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Abstract. In the paper hedging a contingent claim in the Cox-Ross-Rubinstein model 
under concave transaction costs is studied. Sufficient conditions for the optimality of 
the replicating strategy for the European option are given. The problem of describing 
of portfolios which allow, starting from a given moment to hedge a contingent claim is 
considered for both the European and American options. 

1. Introduction 
In the paper we consider a discrete time financial market where two as-

sets are given for trading, a riskless bond and a risky stock whose price is 
characterized by the so-called Cox-Ross-Rubinstein (CRR) model. Transfers 
of wealth from one asset to another take place only at the discrete moments 
and the concave transaction costs for these transfers are incurred. We con-
tinue to study the problems from [1], [2], [3] where the CRR model with 
proportional transaction costs was considered. 

We show that under some mild assumptions a replicating strategy is 
optimal for a special class of European options. Next, we prove that if the 
transaction costs are sufficiently small, a replicating strategy is optimal for 
any European option. Moreover, for both European and American option 
simple descriptions of the set of capitals which are sufficient, starting from 
a given moment to hedge a contingent claim are given. 

The problem studied in the paper was posed by prof. t . Stettner to 
whom the author wishes to express his thanks. 
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2. The model 
Let (Q,T,P) be a probability space such that fl = {a, b}T where —1 < 

a < 0 and b > 0. We consider a market with two assets, a risky stock and a 
riskless bond with the constant price assumed to be equal to one. We assume 
that all assets are infinitely divisible. 

Throughout this paper (in)equalities or other statements depending on 
u> € Q if not stated otherwise will be understood in the P almost sure 
sense. Sometimes we shall emphasize it and write that such (in)equalities or 
statements are up to P null events. 

Let St denote the price of the stock at time t, t = 0,.. . , T. We assume 
that St satisfies the following recursive formula: 

st+1 = (1 + m+i)st,t = 0,. . . , T - 1, so € R + \ { 0 } where rju t = 1, . . . , T 

is a sequence of i.i.d. random variables such that P{r]t = a) + P(r]t = b) = 1 
and 0 < P(r]t - a) < 1 for each t = 1, . . . , T. 

The above recursive formula for the price of the stock characterizes so 
called Cox-Ross-Rubinstein model. 

For any OJ = (u>i , . . . ,LOT ) G 0 , we put U>Q — (e,0J2, • • •,OJT) and 

<4 = (wi>- •• >Vt,e,ujt+2,- for t = 1,. . . , T - 1, e = a,b. 

Let F = {!Ff, t = 0,. . . , T} be a family of increasing sub cr-algebras such 
that Tt = CT(Su, 0 < u < t), t = 0,.. . , T. We assume that T = TT-

For any Tt+1 measurable random variable pt+i we define Tt measurable 
random variables and p\ as follows: P t { u ) — Pt+ii^ti^)) a nd Pt(^) = 
p t + i (w t 6M),< = o , . . . , r - i . 

Moreover, let p®!®2 = (p®1)®!.! for ei,e2 6 {a, b} and t = 1, . . . , T - 1 
Selling bonds worth B(z) we get stocks worth z, and selling stocks worth 

A(z) we get bonds worth z, where z > 0. 
The functions A and B, defined on R + are concave, nondecreasing and 

satisfy B(0) = 0, ̂ 4(0) = 0. Moreover, there exist right-hand derivatives in 
zero 5'(0),yl '(0) and min{B(z), A(z)} >zfovz>0. 

Let B'(0) = 1 + A and A'(0) = j^. 

Let us introduce the function r as follows: 
R 8 W « « > O 

w \ - i 4 " 1 ( - « ) i f z < 0 > 

T(Z) can be interpreted as the cost of getting stocks worth z (z negative 
means that we sell \z\ stocks). 

REMARK 2.1. Let p,q e R . Then, r(p) + r(q) > r{p + q). 

For any Tt measurable r.v. pt we define a function as follows: 

= ^((Pt-1 - z)4-I) - T((PL 1 - z)5ta_i), Z 6 R for each t = 1,..., T. 



Hedging in the CRR 499 

A trading strategy ( x , y ) is a pair of processes { ( x t , y t ) , t = 0 , . . . , T } 
where Xt,yt are Tt measurable for each t = 0, . . . ,T . Here, xt, yt denote 
numbers of units of bonds and stocks respectively, held by the seller of the 
option at time t (after transaction at this moment). Moreover, for a strategy 
(x, y) let y-i E R denote initial holdings (in units) of bonds and shares 
of the stock respectively. 

A trading strategy (x,y) is said to be self-financing if : 
xt - xt-i + T{(yt - yt-i)st) <0,t — 0,...,T. 
The above inequality means that at every trading moment, the sales 

must finance the purchases. 
Denote the set of all self-financing, trading strategies by A. 

3. European options 
A European contingent claim (or a European option) / is a pair / = 

(/i> f"i) of Tt measurable random variables. Here, / i , / 2 denote number of 
units of bonds and stocks respectively, that are paid to the buyer of the 
option at time T. 

We say that a self-financing, trading strategy (x,y) hedges a contingent 
claim / if / i — xT-1 + t ( ( / 2 - yr- i)sr) < 0. 

