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Abstract. We present a method of theoretical and numerical construction of the 
hedging (replicating) portfolio for a given derivative financial instrument for the Heston 
model of a financial market. The stochastic Heston model is defined by an appropriate 
system of Ito type stochastic differential equations. We use a methodology based on an ap-
plication of the Clark-Ocone-Haussmann formula, leading to closed formulae for optimal 
replicating strategies. We show how to use it in computer oriented applications. 

1. Introduction 
Some papers indicating on a possibility to apply Malliavin calculus in 

calculations of functionals on classes of solutions to stochastic differential 
equations (SDE - for short) modelling certain financial mathematics prob-
lems has appeared lately. It is possible, for example, to combine this idea 
with computer Monte Carlo simulations techniques in order to obtain effi-
cient algorithms for calculation of the so called Greecs, i.e. certain function-
als on the class of processes solving the Black-Scholes system of linear SDEs 
commonly used in mathematical finance (see [1]). 

This approach applies also to derivation of useful formulae describing 
optimal 'portfolio process in some stochastic optimization problems playing 
an important role in mathematical finance. In this paper we construct op-
timal replicating portfolio for the Heston model of financial market, in a 
mathematical framework proposed in [5]. 
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We also compare quantitatively replicating portfolios for the Black-Scho-
les and Heston models, using our approximate computer algorithms based on 
calculation of the Malliavin derivatives of appropriate stochastic processes 
and application of the Monte Carlo simulation techniques. 

2. Financial market models 
Following recent monographs [5] and [7] we briefly recall here necessary 

notions and facts from stochastic finance (all necessary definitions, formal 
assumptions, etc., omitted here can be found there). 

Let W = {W(t) : t € [0, T]} denote a given Brownian motion process 
on ( S 7 , P ) with a filtration {Ft}, where {^i}ie[o,T] is the augmentation by 
the null sets in T™ of the filtration {F}V}te[o,T} generated by W = W(t). 
Let us suppose that all processes considered here are well defined on the 
spaces (0, J7, P) with filtration {^Ft]te{a,T\ > adapted to this filtration and have 
continuous paths, what means that they are progressively measurable. We 
need also another probability space (fi,.F,P). Operations E, Et and E, Et 
denote expectation and expectation conditioned to J~t, on both these spaces, 
respectively. 

We are interested in two special cases of financial market models pre-
sented e.g. in [5] or [7] in a more general framework, i.e. in models consisting 
of a money market (or bond) So = So(t) and one stock Si = Si(t). In this 
one dimensional case we get a stochastic model consisting of a system of 2 
linear Ito SDEs 

t 
(2.1) SQ(t) = S0(0) + \r(s) S0(s) ds, 

o 
t t 

(2.2) S1(t) = S1(0) + \n(s) Si(s) ds + \a(s) Si(s) dW{s), 
o o 

where processes r = r(t), /x = n(t) are L :(i2 x [0,T])-integrable, process 
a = a(t) is L2(fi x [0, T])-integrable, all defined on (ft, T, {^t},P). 

In this paper we intend to compare in some sense two different models 
of a financial market: the commonly used Black-Scholes model and, start-
ing attract attention, more general (nonlinear with respect to stochastic 
volatility), Heston model. 

The Black-Scholes model is defined by a system of 2 linear SDEs with 
constant coefficients 

t 
(2.3) SQ(t) = S0{0)+r\S0{s)ds, 

o 
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t t 
(2 .4 ) S f ( t ) = S f ( 0 ) + 5 f {s) ds + a\ S f (s) dW(s), 

0 0 
for i € [0, T] and given 50(0) > 0, 5i(0) > 0. 

