§ — y)sf) <0, e =a,b and this
means that our constructed strategy is self-financing.

By (4.4), (4.6) and since VtserVy b € I, using similar arguments as in
Theorem 3.4 it is not difficult to show that for any (u,v) € R% and w € Q
if (u,vst(w)) € H,(t)(w) then z(se(w)) — u + 7((ye(st) ~ v)se)(w) < 0.
Consequently, H;,(t) C Clay(ss),ye(se)se)- 1t is clear that H;(t) C H,(t). By
(4.6) we have (z¢, ysst) € H;, (t) and in consequence (z¢, y¢st) € Hy(t). There-
fore Lemma 3.2 implies Hy(t) = C(g,(s,)pe(st)se)*

Suppose now that t =1,...,7T — 1.

We will show that (z4,y:) € I1;.

By (4 5) we have the following inequalities d%; < y¢ ; < d%, and
d 1 < yt 1 S < d

Smce dia, = d;‘bl we therefore have that y2 1 <y 1. By (4.6) we get:
gty —afy + Vyooa ((df2y = - Yi- 1)st21) =0,

21—z g+ v (A ~y_1)siy) = 0.

From the above equalities we get:

(47) zf,-2p,= Vt,sf“_l((d?a—l ~ i g)siy) — Vt,sg_él((dﬂl — yp_1)s24).
By the inequalities y¢ ; < d?®; < y¢_; and Lemma 4.1 we have:

(4.8) Vt,s‘t‘ﬁl((yg—l - y3—1)3§1£1) 2 Vt,sfﬂ_l((d?aq - yg—l)s?il)

- Vt,sffl((dggl - y?—1)3?31) 2 _Vt,s‘t’fl((yg—l - y?—l)sggl)-
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By (4.7),(4.8) and (C3) we get:
(Y1 — ¥i1)s821) 2 @fy — z)_y,
(451 — yp_1)s82y) S xfg — )y
Therefore since y¢ ; < yb_, we get:
Uy, (yf1) > (-1 — vf-1)s88) > 2y —x)_y
and
Wy, (yf-l) < —7((yf-1 — yf-1)3§121) <z -zl
Consequently, since ¥y, is continuous and decreasing we see that there exists
a unique r.v. wy_1(s¢—1) such that ¥y, (w_1) = 3¢, — 224 and yf; <
w1 < y?_r

Thus, (z:(st), yt(st)) € e

By backward induction, it follows that there exists a strategy (z,y) € A
such that Hy(t) = C(z, y;s,), P a.s. foreacht = 0,...,T—1and (z4,y:) € IL
foreacht=1,...,T -1

The proof is therefore completed. u

We show below some examples of the American options with ¢(t) € I,
t=1,...,T.

ExXAMPLE 1. Long call option with delivery.

When the stock price is K or greater, a holder of the option buys one
share of the stock for the price K.

fi(s) = =K1k, fa(s) = o>k
ExAMPLE 2. Long call option with delivery and cash settlement.

As in Example 1 a holder buys one share of the stock at the non-negative
price K, he does it however when possible cash settlement is nonnegative.
If it is negative he doesn’t exercise the option. Note that by definition of
the function A, A(K) is the minimal value of the stock settlement which is
required to get K bonds

fi(s) = =K1 4, f2(8) = Lis> ak)-
ExXAMPLE 3. Long call option with delivery and settlement in shares of the
stock.

This case is similar to the proceeding. However now, the decision of
buying one share of the stock at the non-negative price K is made when
the holder’s settlement in shares of the stock is nonnegative. Note that by
definition of the function B, B~!(K) is the value of the stock settlement
obtained by selling K bonds

fi(s) = =K1 p-1(k), f2(s) = Li>p-1(k)-
EXAMPLE 4. Long put option.
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When the stock price is K or lower a holder of the option sells one share
of the stock for the price K

f1(s) = Kly<k, fa(s) = —1s<k-

4.1. Small transaction costs in case of the American option
Assuming sufficiently small transaction costs we have the following fact:

THEOREM 4.6. If the condition (3.9) is satisfied, then for any American

option ¢ there ezists a strategy (z,y) € A which is optimal. Moreover,
Hy(t) = Clgy ) for eacht=0,...,T - 1.

Proof. Weset (zr,yr) = (p1(T), p2(T))- It is clear that H,(T)=Cyp. yrsr)-
Assume that for some ¢t = 0,...,T — 1 there exists a pair of ;1 mea-

surable random variables (Z:41, yt+1) such that Hy(t + 1) = Clz, ;1 yir1ses1)-
Using Remark 4.2 and Lemma 4.3 it is not difficult to show that there

exist F;+1 measurable random variables ¢;41,d;41 such that for any w € Q2

there is a function v;+1(w) € I' with the following equivalence:

for any (u,v) € R? a system of inequalities

{ Te41(w) — u + T((Ye+1 — v)se41)(w) <0
e1(t+ 1)(w) — v+ 7((p2(t + 1) =~ v)se11)(w) <O
is equivalent to an inequality ci41(w) — v + Ve+1((de41 — v)St41)(w) < 0.