We say that a trading strategy (x,y) E A is replicating for a contingent 
claim / if: 

xt -xt-1 + r((yt - yt-i)st) = 0, t = 0 , . . . , T and {xT,yT) = ( / i , /2). 
For any (p, q) E R 2 we define a set C(p g) as follows: 
C(p,q) = ( (u> v) ER2 : p-u + r ( q - v ) < 0 } . 

R e m a r k 3.1. For any ( p , q ) e R2 if {u,v) E C(P)9) then C(u,v) Q C(p,q)-

The seller's price of a European option / is defined by: 
7r(/) = inf{x0 + T(y0s0), (x, y) E A and hedges / } . 
Given an option / , we say that a hedging strategy (x,y) e A is optimal 

if for any other hedging strategy (x,y) 6 A we have C(i0,y0s0) Q C(xo,j/oso) • 
It is not difficult to see that if a strategy (x ,y ) E A is optimal for an 

option / then the value xq + r(yoso) connected with this strategy is equal 
to the price of / . 

For any ui E Q. and t = 0 , . . . , T— 1 we define sets Hf(t)(u>) and H'f(t)(u) 
as follows: 

Hf{t){uj) = {(ii,v) E R2 : there exists ( x , y ) € A such that 
(xt-i,yt-ist)(ui) = (u,v) &ndP[fi-XT-i+T{(f2-yT-i)sT)<0 I Jr

i](w) = l}. 
Hf (t) is a set of pre-transaction portfolios that at time t guarantee hedg-

ing the claim / at time T. 
Hf(t){bj) = {(ii,v) E R2 : there exists ( x , y ) € A such that (xt, ytst)(u) 

= (u,v) and P [ / x - x T _ ! + r ( ( / 2 - yr-i)sT) < 0 | Tt]{u) = 1} . 
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H'f(t) is a set of post-transaction portfolios that at time t guarantee 
hedging the claim / at time T. 

Moreover, let Hf(T) = C(f1j2sT)- Hf(T) is a set of pre-transaction port-
folios that at the moment T guarantee hedging the claim f(T) at time T. 

For each i = 0 , . . . , T — l w e have the following fact: 

L E M M A 3 . 2 . Let u,v be real numbers and oj G I I be fixed. If (u,vst(w)) 6 
Hf{t)(u) and H'f(t)(u) C C(u>i;st(w)) then Hf(t)(uj) = C{u<VStiw)). 

P r o o f. To simplify notation we will omit the dependency on ui in this proof. 
It is not difficult to see that C(u „it) C Hf(t). We only have to prove 

that Hf(t) C C(ut)St). Let ui,v\ be real numbers such that (ui,i>iSt) G 
Hf(t). Then, there exists («2,^2) G R 2 such that («2, V2St) G Hf(t) and 
U2 — U1 + T((V2 — ui)st) < 0. Since Hf(T) is contained in C(UJVST) we have an 
inequality u — u2 + T((V — V2)st) < 0. 

The last two inequalities imply u — UI + T((V — V2)ST) + T((V2~V\)ST) < 0. 
Thus, by Remark 2.1 we get u — u\+ T{(V — V\)ST) < 0. 
Therefore (ui,viSt) 6 C(UiVSt) and finally we obtain H/(t) C C(UtVSty 
The proof is therefore completed. • 
Now for each t = 1 , . . . , T we define a set lit consisting of a special type 

of pairs of random variables. 
Let lit, i = 1,. - -, T" denote a set of all pairs of random variables 

(p{st),q(st)) such that q is a nondecreasing real function and there exists a 
random variable w(st~ 1) such that 

r((ql 1 - - r((<7ta-i " w ( * - i ) K _ i ) = PU ' Pt-i 
and < w(st-1) < 

Using [4] we have the following fact: 

T H E O R E M 3 . 3 . For any European option f there exists a replicating strategy. 
If > then a replicating strategy is unique. 

Moreover, if f G IIT and a strategy (x,y) G A is replicating for f , then 
(x, y) satisfies the inequalities yf < yt < Vt for each t — 0 , . . . , T — 1. 

From now on in this paper we make the following assumption: 
(3.1) b - A > 0 and p, + a < 0. 

THEOREM 3.4. Let f be a European option such that f € Ety. Then, there 
exists a unique replicating strategy (x, y) G A which is optimal. 

Moreover, Hf(t) = C(Itl2/tSt) for each t = 0 , . . . , T — 1. 

Proof . By Theorem 3.3 there exists a unique strategy (x,y) G A which is 
replicating for / and satisfies inequalities yt<yt<y\ for each t = 0,... ,T—1. 
It is clear that C(XuytH) C Hf(t) for each t — 0, . . . , T - 1 and 
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C(XT,yTST) = Hf(T). Suppose, for some ¿ = 0, ...,T-1 we have C(X|+1)yt+1<t+1) 
= H,{t + 1). 

From now on we fix an UJ G f2 in this proof. 
Let u, v be real numbers such that (u,vst ) € Hj(t). Then, by definition 

of Hf{t) we have the inequalities: 

( 3 . 2 ) x ? - u + T((y?-v)s<})< 0 , 

( 3 . 3 ) x b - u + T ( ( y b - v ) s b ) < 0 . 