The Heston model (see [2]) is described by a system of 3 SDEs 
t 

So(i) = So(0) + Sr"(5) SQ(s) ds, 
o 

0 0 
t t 

( 2 . 6 ) V(t) = V ( 0 ) + k ¡ ( a - V ( s ) ) ds + 7 J ^JV{s) dW(s), 
0 0 

for t e [0, T], where F(0) > 0, 5^(0) > 0 are given, k, a are positive 
constants, and T, 5o(0) are the same as above in the Black-Scholes model. 
We assume that processes rH — rH(t) and [iH = fiH{t) are adapted to {Ft} 

and are L 1( í í x [0,T])-integrable. 
REMARK 2 .1 . Coefficients of equations ( 2 . 5 ) , ( 2 . 6 ) describing Heston model 
satisfy standard growth and Lipschitz conditions, i.e. assumptions of clas-
sical theorems on existence and uniqueness of solutions of Itó stochastic 
differential equations. Repeating an argument from [3] on Bessel processes, 
one can check that under our assumptions the nonnegative process V = V(t) 
solving (2.6) is well defined. 

REMARK 2.2 . Prom the fact that in the Heston model we have the same 
copy of Brownian motion W = { W ( I ) : t € [ 0 , T ] } in ( 2 . 5 ) and in ( 2 . 6 ) , it 
follows that process {\/Vjt) : t 6 [0, T]} is adapted to {Ft} and the Heston 
model can be considered as a special case of model (2.1)-(2.2). 

One of our main goals is to check what is the difference between repli-
cating portfolios for this 2 models approximating each other in some sense, 
so we propose the following definition. 
DEFINITION 2 .1 . Models defined by stochastic equations ( 2 . 4 ) and ( 2 . 5 ) -
(2.6) are called comparable iff nH(t) = fi and a and V = V(i) are related 
through the equality 

T 
( 2 . 7 ) A 2 = E ^ S F ( S ) D 5 ) . 

Quantitative information on the quality of this criterion is provided by 
Figures 5.1, 5.2 obtained from computer visualizations of solutions to un-
derlying systems of SDEs. 
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In a framework given by the model (2.1)—(2.2), let us introduce a few 
more necessary processes and stochastic equations. Discount process is given 
by 0{t) = l/<So(i). For n € {0,1} let rjn = rjn(t) denote the number of shares 
of bond and stock, respectively, so the value of the investor's holdings at 

df df time t is 7ro(t) + 7Ti(i), where 7ro(i) = rjo(t)So{t), 7Ti(t) = Vi(t)Si(t). The 
process 7r = (7ro,7ri) = {(^o(t), ni(t)) : t G [0, T]} with values in R2 is called 
a portfolio process. We assume that the process 7r = 7r(t) is adapted to 
filtration {^ri}te[o,T] and such that all integrals in (2.8) are well defined and 
finite. 

With these processes we associate two other processes: the gains process 
G = G(t) 

dG(t) = no(t) r(t)S0(t) dt + m(t) [dSiit) + Si(t)6(t) dt), with G(0) = 0, 

and - playing an important role - the wealth process X = XX,C,7T = {Xx,c,n(t) : 
te{o,T)} 

t 
X(t) = X- jc(s) ds + G(t), 

o 
with x > 0 denoting initial value of an investment, c = c(t) describing the 
consumption process and 6 = 6(t) - dividend rate process. 

REMARK 2.3. It can be checked that the wealth process X satisfies on 
the following SDE 

t 
(2.8) X(t) = x + ¡[X(a)r(s)-c(a)]ds 

o 
t t 

+ + - r ( s ) ] da + i7Ti(s)or(s)dW(s)]. 
o o 

Let us define a process called the market price of risk 

o(t)^Mt) + m-r(t)]Mt), 

and next, two other processes 
t 

W{t) = W(t) + j 0(s) ds, 
o 

t t 
Z(t) i Et [exp{- j 6{s) dW(s) - ± j 92(s) ds}]. 

0 0 
Assuming that the process Z = Z(t) is a martingale on (Q, j*7, {J^}, P), 
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finally we introduce a probability measure on CI, given by 

P(A) = J Z(T) dP, for A e TT-
A 

R E M A R K 2 .4 . From Girsanov theorem's now follows that W = W(t) is a 
Brownian motion process on (fi, T , {.T^},]?). 