From now on we fix an w € § in this proof.

Denote y4+1(wf) by 7f, e = a,b.

For any (u,v) € R?, (u,vs;) € H;,(t) if and only if the following system
of inequalities is satisfied:

{ zf —u+7((yf —v)sf) <0

03 (t) — u+ T((05(t) — v)sf) < 0.

Therefore for any (u,v) € R2, (u,vs) € Hzp(t) if and only if (u,v)
satisfies a system of inequalities:
(4.9) o —u+((df —v)sf) <0,
(410) ¢ —u+7((d —v)sp) 0.

Moreover, since 7¢,7? € T it is not difficult to see that there exist F;
measurable random variables z, y; such that the following equalities hold:
(411) o — 2 + 72 ((df — ye)sf) =0,

(412) ¢ — 2+ ((d} —ye)st) = 0.

From (4.11) and (4.12) it follows that z§ —z¢+7((yf —y:)s§) < 0, e =a,b

and this means that our constructed strategy is self-financing.

Let u,v be real numbers such that (u,vs;) € H;,(t). We will prove now
that

(413) zz—u+7((y: —v)st) <0.

e=a,b
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From (4.10) and (4.12) we have
(4.14) z¢ —u+((d} — v)st) = 72((d} —e)sp) <O
From (4.9) and (4.11) we have
(4.15) ¢ —u+ 2 ((df —v)st) — v ((df —ye)s?) < 0.
There are a six cases:
Lov<y <d.
By (C1) we have (y; — v)s} < ((d} ~ v)s}) ~
By the properties of B we get, 7((y: — v)st) < 3
Therefore, by (3.1) we obtain

R(d —v)sd) — W} — w)st) > 7((3e ~ v)s).
The last inequality and (4.14) imply (4.13).

2. d?gvgyt.

By (C2) we have 77((d} — v)s}) — 7 ((d} — ye)s) > (1= p)(ye ~ v)s.

By the properties of B we get (y; — v)s? > %Igr ((yt — v)s¢). Therefore,
by (3.9) we obtain A2((& — v)st) — (! — uo)s) > (e — v)s0).

From the last inequality and (4. 14) we get (4.13).
3.v< df < .
By (3.9) we have (b—X)(d} ~v) 2 0> ((1+X) = (1= p)(1+b))(y: ~ d}).
From the above we get:
(4.16) (L+8)(d} —v) — (1 - p)(1+b)(d}? — ) = (1+ A)(ye —v).
By (C1), (C2) and (C4) we have:
2 ((d} — v)s?) > (1 + b)(d? — v)s,
1((d} ~ we)sp) < (1 — w)(1+b)(d} — we)se,
T((ye — v)se) < (14 A)(ye — v)se.

By the last three inequalities and (4.16) we obtain:

Y (d} —v)sp) = W ((d} = ye)sp) = 7((ye — v)se).
From the last inequality and (4.14) we get (4.13).

4. y <wv < dj.
By (C1) we have 7¢((df — v)sf) —2¢((df — w)sf) = (1 + A)(ye — v)st.
From the properties of A we get (y; —v)s§ > 1+a T((yt —v)s¢). Therefore,
by (3.9) we obtain:

v ((df — v)st) — ¥e((df — ve)st) 2 7((ye — v)se).
From the last inequality and (4.15) we get (4.13).

5. d2 <y < v.

7 ((df yt)st)
+'\ (yt - U)St
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By (C2) we have v/ ((df — yt)s) — 17 ((df —v)sf) < (v —yr)st.
From the properties of A we get T32(v — y;)s? < —7((3 — v)se).
Therefore, by (3.1) we obtain

¥ ((df — v)sg) — 4 ((df — vo)si) 2 7((ye — v)se)-
From the above inequality and (4.15) we get (4.13).

6. yr <df <w.

By (3.9) we have (a+p)(v—d$) <0< (1 —p) = (1+X)(1+a))(df —ut).
From the above we get:
(4.17) (1+4a)(df —v) = (1+ A)(1+a)(df —u) = (1 - p)(ye — v).
By (C1), (C2) and (C4) we have:
Y ((df ~ v)sf) 2 (L + a)(df — v)sy,
Ye((df —we)sg) < (1+ A)(L+ a)(df — ys)se,
(e —v)se) < (1 — p)(ye — v)se.
By the last three inequalities and (4.17) we obtain #((df — v)sf) —
7 (df - ye)st) 2 7((yr — v)s).
By the last inequality and (4.15) we get (4.13).
From (4.13) we have H:p(t) C Cloy,ysr)- It is clear that H;(t) C Hy(t).

Therefore, since (z;, y1st) € H;,(t) we get (x4, y:5t) € Hyp(t). Consequently,
Lemma 3.2 implies H‘p(t) = C(Et(st),yt(st)st)’

By backward induction it follows that there exists a strategy (z,y) € A
such that Hy(t) = C(g, y,s,), P a.5. foreacht=0,...,T -1

The proof is therefore completed. n
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