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Abstract. We present a method of theoretical and numerical construction of the
hedging (replicating) portfolio for a given derivative financial instrument for the Heston
model of a financial market. The stochastic Heston model is defined by an appropriate
system of It6 type stochastic differential equations. We use a methodology based on an ap-
plication of the Clark—Ocone-Haussmann formula, leading to closed formulae for optimal
replicating strategies. We show how to use it in computer oriented applications.

1. Introduction

Some papers indicating on a possibility to apply Malliavin calculus in
calculations of functionals on classes of solutions to stochastic differential
equations (SDE ~ for short) modelling certain financial mathematics prob-
lems has appeared lately. It is possible, for example, to combine this idea
with computer Monte Carlo simulations techniques in order to obtain effi-
cient algorithms for calculation of the so called Greecs, i.e. certain function-
als on the class of processes solving the Black—-Scholes system of linear SDEs
commonly used in mathematical finance (see [1]).

This approach applies also to derivation of useful formulae describing
optimal ‘portfolio process in some stochastic optimization problems playing
an important role in mathematical finance. In this paper we construct op-
timal replicating portfolio for the Heston model of financial market, in a
mathematical framework proposed in [5].

AMS 1999 Subject Classifications. Primary 60H10; Secondary 62E20, 65C20.
Key words and phrases. hedging strategy, Heston model, stochastic model, financial
market, Malliavin derivative, Clark—-Ocone-Haussmann formula.



484 A. Janicki, L. Krajna

We also compare quantitatively replicating portfolios for the Black—Scho-
les and Heston models, using our approximate computer algorithms based on
calculation of the Malliavin derivatives of appropriate stochastic processes
and application of the Monte Carlo simulation techniques.

2. Financial market models

Following recent monographs [5] and {7] we briefly recall here necessary
notions and facts from stochastic finance (all necessary definitions, formal
assumptions, etc., omitted here can be found there).

Let W = {W(t) : t € [0,T]} denote a given Brownian motion process
on (2, F,P) with a filtration {F}, where {F;}:c[o,7} is the augmentation by
the null sets in F¥ of the filtration {F}¥ }te[o,r) generated by W = W(t).
Let us suppose that all processes considered here are well defined on the
spaces ({2, F,P) with filtration {F;}c(o,7], adapted to this filtration and have
continuous paths, what means that they are progressively measurable. We
need also another probability space (2, F,P). Operations E, E; and E, E
denote expectation and expectation conditioned to F;, on both these spaces,
respectively.

We are interested in two special cases of financial market models pre-
sented e.g. in [5] or 7] in a more general framework, i.e. in models consisting
of a money market (or bond) Sop = Sp(t) and one stock S1 = S1(¢). In this
one dimensional case we get a stochastic model consisting of a system of 2
linear It6 SDEs

(2.1) So(t) = So(0) + { r(s) So(s) ds,

¢
u(s) Si(s) ds+ Sa(s) S1(s) dW (s),
0

(22)  Sit)=Si(0) +

O ey O ey R

where processes r = r(t), u = u(t) are L}(Q x [0, T))-integrable, process
o =o(t) is L2(Q x [0, T))-integrable, all defined on (2, F, {F:},P).

In this paper we intend to compare in some sense two different models
of a financial market: the commonly used Black—Scholes model and, start-
ing attract attention, more general (nonlinear with respect to stochastic
volatility), Heston model.

The Black—Scholes model is defined by a system of 2 linear SDEs with
constant coefficients

t
(2.3) So(t) = 50(0) +r S S()(S) ds,
0
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t t
(2.4) SBt)=SE0)+ uSSl (s) ds + aSSf(s) dw (s),
0

for ¢t € [0,T) and given S,(0) > O, 51(0) > 0.
The Heston model (see [2]) is described by a system of 3 SDEs
t
So(t) = So(0) + {7 (s) So(s) ds,
0

t 4
(2.5) S{'(t) = S(0) + {u(s) S{(s) ds+ [ {/V (s) Sf'(s) AW (s),
0 0

(2.6) V() =V(0)+kf(a—V(s) ds+~{4/V(s) dW(s),
0 0

for t € [0,T], where V(0) > 0, Sf(0) > 0 are given, , o are positive
constants, and T', Sp(0) are the same as above in the Black—-Scholes model.
We assume that processes 7 = r#(t) and u¥ = pf(t) are adapted to {F;}
and are L1() x [0, T|)-integrable.

REMARK 2.1. Coefficients of equations (2.5), (2.6) describing Heston model
satisfy standard growth and Lipschitz conditions, i.e. assumptions of clas-
sical theorems on existence and uniqueness of solutions of Itd stochastic
differential equations. Repeating an argument from [3] on Bessel processes,
one can check that under our assumptions the nonnegative process V = V (¢)
solving (2.6) is well defined.

