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Abstract. We consider the problem of constructing prediction intervals for future
observations of stationary time series. Our approach relies on the sieve bootstrap procedure
introduced by Bihlmann (1997, 1998) which is asymptotically valid for the rich class of
linear stationary processes which can be inverted and represented as an autoregressive
processes of order infinity (AR(0c0)). We extend the results obtained earlier by Stine
(1987) for autoregressive time series of known order. A more traditional Gaussian strategy
is also presented. We verify accuracy of the proposed methods via numerical comparison
including both Gaussian and non-Gaussian data.

1. Introduction

Forecasting of the future values is one of the most popular application of
time series modeling. Typically, in such situation we consider construction
of ”the best” (in some sense) predictors. In order to verify the accuracy of
the forecast we need to define the error of prediction, which can be treated
as a measure of uncertainty of the forecast. A close related problem is the
construction of prediction intervals for future observations. For this purpose,
for Gaussian data we may use well-known strategy. On the other hand, we
cannot expect the Gaussian prediction intervals to perform very well for
non-Gaussian series. In this context, more general bootstrap-based method
may be proposed.

During the last years Efron’s bootstrap has become a powerful tool for es-
timating certain statistical characteristics. Unfortunately, in the time series
context there is not such a unique resampling procedure as for the inde-
pendent set-up. Roughly speaking, two different approaches have been pro-
posed, i.e. "model-based” and "model-free” approach, according to whether
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or not the dependence mechanism in the time series is known. A review of
resampling techniques for stationary time series is presented for instance by
Carlstein (1992).

A vast literature contributes to the special case where the observed time
series is an autoregressive process of known order p (AR(p)). In particular
Stine (1987) applied bootstrap algorithm for such models in order to obtain
prediction intervals.

Recently Biihlmann (1997, 1998) has proposed a new resampling method
called sieve bootstrap which is a purely nonparametric scheme, i.e. has the
advantage that no particular finite parametric model for data is assumed.
This approach is based on Grenander’s (1981) method of sieves whose main
idea is the approximation of an infinite-dimensional, nonparametric model
by a sequence of finite-dimensional parametric models. Moreover Bithlmann
(1997) showed that for many linear processes the stationary sieve boot-
strap for AR(co) models has generally a better performance than other
nonpararmetric resampling technique called blockwise bootstrap introduced
by Kiinsch (1989).

In this article the problem of obtaining prediction intervals for station-
ary time series is addressed via Bilthlmann sieve bootstrap scheme. Two
bootstrap-based methods are proposed, i.e. hybrid bootstrap and bootstrap-
t. These approaches can be applicable for wide class of stationary processes
and thus are generalization of Stine’s results. The efficiency of prediction
intervals is verified via computer simulations made both for Gaussian and
non-Gaussian data and including comparison with optimal Gaussian strat-
egy of constructing prediction intervals.

The article is organized as follows. In section 2 we briefly present Biihl-
man’s sieve bootstrap scheme. In section 3 we describe construction of the
best h-step linear predictor for future value of time series and focus on useful,
from practical point of view, recursive computational algorithm. Construc-
tions of prediction intervals, including traditional Gaussian approach and
new, based on the sieve bootstrap method are given in section 4. Section 5
is devoted to numerical study.

2. The sieve bootstrap procedure

Consider {X;}icz — real valued, a zero mean stationary process. The
sieve bootstrap procedure is valid for the rich subclass of linear stationary
processes X; = Z‘;’;O pje¢—; which can be inverted and represented as an
autoregressive process of order infinity (AR(oc0)). Therefore, we have the
following representation

(1) Y ¢iXej=¢e, do=1,

J=0
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where {€:}1ez is a sequence of uncorrelated random variables with expec-
tation Ele] = 0 and 332, ¢j2 < 0. The representation (1) for purely
stochastic processes is guaranteed by additional assumptions of invertibility
(Anderson, 1971, Theorem 7.6.9).