Since the strategy (x ,y) is replicating we have: 

(3.4) xat-xt + r{{yat-yt)sat) = 0, 

(3.5) ® t b - x t + r ( (y 1 b - ! f t ) S t 6 ) = 0. 

We will prove now that 

(3.6) xt-u + r({yt - v)st) < 0. 

There are two cases: 

1- v < yt. 

From (3.3) and (3.5) we have 

(3.7) xt- u + r((yb - v)sb) - r((yb - yt)sb) < 0. 

Since yt < yb we have the following inequalities: 

(yt - «)«? < r((yb - v)sbt) - r((yb - yt)sbt), r((yt - v)st) <^{yt~ v)sbt. 

Therefore, by (3.1) we obtain r((yb - v)sbt) - r((yb - yt)sb) > r{{yt - v)st). 
The above inequality and (3.7) imply (3.6). 

2. v > yt. 

From (3.2) and (3.4) we have 

(3.8) xt~ u + r((yf - v)s?) - r{{yat - yt)sat) < 0. 

Since yf < yt we have the following inequalities: 

r((ya - yt)sa) - T((y? - v)s?) < (v - yt)st0, ^ ( v - yt)s<? < -r((yt - v)st). 

Therefore, by (3.1) we obtain r((yf - v)sf) - r{(yf - yt)s?) > r({yt - v)st). 
From the above inequality and (3.8) we get (3.6). 
By (3.6) we have H'f(t) C C(XuytSty Therefore since ( x t , y t s t ) G Hf(t), 

by Lemma 3.2 we see that Hj(t) = C(XuytSty By backward induction, we get 
Hf(t) = C(Xti!/(5t), P a.s. for each t = 0 , . . . ,T — 1. For any other hedging 
strategy ( x , y ) € A we have (xo, y0 so) S Hf( 0). Therefore the strategy (x,y) 
is optimal by Remark 3.1. 

The proof is now completed. • 
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3.1. Small transaction costs 
In this subsection we will show that if the transaction costs are suffi-

ciently small, i.e. 
(3.9) m i n {l + 6 ) T ^ } > i ± A 
then, for any European contingent claim / there exists an optimal, self-
financing, trading strategy which replicates the portfolio ( / i , /2) at time T. 

We have the following fact: 
THEOREM 3.5. If the condition (3.9) is satisfied, then for any European 
option f there exists a replicating strategy (x,y) £ A which is optimal. 

Moreover, Hf(t) = C{xt,ytst) for each i = 0 , . . . , T — 1. 

Proo f . Let / be a given European option. By Theorem 3.3 there exists 
a unique strategy (x,y) E A which is replicating for / . It is clear that 
C(x t ,t/ ts t) ^ Hf(t) for each t = 0 , . . . , T - l and C(XTiVTST) = Hf(T). Suppose, 
for some t = 0 , . . . , T - 1 we have C{xt+uyt+lSt+l) = Hf{t + 1). 

Since (x,y) is replicating the following inequalities hold: 
(3.10) a % - x t + T ( { t f - y t X ) = 0, 
(3.11) xb

t-xt + r{{yb
t-yt)sb

t) = 0. 
From now on we fix an w 6 ii in this proof. 
Let u,v be real numbers such that (u,vst) G Hj(t). Then, by definition 

of Hf(t) we have the inequalities: 
(3.12) xa

t-u + T({y?-v)sa
t)< 0, 

(3.13) x\— u + r((yb — v)sb) < 0. 
We will prove now that 

(3.14) xt-u + T{(yt-v)st) <0. 
There are a six cases: 

1 • v <yt< y\. 
In this case the proof of (3.14) is analogous to the proof of (3.6) in case 1 

of Theorem 3.4. 

2. yb
t < v < yt. 

From (3.11) and (3.13) we get 
(3.15) xt- u + r((yb

t - v)sb) - T((yb - yt)sb) < 0. 
From the properties of the functions A and B we have the following inequal-
ities: 

r((3/<
6 - v)sb) - r((yb - yt)sb

t) > (1 - ¿)(yt - v)sb, 
(yt-v)sb

t>^r((yt-v)st). 
Therefore, by (3.9) we obtain: 
r({yb

t ~ v)sb) - r{{y\ - yt)sb) > r((yt - v)st). 



Hedging in the CRR 503 

From the last inequality and (3.15) we get (3.14). 

3. v < yb < yt. 

By (3.11) and (3.13) we get (3.15). 
By (3.9) we have (b - A ) ( y b - v) > 0 > ((1 + A) - (1 - /x)(l + b)){yt - yb

t). 
From the above we get: 

(3.16) (1 + b)(yb
t - v ) - ( l - M)(l + b)(yb - yt) > (1 + A ) ( y t - v). 

By the properties of the function r we have: 
r((yb

t-v)sb)>(l + b)(yb
t-v)st, 

r((yb
t ~ yt)4) < (1 " M)(l + b)(yb

t - yt)st, 
T{{yt - v)st) < (1 + A){yt - v)st. 
By the last three inequalities and (3.16) we obtain: 
t((v? ~ v)4) - r((yb - yt)sb) > r((yt - W)st). 
From the last inequality and (3.15) we get (3.14). 