So, applying Ito formula and taking into account the discounting process 
¡3 = P(t), for the wealth process X = {X(i)} we derive the following new 
S D E « 

P(t)X(t) = x - \ /3{u) c(u) du + \ /3(u) TTI(U)<T(U) dW(u), 

on (i), T , {^t}te[o,T],P)-
Finally we introduce the state price density process 

t t 
H(t) = 0(t) exp { - j 0(s) dW(s) - \ j e2{s) ds}, 

0 0 
getting, after an application of the Ito formula, another SDE for the wealth 
process X 

t 
(2.9) H(t) X(t) = x - J H{u) c(u) du 

o 
t 

+ \H{u) [a(«)7ri(u)a(u) - X(u)0(u)] dW{u), 
o 

but this time on (SI,?, {Ft} > P) > which is more practically useful. 

3. Malliavin calculus in construction of replicating portfolios 
First we recall (see Theorem 3.5 in [5]) a theorem on the existence of 

replicating portfolio. 
T H E O R E M 3 . 1 . Let B denote a nonnegative, FT-measurable random vari-
able. If c = c(t) is a consumption process and initial wealth x satisfies the 
condition: 

T 
x = e[ \ H(u)c(u)du + H(T) s ] , 

o 
then there exists a portfolio % = (7ro,7ri) such that corresponding wealth 
process Xx'°'w = Xx'°'n(t) satisfies following conditions 

XXA*(0) = x, 
Xx'°<*(T) = B, 
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Xx'°'n(t) > 0, a.s. 
Xx'c'"(t) = ir0(t) + Tri(t), 

and can be described for all t € [0, T] by the following equality 
T 

H{t)Xx'c'n(t) = Et [ j H(u)c(u)du + H{T)XX'C'*(T)}. 
t 

We can say more. 

REMARK 3.1. There exists a stochastic process ip = ip(t) such that 

(3-1) a(t)Mt) = ^ r + X(t)0(t). 

This process can be derived from the relation 
T t 

Et [ \ H(u)c(u)du + H{T)XX^{T)\ = x + J ip{u)dW(u). 
0 0 

Our aim is to construct optimal replicating portfolios for both mod-
els presented in Section 2 by (2.4) and (2.5)-(2.6), and to compare them 
quantitatively with the use of approximate computer methods based on cal-
culation of the Malliavin derivatives of appropriate stochastic processes and 
application of the Monte Carlo simulation techniques. 

Our main tool is the Clark-Ocone-Haussmann formula. To present it 
briefly let us assume that for a given random variable F we look for a 
stochastic process ip = ip(t) on t 6 [0,T] such that 

T 
(3.2) F = E[F] + j ^(i) dW(t). 

o 
The answer gives the following theorem 
THEOREM 3.2. Let F denote a random variable belonging to the space D1 , 1 . 
Then 

T 
(3.3) F = E[F] + jE t[peF]dW ,(i)> 

o 
t 

(3.4) Et[F] = E[F] + jEs[D3F]dW(s), 
o 

where D1 '1 denotes a Sobolev type Banach space of random variables L 1 -
integrable with their first Malliavin derivatives Ot [F], (see [8] and [l]j. 

From equality (3.3) it follows directly, that for the process ip = 4>(t) from 
(3.2) we have ip(t) = Et[BtF], what means that the process ip = ip(t) is just 
a Malliavin derivative of the random variable F . 
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Now we axe in a position to propose two constructive theorems describing 
replicating portfolio. Thanks to linearity of SDE (2.9) describing wealth 
process and linear dependence of this process on a consumption process c, 
we consider separately 2 problems: first - with c = c(t) = 0, and second -
with B = 0 a.s. 

THEOREM 3.3. Let us suppose that all assumptions of Theorem 3.1 are sat-
isfied. If c = c(t) = 0, then from the condition H(T) B 6 D1,1 it follows, 
that the portfolio replicating B has the form 

(3.5) 7T1 (t) = ~ 1 . .ET [H(T)1hB] 
H(t) a(t) 1 J 

" BM m * [ * ( T ) B ( J + ^ M « ) « ^ («))] • tl\t)c[t) t t 

If additionally r = r(t) and 0 = 6(t) are deterministic functions, then port-
folio 7ri takes the form 

(3.6) 7T1 (t) = exp( - \ r(s)ds) <r(i)-1 EtfDfcB] 
t 
T T 

= exp ( - J(r(«) + - J 0(«)<W(«)) a(t)~l E^B]. 