REMARK 2.2. From the fact that in the Heston model we have the same
copy of Brownian motion W = {W(t) : t € [0,T]} in (2.5) and in (2.6), it
follows that process {1/V(¢t) : t € [0,T]} is adapted to {F;} and the Heston
model can be considered as a special case of model (2.1)—(2.2).

One of our main goals is to check what is the difference between repli-
cating portfolios for this 2 models approximating each other in some sense,
so we propose the following definition.

DEFINITION 2.1. Models defined by stochastic equations (2.4) and (2.5)-
(2.6) are called comparable iff uf(¢t) = p and o and V = V(t) are related

through the equality
T

1
2.7) o? = ]E(— [ V(s) ds).
T,
Quantitative information on the quality of this criterion is provided by
Figures 5.1, 5.2 obtained from computer visualizations of solutions to un-
derlying systems of SDEs.
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In a framework given by the model (2.1)-(2.2), let us introduce a few
more necessary processes and stochastic equations. Discount process is given
by B(t) = 1/Ss(t). For n € {0,1} let n, = 9, (t) denote the number of shares
of bond and stock, respectively, so the value of the investor’s holdings at
time t is mo(t) + my(t), where mo(t) = n0(£)So(t), mi(t) & ny(t)S1(t). The
process T = (mg,m;) = {(mo(t), 71(¢)) : t € [0, T]} with values in R? is called
a portfolio process. We assume that the process m = =(t) is adapted to
filtration {F;}¢c(o,7) and such that all integrals in (2.8) are well defined and
finite.

With these processes we associate two other processes: the gains process

G = G(t)
dG(t) & no(t) r(t)So(t) dt + mu(t) [dSy(t) + S1(£)8(t) dt], with G(0) =0,

and - playing an important role — the wealth process X = X®™ = {X®7(¢) :
tefo,T]}
af ¢
X(t)y=z-— Sc(s) ds+ G(t),
0
with > 0 denoting initial value of an investment, ¢ = ¢(t) describing the
consumption process and 6 = 6(t) - dividend rate process.

REMARK 2.3. It can be checked that the wealth process X satisfies on
(Q, F,{F:},P) the following SDE

(2.8) X(t) =z + \[X(s)r(s) —c(s)]ds

t

m1(8)[(s) + 8(s) — 7(s)] ds + [ m(s)o(s)dW (s)].
0

.+.

[ R O e ot

Let us define a process called the market price of risk

f
6(t) < [u(t) + 8(t) — r(0)]/o(2),
and next, two other processes

W@ﬁﬁwumim@d&
0

zu)ﬁmdap{fe@)mv@)—%§¢@)a}y
0 4]

Assuming that the process Z = Z(t) is a martingale on (Q,F,{#:},P),
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finally we introduce a probability measure on 2, given by

p(4) L {2(T) dp, for Ac Fr.
A

REMARK 2.4. From Girsanov theorem’s now follows that W =W(@)is a
Brownian motion process on (2, F, {F;},P).

So, applying It6 formula and taking into account the discounting process
B = B(t), for the wealth process X = {X(t)} we derive the following new

SDE .

t
BHX () =z — [ B(u) c(u) du+ | Bu) m1(u)a(u) AW (u),
0 0
on (Qaf, {ft}tG[O,T]’fD)'
Finally we introduce the state price density process
- t t
FOEY0) exp{ —{6(s) aw(s) - 1 {6%(s) ds},
0 0

getting, after an application of the 1t6 formula, another SDE for the wealth
process X

(29) Hit) X(t)==z — SfI(u) c(u) du
0

t
+{H(u) [o(u)m(v)o(u) — X (u)8(u)] dW (u),
0
but this time on (2, F, {F;},P), which is more practically useful.

3. Malliavin calculus in construction of replicating portfolios

First we recall (see Theorem 3.5 in [5]) a theorem on the existence of
replicating portfolio.

THEOREM 3.1. Let B denote a nonnegative, Fr—measurable random vari-
able. If ¢ = c(t) is a consumption process and initial wealth x satisfies the

condition:
T

z = E[ | H(u)e(u)du + H(T) B],
0
then there exists a portfolio m = (mg,m1) such that corresponding wealth
process X©o™ = X507 (1) satisfies following conditions
X:z:,c,1r(0) =z,
Xz,c,W(T) = B,
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X®OT(t) >0, a.s.
X®OT(t) = mo(t) + m(t),
and can be described for all t € [0,T) by the following equality
T
H(t)X™™(t) = B | | H(u)e(w)du + H(T)X™*™(T)].
t
We can say more.

REMARK 3.1. There exists a stochastic process 9 = 1(¢) such that

(3.1) o(t)mi(t) = %((% + X()8(2).