4. yf <yt < v. 

In this case the proof of (3.14) is analogous to the proof of (3.6) in case 2 
of Theorem 3.4. 

5. yt < v < y f . 

From (3.10) and (3.12) we have 
(3.17) xt- u + r((ya - v ) s f ) - r((ya - yt)sa

t) < 0. 
From the properties of the functions A and B we have the following 

inequalities: 
T{{yt ~ v)sa

t) - T((yf - yt)sa) > (1 + X)(yt - v ) s f , 
( y t - v ) s ? > ^ T ( ( y t - v ) s t ) . 
Therefore, by (3.9) we obtain r { { y f - v ) s f ) - T { ( y f - y t ) s a ) > r{(yt-v)st). 
From the last inequality and (3.17) we get (3.14). 

6. yt < y? < v. 

From (3.10) and (3.12) we get (3.17). 
By (3.9) we have (a + /*)(« - y f ) < 0 < ((1 - p ) - (1 + A)(l+ a))(yt

a -yt). 
From the above we get: 

(3.18) (1 + a)(y? - v ) - ( l + A)(l + a)(y? - yt) > (1 - p)(yt - v). 
By the properties of the function r we have: 

r((y? ~ yt)s?) < (1 + A) ( l + - yt)su 

T~({yt - v)st) < (l - p)(yt - v)st. 
By the last three inequalities and (3.18) we obtain 

r((yf - v)af) - r((yf - yt)sf) > r((yt - v)st). 
From the last inequality and (3.17) we get (3.14). 
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By (3.14) we have H'f(t) C C(XuytSty Therefore since (x t ,yts t) € Hf(t), 
by Lemma 3.2 we see that Hf(t) = C(XtytSty By backward induction, we 
have Hf(t) = C(XtiytSt), P a.s. for each t = 0 , . . . , T—1. For any other hedg-
ing strategy (x ,y ) € A we have (xo>2/oso) G Hf(0). Therefore the strategy 
(as, y) is optimal by Remark 3.1. 

The proof is therefore completed. • 

4. American options 
We define an American option (or an American contingent claim) ip as 

a pair {<p{t) = (ipi(t),ip2(t)),t = 0, . . . , T } of F adapted processes. Here, 
¥>i(i)> <P2{t) denote number of units of bonds and stocks respectively, that 
are paid to the option's buyer assuming he exercises the option at time t. 

We say that a strategy (x,y) G A hedges an American contingent claim 
<p if ipi(t) - xt~ i + r ((^2( i) - yt-i)st) < 0 for each i = 0 , . . . ,T. 

The seller's price of an American option ip is defined by: 
7r(ip) = inf{xo + r(yoso), (x,y) G A and hedges ip}. 
Given an option <p, we say that a hedging strategy (x, y) 6 A is optimal 

if for any other hedging strategy (x,y) € A we have C^Q)yQSo) C C(XQ>yoSQy 
It is not difficult to see that if a strategy (x,y) G A is optimal for an 

option ip then the value xq + r(?/oSo) connected with this strategy is equal 
to the price of (p. 

For any u G fi and t = 0 , . . . , T — 1 we define sets Hv{t){ui) and H^{t){u) 
as follows: 

H<p(t)(u) = {(u,v) G R 2 : there exists (x,y) G A such that 
(xt-i,yt-ist){.u) = {u,v) and P[<pi(n) - xn-i + r((^2(n) - yn-i)sn) 
< 0 | = 1 for each n = t + 1 , . . . , T}. 

H<p{t) is a set of pre-transaction portfolios that at time t guarantee hedg-
ing the claim <p(n) at time n for each n = t + 1 , . . . , T. 

Hv{t){u) = {(u,v) G R 2 : there exists (x,y) G A such that (xt,ytSt){u>) 
= (u,i>) and P[ipi(n)-x, ,-\ + T((ip2(n)-yn-i)sn) < 0 | Tt](u) = 1 for each 
n = t + 1,... ,T}. 

H^{t) is a set of post-transaction portfolios that at time t guarantee 
hedging the claim <p(n) at time n for each n = t + 1 , . . . , T. 

Moreover, let HV(T) — HV(T) is a set of pre-transaction 
portfolios that at the moment T guarantee hedging the claim <p{T) at time T. 

Let T denote a set of all functions 7 which satisfy the following conditions: 
(CI) Z2 — zi < 7(22) — 7(^1) < (1 + A)(z2 _ zi)> f° r any real, nonnegative 

zi, Z2 such that z\ < Z2 • 
(C2) Z2 — z\ > 7(^2) — 7(21) > (1 — p){z2 — z\), for any real, nonpositive 

z\, Z2 such that z\ < Z2-
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(C3) F(z) < T ( Z ) , for any z G R. 
(C4) 7(0) = 0. 

LEMMA 4 . 1 . For any 7 G T and u, v G R , if uv < 0 then 7 ( u ) + j ( v ) > 
7 (u + u). 

Proof . Without any loss of generality we assume that u > 0 and v < 0 
We have two cases. 

1. u+ v > 0. 

By (CI) we have 7(11) - 7(11 + v) > - v. From (C2) and (C4) we get 
—y(v) < —v. Combining the last two inequalities we obtain 7(14) + y(v) > 
rf(u + v). 