Proof. Let F = H(T) B. If F e D1'1, then thanks to Clark-Ocone-Hauss-
mann formula i>(t) = E[Dt.F]. Replacing process ip in (3.1) by E[DtF], we 
get 

(3.7) *l{t) = W j + EdiW) 
H(t)cr(t) 

After further calculations we get 

(3-8) Tn (t) = ^ ^ {Ee [H(T) D^b] + Et [Bfh H(T)] 

+6{t)Et[H(T)B]}, 

and since BtH(s) = -H{s)(0(t) + \stBtr(u)du + J®D*0(u)dW(u)) J[0>,](t), 
then the formula (3.8) transforms into (3.5). • 

THEOREM 3.4. Let us suppose that all assumptions of Theorem 3.1 are sat-
isfied. 7 / 5 = 0 a.s, then for $Q H(S) c{s) ds € D1 , 1 , the replicating portfolio 
takes the form 
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1 T 

H{t) a(t) j -I 

1 T s s ~ 
- ~ E t [ J H(s)c(s) ( J P ( r ( u ) d u + \ 3 t 6(u) dW(u)) d s l . 

H(t) a(t) t t t 

P r o o f . Since B = 0, so we get 

1 T 

X(t) = j ^ E [ \ H { s ) c ( s ) d s \ . 

If F = \ l 
H(s) c(s) ds belongs to D1 , 1 , then ip(t) = E[DtF] and as a conse-

quence we get 
Et M + Et [ f H(s) c{s) ds1 6(t) 

*i(t) = H(t)a(t) 

where 
T 

D t F = \ (c(s) Ufc H(s) + H{s) Df c{s))ds, 

t 

what ends the proof. • 

REMARK 3 .2 . The method of construction of replicating portfolio obtained 
here by (3.8) is much better suited for numerous applications then that 
presented in [9]. It was successfully applied to computer construction of 
portfolios of different kinds and can be applied in some other even more 
general situations, e.g. for construction of optimal strategies solving various 
optimal consumption and investment problems. 

4. Replication of European call option 
Malliavin calculus makes it possible to replicate practically any derivative 

instrument on a given financial market. Let us recall that European call 

option for a stock price S(t) given by SDE (2.2) for t € [0, T], is described 
by the random variable 

(4.1) B = max{S(T) - K, 0}, 

were K > 0 is a given constant called a striking price. 

Our aim is to construct with the use of Theorems 3.3 and 3.4 a replicating 
portfolio for a random variable B given by (4.1) for 2 models: Black-Scholes 
model, and Heston model introduced in Section 2. Notice, that it is clear 
that in order to describe any portfolio ir{t) = (7ro(i),7ri(i)) on a market 
with 1 stock with a price S(t), it is enough to compute r/i(t) such that 
n (t) = m(t)S(t). 
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THEOREM 4.1. Let Sf = S f ( t ) and Sf = S?(t) be given by (2.4) and 
(2.5)-(2.6) , respectively. Let B be defined by (4.1) in both these cases. Then, 
we get 

(4.2) v f (t) = misfit)) = ® ^ y E , [aSf(T) I[Kfio)(S? (T) ) ] 

- E t 
0(T)S?(T) j B 1 

for Black-Scholes model, and 

(4.3) V f ( t ) = Vl(SH(t),V(t)) = a(t) + b(t) - c(t), 

for Heston model, where 

a(t) = Et 

m = 

f3(T )Sf(T)j H 1 

1 ~ 
Et 

0(T)S?(T) 

v w r L p m 
T -, 

+ 

c(t) = 
v m 

Et 
¡5{T) max{ S f ( T ) — K,0} 

ms?(t) 
( - \ 0 ( s ) D t 0 ( s ) ds 

1 
+ \lhO(s)dW{s)) 