This process can be derived from the relation

T t
B[ | H(w)c(u)du + H(T) X" (T)] = o + {9 (u)dW (u).
0 0
Our aim is to construct optimal replicating portfolios for both mod-
els presented in Section 2 by (2.4) and (2.5)-(2.6), and to compare them
quantitatively with the use of approximate computer methods based on cal-
culation of the Malliavin derivatives of appropriate stochastic processes and
application of the Monte Carlo simulation techniques.
Our main tool is the Clark—Ocone-Haussmann formula. To present it
briefly let us assume that for a given random variable F' we look for a
stochastic process ¥ = ¥(t) on t € [0, T) such that
T

(3.2) F =E[F] + | $(t) dW(2).
0

The answer gives the following theorem

THEOREM 3.2. Let F denote a random variable belonging to the space D:!.
Then

(3-3) F = E[F] + | E[D FldW (t),

(3.4) E¢[F] = E[F] + \E;[D, F]dW (s),

Qe ot O iy

where DY denotes a Sobolev type Banach space bf random variables L'~
integrable with their first Malliavin derivatives Dy[F), (see [8] and [1]).

From equality (3.3) it follows directly, that for the process ¥ = ¥(¢) from
(3.2) we have 9(t) = E;[D; F], what means that the process 3 = 1(t) is just
a Malliavin derivative of the random variable F.
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Now we are in a position to propose two constructive theorems describing
replicating portfolio. Thanks to linearity of SDE (2.9) describing wealth
process and linear dependence of this process on a consumption process c,
we consider separately 2 problems: first — with ¢ = ¢(¢) = 0, and second -
with B=0 a.s.

THEOREM 3.3. Let us suppose that all assumptions of Theorem 3.1 are sat-
isfied. If ¢ = c(t) = 0, then from the condition H(T)B € DU it follows,
that the portfolio replicating B has the form

(3.5) m(t) = mm [E(T)D.B]

H(t) @) =B [H(T) B ( S Dyr(s)ds + § Dtﬂ(s)dW(s))]

If additionally r = r(t) and 6 = 6(t) are deterministic functions, then port-
folio 7y takes the form

T
(36) m(0)=exp(~ | r(s)ds) o(t) ™ EulmiB)
t

T T
= exp (- {(r(s) + 36%(s))ds - | o(s)dW(s)) o(t)~ KD, B].
t

t

Proof Let F £ F(T)B. If F € DY, then thanks to Clark-Ocone-Hauss-
mann formula ¥(t) = E[D; F]. Replacing process ¢ in (3.1) by E[D;F], we
get

F]+E [F]6(t
(3.7) i (t) = B DF] +Ee [F16)

H(t)a(t)

After further calculations we get
1 ~ ~
68  m)= g {B[ADDE] + &[0 ()]
+6(t)E. [H(T) B},

and since Dy H(s) = —H(s) (0(2) + J§ Der(u)du + §; Deb(u)dW (u)) Ijp 4 (1),
then the formula (3.8) transforms into (3.5). O

THEOREM 3.4. Let us suppose that all assumptions of Theorem 3.1 are sat-
isfied. If B =0 a.s, then for Sg H(s) c(s)ds € DY, the replicating portfolio
takes the form
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1
(3.9) m(@)= (t) (t) “ H(s)Dy c(s) ds]
1 § .
H(t) pros “ H(s)c( s)( S Dy r(u)du + S 6(u) dW(u)) ds].
Proof. Since B = 0, so we get
1 T
X() = o Bl1 Ao els)ds].
t

rrd Sg H(s) c(s) ds belongs to D11, then 9(t) = E[D;F] and as a conse-
quence we get

Ee [DoF) + B (1] H(s)c(s)ds| 6(2)
7!'1(t) = = y
H(t) J(t)
where T
Dy F = {(c(s) Dy H(s) + H(s) Dy c(s))ds,
what ends the proof. a

REMARK 3.2. The method of construction of replicating portfolio obtained
here by (3.8) is much better suited for numerous applications then that
presented in [9]. It was successfully applied to computer construction of
portfolios of different kinds and can be applied in some other even more
general situations, e.g. for construction of optimal strategies solving various
optimal consumption and investment problems.

4. Replication of European call option

Malliavin calculus makes it possible to replicate practically any derivative
instrument on a given financial market. Let us recall that European call
option for a stock price S(t) given by SDE (2.2) for ¢ € [0, 7], is described
by the random variable
(4.1) B ¥ max{S(T) - K, 0},
were K > 0 is a given constant called a striking price.