2. u+ v < 0. 

By (C2) we have J ( U + V ) - J ( V ) < u. From (CI) and (C4) we get I(u) > u. 

Combining the last two inequalities we obtain j(u) + •y(v) > 7(u + v). 
The proof is therefore completed. • 
For any (pi,j>2) £ R 2 we define sets 9C(P1iP2) and d C ( P l , p 2 ) as follows: 
dc(pup2) = ( ( u > v ) G R 2 : p i - u + r(p2 - v) = 0 a n d v > p 2 } , 

&C<j>uP2) = i ( u > v) e K 2 : p i - u + r ( p 2 - v) = 0 a n d v < p2}-

For any p = (pi,p2) € R 2 and q = (91,92) £ R 2 we define a set V(p,q) 

as follows: 
V{p,q) = {(c, d) € d(Cp n Cq) : for any (u, v) G d{Cp r\Cq)iiv>d then 

(u, v) G dCp U dCq and if v < d then (u, v) G dCp U dCq}. Here d(Cp n Cq) 
denotes a boundary of Cp D Cg, i.e. d(Cp D Cq) = (Cp n Cq)\int(Cp n Cq). 

R E M A R K 4 .2 . The set V(p, q) is non-empty. 
LEMMA 4 . 3 . For any (c , d) G V(p, q) there exists v G T such that 

CpCiCq = { ( u , v) G R 2 : c - u + v(d - v) < 0 } . 

Proof . Let ( c ,d) G V(p,q). It is not difficult to see that there exists a 
continuous function v such that d(C(Pl,p2)nC(?lií2)) = {(u, v) G R 2 : c — u + 
1/(d - v) = 0} and C(pi>p2) D C(qit<l2) = {(«, v) G R 2 : c - u + u{d - v) < 0}. 
Obviously, v satisfies (C4). 

By Remark 3.1 we have dC(c><¿) ^ CpC\Cq. Therefore for any (u, v) G R 2 , 
if c — u + r ( d — v ) — 0 then c—u+u(d—v) < 0. Consequently, v satisfies (C3). 

Now, we will prove that v satisfies (CI) and (C2). For each z > 0 there 
exists e > 0,f > — z and ( £ R such that v(e) — r(e + 0 + C f° r a n y 
e G (z, z + e). Moreover, for each z < 0 there exists £ > 0, £ > z and ( £ R 
such that ¡/(e) = r (e — O + C f° r any e G (z — e,z). Thus, because v is 
continuous, it satisfies (CI) and (C2) by the properties of r . 

The proof is therefore completed. • 
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For each t = 1 , . . . , T we have the following fact: 

Lemma 4.4. Let {pi(st),p2(st)), (qi(st), Q2{st)) G IIT. There exist random 
variables (c(st), d(st)) such that for any u G ii there is a function vSt^ G T 
with the equality: C(pup2st)^ n C(g i ) 9 2 S i)M = {(u, v) G R 2 : c(st)(u) - u + 
uSt(d(st)st - v)(u>) < 0 } . 

Moreover, there exists a unique r.v. w(st-1) such that 
" s ^ f i d t - 1 - - ^ " . ^ ( d t - i - ^ ( s t - i ) ) « t - i ) = <£-1 - <£_ 1 and 
da

t_x < wfa-i) < d\_ 

P r o o f . To simplify notation we shall write Pi,qi respectively, instead of 
Pi(st),Qi,(st) i = 1,2. By Remark 4.2 it is easily seen that there exists a 
pair of random variables (c(st), d(st)) such that 
{c(st),d(st)st) G V((pi,p2st), (qi,q2st)). 

Therefore, by Lemma 4.3 for any w e f I there exists a function such 
that the first equality of Lemma 4.4 holds. Moreover, it is not difficult to see 
that d(C{pitP2St)nC{qiiq2St)) = { (u,u) G R 2 : c(st)-u+vSt(d(8t)8t-v) = 0} . 

From now on we fix an u G ii in this proof. 
Let be a function defined as follows: 

Mz) = ^ ( ( 4 - 1 - z)4-i) - Vs^ddU - z)sU)-
Since Vg^v^ G Y we have $ t ( z ) < (((1 + a) - (1 - /¿)(1 + b))z + 

(1 - /x)(l + - (1 + «)^ta-i)5t-i for z > maxid^d^} and $ t ( z ) > 
(((1 + o)( 1 + A) - (1 + b))z + (1 + b)d\_ 1 - (1 + o)( l + X)df_l)st-1 for 
z< minidisk),d(sb

t^)}. 
Therefore by (3.1) we conclude that 

lim^oo $t(z) - — oo and linXz-^-oo $ i (z ) = oo. 
Furthermore, since G T by (3.1) it follows that the function 
is strictly decreasing. Thus, because $t(z) is continuous there exists a 

unique random variable w(st-i) such that $i(w(st_i)) = — c\_v 

Consequently, it follows immediately that there exists a r.v. u(st~i) such 
that 
(4.1) - u(s t _i ) + vset i ((dte_! - io(s t_i))sf_1) = 0, e — a,b. 