P r o o f . With the use of known rules (see [8] or [1]) allowing for calculation 
of Malliavin derivatives of random variables, processes defined by stochastic 
integrals or solving Ito SDEs, we get step by step the following results: 

first, the Malliavin derivative of B given by (4.1): 

(4.4) BtB = BtS(T)I(Kt0o)(S(T)); 

second, the Malliavin derivative of Sf solving SDE (2.4): 

(4.5) BtS?(u) = Sf ( u ) S f ( i ) - V S f (*)/[„,«](*) = a S f ( « ) / [ M ( i ) ; 

third, the Malliavin derivative of the solution S(t) of (2.2): 
u u u 

(4.6) ntS(u) = S(u)I[0>u](t) (J I>tn(s)ds - j a(s)Dfcff(s)da + \ Ofcff(«)<iW(s)); 

fourth, Malliavin derivative for V(t) in Heston model 
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(4.7) DtV(s) = 

0 y / m e x p ( - K (8 - t) - £ j ^ du + I I ~ ^ d W { u ) ) I[0,a] (t) . 

Now, from (3.6), thanks to (4.4) and (4.5), we get directly (4.2). 
Similarly, taking (4.4), substituting (4.7) for Bt<j(s) and E>t/x(s) = 0 in 

(4.6) and putting this into (3.5), we get finally (4.3). • 

5. Computer experiment 
Using well developed numerical and statistical methods of approximation 

of SDEs of different kinds and computer construction and visualization of 
their solutions (see [4], [6]), and extending them for approximate construc-
tion of Malliavin derivatives of underlying random variables and processes, it 
is possible - with the use of Theorem 4.1 - to compute replicating portfolios 
(4.2) and (4.3) for stochastic Black-Scholes and Heston models of financial 
market, introduced in Section 2. On Figures 5.1, 5.2 we see two very similar 
- connected through relation (2.7) - visualizations of processes describing 
these models, but on Figures 5.3, 5.4 portfolios replicating random variable 
B defined by (4.1) for two different values 1.0, 1.2 of striking price K and 
interpreted as an European call option are seemingly quite different for these 
two models (there, N1 stands for ryf (i), N2 - for ry^(i), with assumption 
that 7r0(t) + 7Ti(i) = Vo{t)So(t) + m(t)Si(t), with r}0(t) = 1 - 771(f) for both 
models). 

Let us recall that p-quantile line qjf = q* (t) for given stochastic process 
X = X(t) and fixed p € (0,1) is a function defined by the formula 

n X ( t ) < q j f ( t ) } = p , for t G [0, T]. 

Let us also remark, that „closeness" of processes 5 f = Sf (t) and S^ = 
S f (i) related by (2.7) can also be understood as closeness of their densities, 
quantile lines and other numeric quantities such as e.g. values of underly-
ing cylindrical (Wiener) measures. In our computer experiment differences 
between values of all numerical quantities obtained for both models were 
on a same level as errors induced by approximate methods applied to the 
construction of these processes. 

REMARK 5.1. To the best of our knowledge, the results of computer ex-
periments presented here axe the first of this kind in accessible literature. 
The main, apparently important for applications conclusion, one can derive 
from obtained results, is that for two different stochastic models of financial 
market, one with constant and second with stochastically varying volatility, 
which have very similar statistical properties, corresponding strategies repli-
cating a given derivative instrument can be visibly (surprisingly) different. 
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Figure 5.1. Solution of SDE (2.4) modelling Black-Scholes stock price evolution, repre-
sented by 10 exemplary trajectories and 9 p-quantile lines for p g {0.1,0.2,. . . , 0.9}. 

Figure 5.2. Solution of SDE (2.5)-(2.6) modelling Heston stock price evolution, represented 
by 10 exemplary trajectories and 9 quantile lines for p £ {0.1,0.2,. . . , 0.9}. 
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Figure 5.3. Comparison of replicating strategies for Black-Scholes and Heston European 
call option price models (K — 1.0). 

K = 1.2 

Figure 5.4. Comparison of replicating strategies for Black-Scholes and Heston European 
call option price models (K = 1.2). 
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