Our aim is to construct with the use of Theorems 3.3 and 3.4 a replicating
portfolio for a random variable B given by (4.1) for 2 models: Black—Scholes
model, and Heston model introduced in Section 2. Notice, that it is clear
that in order to describe any portfolio w(t) = (mp(t),71(¢)) on a market
with 1 stock with a price S(t), it is enough to compute 7;(t) such that

m(t) = m()S(t).
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THEOREM 4.1. Let SP = SP(t) and S = SH(t) be given by (2.4) and
(2.5)—(2.6), respectively. Let B be defined by (4.1) in both these cases. Then,
we get

(42) () = m(SP(0) = 550 e [0 SO e (ST (D)]
- [B@)SE(T) 5
- & B e (ST D)
for Black-Scholes model, and
(43) () = m (ST (2), V(2)) = a(t) + b(t) - c(t),
for Heston model, where
H
aft) = i [%—%Lxm)w{* @),

_ 1 [B(MSE(T) T
b) = s B | St Lo SE @) (1O B V(9

+im, v dW(s))],

! K, 0} ( 50(3) Dy 6(s) ds

o) — B(T) max{SF(T) -
V@

Bt)ST (t)

B |
+ § Dy 0(s)dW(s))].

Proof. With the use of known rules (see [8] or [1]) allowing for calculation

of Malliavin derivatives of random variables, processes defined by stochastic

integrals or solving It6 SDEs, we get step by step the following results:
first, the Malliavin derivative of B given by (4.1):

(4.4) Dy B = Dy S(T) (k,00) (S(T));
second, the Malliavin derivative of SZ solving SDE (2.4):

(45)  DBeSP(w) = SP)SE() 08P (O)ou (1) = oSP (W) ()
third, the Malliavin derivative of the solution S(t) of (2.2):

u

(46) DuS(u)=S5(w)jou(t) ( | Deu(s)ds — {o(s)Dro(s)ds + | Dio(s)dW (s));
t t t

fourth, Malliavin derivative for V(t) in Heston model
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47) DV(s) =

2 8 s
BV (t) exp(—n(s—t)—?SLduﬂ-gS Vl ))I[o,s](t)-
t i VV(u)

Now, from (3.6), thanks to (4.4) and (4.5), we get directly (4.2).
Similarly, taking (4.4), substituting (4.7) for Dyo(s) and Dyu(s) = 0 in
(4.6) and putting this into (3.5), we get finally (4.3). )

5. Computer experiment

Using well developed numerical and statistical methods of approximation
of SDEs of different kinds and computer construction and visualization of
their solutions (see [4], [6]), and extending them for approximate construc-
tion of Malliavin derivatives of underlying random variables and processes, it
is possible — with the use of Theorem 4.1 - to compute replicating portfolios
(4.2) and (4.3) for stochastic Black—Scholes and Heston models of financial
market, introduced in Section 2. On Figures 5.1, 5.2 we see two very similar
- connected through relation (2.7) — visualizations of processes describing
these models, but on Figures 5.3, 5.4 portfolios replicating random variable
B defined by (4.1) for two different values 1.0, 1.2 of striking price K and
interpreted as an European call option are seemingly quite different for these
two models (there, N! stands for 7P (t), N? - for nff(t), with assumption
that mo(t) + 71(t) = no(t)So(t) + m(¢)S1(¢), with no(¢) = 1 — m(t) for both
models).

Let us recall that p—quantile line qg( = qif (t) for given stochastic process
X = X(t) and fixed p € (0,1) is a function defined by the formula

P{X(t) < gf(t)}=p, forte0,T).

Let us also remark, that ,,closeness” of processes SlB = SlB (t) and S{I =
S (t) related by (2.7) can also be understood as closeness of their densities,
quantile lines and other numeric quantities such as e.g. values of underly-
ing cylindrical (Wiener) measures. In our computer experiment differences
between values of all numerical quantities obtained for both models were
on a same level as errors induced by approximate methods applied to the
construction of these processes.

REMARK 5.1. To the best of our knowledge, the results of computer ex-
periments presented here are the first of this kind in accessible literature.
The main, apparently important for applications conclusion, one can derive
from obtained results, is that for two different stochastic models of financial
market, one with constant and second with stochastically varying volatility,
which have very similar statistical properties, corresponding strategies repli-
cating a given derivative instrument can be visibly (surprisingly) different.
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Figure 5.1. Solution of SDE (2.4) modelling Black-Scholes stock price evolution, repre-
sented by 10 exemplary trajectories and 9 p-quantile lines for p € {0.1,0.2,...,0.9}.
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Figure 5.2. Solution of SDE (2.5)—(2.6) modelling Heston stock price evolution, represented
by 10 exemplary trajectories and 9 quantile lines for p € {0.1,0.2,...,0.9}.



494 A. Janicki, L. Krajna

0.66 T T T T

0.641 —_— N2 E

0.621 -

0.58

0.56

0.54|

0.52

0.48 —_ —_ 1 L L 1 1 1 '
0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
t

Figure 5.3. Comparison of replicating strategies for Black—Scholes and Heston European
call option price models (K = 1.0).
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Figure 5.4. Comparison of replicating strategies for Black-Scholes and Heston European
call option price models (K = 1.2).
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