To simplify notation we shall write pf,qf,u,w respectively, instead of 
Pi(st-1)' Qi(st-1)> « ( s i - i ) , w(st-1) i = 1,2; e = a, b. 

Assume that < w. 
Thus, since (ct6_i, d|_i«J_i) € (<?i> «2«t-i)) bY i 4 - 1 ) it fol-

lows that (u .ujs J . ! ) g u a c ^ ^ . 

Assume that ( u , ^ ! ) G dC p̂b pbsb j . 

Consequently, w > p\ and p\—u + r{{p\ — w)s\_x) = 0. 
By (4.1) it is clear that p\ - u + r((pg - w)3f_x) < 0. 
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Consequently, 

(4.2) r ( ( p b - w)sbt_l) - t ( ( j>2 - ^ K - i ) >vt~ p\-

Since (pijP2) € lit, there exists z € ( p l p b 2 ) such that r((p2 - z) st-l) ~ 

T ( ( p a 2 - z ) s U ) = P l - P l • 

The last equality and (4.2) imply 
R((pb2 ~ w)sbt_1) - r((pa2 - w ) s U ) > R{{p\ - z)sb_1) - T((P% - z ) s f _ 1 ) . 

Transforming equivalently we get: 
(4.3) r ( ( p f - z K _ i ) - ^ ( ( P 2 - ^ K - i ) > r ( ( p b 2 - z ) s b _ 1 ) - r ( ( p b 2 - w ) s b t _ l ) . 

By the inequalities p2 < z < p2 < w and the properties of r we have 
r ( ( p i - * K - i ) - r{{pa2 - w ) s U ) < (1 + a)(w - z ) s t - i , 

r((pb2 ~ z)sb_1) - r ( ( p b - w)sbt_i) > (1 - /i)(l + b)(w - z)st-1-

From the last two inequalities, (4.3) and since w > z we get (1 + a) > 
(1-M)(1 + b). 

In case when (u, ws t - i ) € dC q̂b qbsb ^ the proof is the same as above, we 

only write pb,p2 respectively instead of qb,q2. But the inequality (1 + a) > 

(1 —/i)(l + b) is a contradiction to (3.1) and consequently we have w < 
By a similar consideration it can be shown that df < w, the proof of which 
we leave to the reader. • 

Using Lemma 4.4 we will prove the following theorem concerning Amer-
ican options with <p(t) £ l i t , t = 1,... ,T. 

THEOREM 4.5. Let <p be an American option such that <p(t) G l l t , for each 
t = 1 , . . . ,T. Then there exists a strategy ( x , y ) 6 A which is optimal and 
H<?(t) = C(xt ytSt) for each t = 0 , . . . , T — 1. Moreover, (xt, yt) 6 lit for each 
t = 1,... ,T — 1. 

Proof . We shall construct our strategy (x, y) = {{xt(st),yt(st), t = 0,... ,T)} 
using backward induction. We set ( X T , y r ) = (<PI(ST), ¥>2(ST))-

It is clear that HV(T) = C^Xt^tSt) and (Xt,VT) £ n r . 
Assume that for some t = 0 , . . . , T — 1 there exist random variables 

zt+i(«t+i),2/i+i(si+i) such that Hv{t + 1) = C(st+1)3/t+1st+1) and (xt+i, 2/t+i) 
e nt+i. 

Then, for any (u , v) 6 R 2 and UJ € fi we have the following equivalence: 
( u , v s t ( u j ) ) € i/^(t)(w) if and only if it satisfies a system of inequalities: 

x t ( u ) - u + r ( ( y f - v ) s e t ) ( u ) < 0 & = a b 

By Lemma 4.4 there exists a pair random variables (ct+i(st+i),<Zt+i(st+i)) 
such that for any UJ £ fi there is a function VT,ST+I(U) € T with the following 
equivalence: 

for any (u , v) G R 2 a system of inequalities: 
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i ®t+i(w) - u + r((yt+1 - v)st+1)(cj) < 0, 
\ ~u + T((ip2(st+1) - v)st+i){w) < 0 

is equivalent to an inequality c(st+i)(u;)—u+vtiSt+1 {{d{st^i)-v)st+i){uj) < 0. 
Consequently, for any (u,v) 6 R 2 and u 6 £2 we have the following 

equivalence: 

(u, vst(u)) 6 Hv(t)(u) if and only if it satisfies a system of inequalities: 

(4 4) { ~ U + ^ ^ " V ) s b t ) { u ) ~ ° 

By Lemma 4.4 there exists a unique r.v. yt(st) which satisfies: 
" M i ( ( 4 - yt)sbt) - Vt,s?((d? - yt)sa) = ca

t-c\ a n d 

(4.5) da
t<yt<db

t. 
Consequently, there exists a r.v. xt(st) such that the following equalities 

hold: 

(4 6) + = 
\c<t-xt + vttSt((d?-yt)s?) = 0. 

By (4.6) it follows that xf — xt + r((yf — yt)sf) < 0 , e = a,b and this 
means that our constructed strategy is self-financing. 

By (4.4), (4.6) and since vt,s%,vts\ e u s i n S similar arguments as in 
Theorem 3.4 it is not difficult to show that for any (u, v) 6 R 2 and u> € ii 
if (u,vst(u)) € H'^iui) then xt(st(u>)) - u + r((y t(s t) - v)st)(u;) < 0. 
Consequently, fl^(i) C C (xt (s t ) )J / t (s t ) j. t ). It is clear that H'^t) C Hv(t). By 
(4.6) we have (xt, ytSt) € Hv{t) and in consequence ( x t , y t s t ) 6 (t). There-
fore Lemma 3.2 implies Hv(t) = C(x t( s t),j, t(s t) s t)-

Suppose now that t = 1 , . . . , T - 1. 
We will show that (Xt, yt) € lit. 
By (4.5) we have the following inequalities < yf_1 < db

t
a_l and 

dt-i < Vt-i < 4-1-
Since = dfLi we therefore have that < y^i- By (4.6) we get: 

- 1 + vt,a\ti ~ yt-M°i) = o, 

cf^ - + - yt-i)st-i) = 'o . 

From the above equalities we get: 
(4.7) xU - 4-1 = " t ^ J i d t 1 - y f - M a - i ) - vt,s?J(d?-1 - ybt-i>t-i)-

By the inequalities yf_x < d(f_l < and Lemma 4.1 we have: 
(4.8) ut><i ( ( y l , - y U K - i ) > " t , ^ ( ( ^ - i - Vt-i)sbta-i) 

- "wifidp-1 - y h > t - i ) > -»t,s?J(yf-1 - yh)s£i)-
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By (4.7), (4.8) and (C3) we get: 

T { { y U - y U ) s t - i ) > x U - x h t - n 

~t((VLi " 2 / t i K M < ~ 4 - v 
Therefore since y < y\_x we get: 
*yt(y?-i) > r((l/t-i - y?-i)s?-i) > xat-i - 4-1 
and 

< -'"((%-1 - 2/t-i)st-i) < -
Consequently, since is continuous and decreasing we see that there exists 
a unique r.v. wt-i(s t- i ) such that ^ ( u J t - i ) = — and < 
wt-1 < yb

t-v 
Thus, (xt(st),yt(st)) 6 nt. 
By backward induction, it follows that there exists a strategy (x ,y ) € A 

such that H^t) = C(Xt y t i t), P a.s. for each t — 0 , . . . , T — 1 and ( x t , y t ) G Ilf 
for each t = 1 , . . . , T — 1. 

The proof is therefore completed. • 
We show below some examples of the American options with ip(t) 6 lit, 

t = 1,... ,T. 

E X A M P L E 1. Long call option with delivery. 

When the stock price is K or greater, a holder of the option buys one 
share of the stock for the price K. 

f i ( s ) = - K 1S>K, /2(s) = 1S>K. 

EXAMPLE 2. Long call option with delivery and cash settlement. 

As in Example 1 a holder buys one share of the stock at the non-negative 
price K, he does it however when possible cash settlement is nonnegative. 
If it is negative he doesn't exercise the option. Note that by definition of 
the function A, A(K) is the minimal value of the stock settlement which is 
required to get K bonds 

f i { s ) = -K1s>A(K), f2{s) = 1 S>A(K)-

E X A M P L E 3. Long call option with delivery and settlement in shares of the 
stock. 

This case is similar to the proceeding. However now, the decision of 
buying one share of the stock at the non-negative price K is made when 
the holder's settlement in shares of the stock is nonnegative. Note that by 
definition of the function B, B~l{K) is the value of the stock settlement 
obtained by selling K bonds 

h{s) = -Kls>B-i(/q, /2(s) = ls>B-i(/c)-

E X A M P L E 4 . Long put option. 
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When the stock price is K or lower a holder of the option sells one share 
of the stock for the price K 

fi(s) = K1S<K, f2(s) = - 1 S<K. 

4.1. Small transaction costs in case of the American option 
Assuming sufficiently small transaction costs we have the following fact: 

THEOREM 4.6. If the condition (3.9) is satisfied, then for any American 
option <p there exists a strategy (x,y) € A which is optimal. Moreover, 
Hv(t) = C{xuytst) for each t = 0 , . . . , T - 1. 

P r o o f. We set ( x T , yT) = (T), <p2(T)). It is clear that HV(T) = C{xTiVtSt). 
Assume that for some t = 0 , . . . , T — 1 there exists a pair of Tt+i mea-

surable random variables (xt+i, yt+i) such that Hv(t + 1) = C(Xt+ljyt+lSt+ly 
Using Remark 4.2 and Lemma 4.3 it is not difficult to show that there 

exist Ft+1 measurable random variables c i + i , such that for any w G i ! 
there is a function 7i+i(a>) 6 F with the following equivalence: 
for any (u, v) 6 R 2 a system of inequalities 

xt+1(u) - u + T((yt+i - v)st+i)(u>) < 0 
<pi(t + l ) (w) - u + T((n(t + 1) - v)st+i)(w) < 0 

is equivalent to an inequality ct+i(u>) — u + 7t+i((<ii+i — v)St+i)(u>) < 0. 
From now on we fix an u £ i) in this proof. 
Denote 7 t + i « ) by 7t

e, e = a,b. ̂  
For any (u, v) € R2 , (u,vst) € H^t) if and only if the following system 

of inequalities is satisfied: 
xe

t-u + r ( ( y f - v ) s f ) < 0 e = a J 

<p\{t)-u + T{{<pl{t)-v)si)< 0. 6 

Therefore for any (u,v ) 6 R2 , ( u , v s t ) € H^t) if and only if (u,v) 
satisfies a system of inequalities: 
(4.9) c ? - n + 7 t

a ( ( d ? - ^ K ) < 0, 
(4.10) c ? - u + 7 t

b ( ( < # - t > ) $ < 0 . 
Moreover, since 7®,7( € T it is not difficult to see that there exist Tt 

measurable random variables Xt,yt such that the following equalities hold: 
(4.11) c ? - z t + 7 t

a ( ( ^ - y t K ) = o, 
(4.12) cb

t-xt+7l((db
t-yt)sb

t) = 0. 

From (4.11) and (4.12) it follows that xf — xt+T((yf-yt)sf) < 0, e = a, b 
and this means that our constructed strategy is self-financing. 

Let u,v be real numbers such that ( u , v s t ) 6 H^t). We will prove now 
that 
(4.13) xt ~u + T{{yt -v)st) < 0. 
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Prom (4.10) and (4.12) we have 
(4.14) xt-u + 7 ¡ ( (4 - v)sb

t) - 7
b((db - yt)s\) < 0. 

From (4.9) and (4.11) we have 
(4.15) xt-u + 7 - t>K) - - yt)*?) < 0. 

There are a six cases: 

1. v < yt < d\. 
By (CI) we have (yt - v)sb < 7

b((db - v)sb
t) - ^((4 - yt)sb

t). 
By the properties of B we get, T((yt - v)st) < yt - v)s\. 
Therefore, by (3.1) we obtain 

7!((4 ~ v)sb) - ^((4 - yt)sb) > r((yt - v)st). 
The last inequality and (4.14) imply (4.13). 

2. db
t < v < yt. 

By (C2) we have 7 t
6((^ - v)sb) - 7

b((db - yt)sb) > (1 - M)(yt - V)sJ. 
By the properties of B we get (yt — v)sb > — v)st). Therefore, 

by (3.9) we obtain 7
b((db - v)sb) - yb((4 ~ Vt)4) > <{yt ~ v)st). 

Prom the last inequality and (4.14) we get (4.13). 

3. v < 4 < yt. 
By (3.9) we have (6 - X)(4 - v) > 0 > ((1 + A) - (1 - m)(1 + b))(yt - 4 ) . 
From the above we get: 

(4.16) (1 + b)(db - v ) - ( l - M)(l + b)(db - yt) > (1 + A){yt - v). 
By (CI), (C2) and (C4) we have: 

1
b((4-v)sb)>(l + b)(4-v)st, 

7H(4 ~ Vt)sb
t) < (1 - M)(l + b)(db ~ Vt)st, 

T((yt - v)st) < (1 + A)(yt - v)st. 

By the last three inequalities and (4.16) we obtain: 
7b

t((db - v)sb) - 7
b((db - yt)sb) > r((yt - v)st). 

From the last inequality and (4.14) we get (4.13). 

4. yt < v < d 
By (CI) we have 7<

a((d? - «)*?) - 7 t
a(Ka - VtW) > (1 + A)(yt - v)sf. 

From the properties of A we get (yt — v)st > jzj iT((y t — v)st). Therefore, 
by (3.9) we obtain: 

7t
a((d? - - 7?((d? - VtW) > r((yt - v)8t). 

From the last inequality and (4.15) we get (4.13). 

5. da
t<yt< v. 
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By (C2) we have - yt)s?) -jl?((dt ~ «K) < (v - yt)sa
t. 

From the properties of A we get — Ut)st — ~T((Vt ~ v)st)-
Therefore, by (3.1) we obtain 

7?((d? - v)sf) - 7?((d? - Vt)*?) > T((yt ~ v)st). 
Prom the above inequality and (4.15) we get (4.13). 

6. yt < da
t < v. 

By (3.9) we have (a + f i ) ( v - d f ) < 0 < ( ( l - / i ) - ( l + A)(l + o) ) (d?-y t ) . 
From the above we get: 

(4.17) (1 + a)(d? - v) - (1 + A)(l + a ) « ~ Vt) > (1 - Mvt ~ «)• 
By (CI), (C2) and (C4) we have: 
tf((d?-v)s?)>(l + a)(d?-v)st, 
7tt{d$ ~ Vt)sa

t) < (1 + A)(l + o)(d? - yt)st, 
T~((yt ~ v)st) < (1 - fi){yt - v)st. 
By the last three inequalities and (4.17) we obtain 7f ((c£® — ~ 

-Vt)*i)>T((yt-v)8t). 
By the last inequality and (4.15) we get (4.13). 
From (4.13) we have H'^t) C C{xuytSt). It is clear that H^{t) C H^{t). 

Therefore, since (xt,ytSt) € H'v(t) we get (xt,ytSt) H^t). Consequently, 
Lemma 3.2 implies Hv(t) = C{xt{sthyt(st)st). 

By backward induction it follows that there exists a strategy (x, y) € A 
such that Hv(t) — C(Xt ytSt), P a.s. for each t = 0 , . . . , T — 1. 

The proof is therefore completed. • 
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