Assume now that we have observations Xi,..., X, being realizations
of the process {X;}icz. First and fundamental step in the sieve bootstrap
method is fitting an autoregressive process of order p = p(n) increasing
"sufficiently slow” as the sample n increases, i.e. p(n) — oo (n — 00) and
p(n) = o(n). Various techniques have been proposed in literature for select-
ing an appropriate AR model. We follow Biihlmann’s suggestion and choose
the approximating order p = p(n) using Akaike information criterion (AIC)
in an increasing range (1, Cy] with C,, growing as n increasing. In practice
Crn = 10log;p(n) for the increasing range is used.

We estimate autoregressive coefficients ¢1,.. ., ¢p») basing on observa-
tions {X;}?_;. The estimates ¢, = (¢1,..., qu(n))’ can be computed by the
familiar Yule-Walker method (Brockwell and Davies, 1987, p. 232-233).

f‘p‘i’p = —%p,
where T, = [§(i — j)[f ;=1 and % = (9(1),%(2),...,%(p))’, and 4 is the
estimate of autocovariance function defined as
1 n—'ljl
() = - > XenXiyijino il <n—1
t=1

From computational point of view it is more convenient to calculate the
Yule-Walker coefficients using the recursive Durbin-Levinson algorithm:

- 4(1 . . “
é11 =%, D1 = 4(0)[1 — ¢14],
m—1
bmm = (¥(m) — Z qgm—l,j A{m — j))/f’m—l,
i=1
‘im,l; qgm—l,l ‘f;m—l,m—l
: = e ‘ismm ’
Q‘Sm,m—l égm-l,m~1 ‘]Sm—l,l

l7m = ﬁm_l(l - ¢$nm)
Using above recursions bypasses the matrix inversion required in the direct
computation of ¢,. Next we compute residuals

p(n)

ét,‘n=2$j,nXt—j; $0,n=1) t=P+1,,n
j=0
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Then we construct the resampling. For this purpose let us center residuals

1 LA
Z Etny t=p+1,...,n,
n—pt=p+1

Etn = Etn —

and next we draw residuals €; from the empirical cumulative distribution
function of {€:n}{=py1, e & Lid. ~ Fgyn, where

. 1 n
Fepn(u) = _n_—_é Z Ligyn<u-
t=p+1

Finally the bootstrap replicate {X;} is defined by the recursion

p(n) .
(2) Z ¢j,n Xt*—j = ét*’ ¢0,n =1

j=0
In practice we generate the bootstrap process {X;} starting the recursion
with some starting values, e.g. equal to some resampled innovations ;.

The obtained bootstrap replicate can be used for various purposes. Par-
ticularly, if we have any statistics T,, = T,(X1,...,X,) being a measurable
function of n observations, we can define the bootstrapped statistics T by
the plug-in principle: T} = T,,(X{,...,X}). Bithlmann (1997) has proved
consistency of the sieve bootstrap method for various kinds of statistics T,
including arithmetic mean and some class of nonlinear estimators.

It is worth noting that sieve bootstrap scheme can be also extended to
non-stationary time series of the form Y; = s(t)+ Z;, t € Z, where s(t) is a
deterministic trend and Z; is a stationary AR(oo) noise process with mean
zero (Bithlmann (1998)).

3. The best linear predictor

It is known (Brockwell and Davies, 1987, p. 159-162) that for a zero
mean stationary process, the best linear combination of 1, X,,..., X, for
predicting X, 15, (h > 1) is the projection of X, 1, onto the closed linear
subspace 3p{X1,...,Xn}. "The best” denotes here element with minimum
mean-square distance from X,,, . Thus, we can denote the h-step predictor
as

PoXnin = Psx,,..Xn} Xnth

The above predictor can be found from appropriate prediction equations.
However in order to save the time of computation we use rather one of the
recursive methods. The best linear h-step predictor P, X, 5 can easily be
found using the innovations algorithm (Brockwell and Davies, 1987, p.167-
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168), i.e.
n+h—1 )

(3) PoXpin =Y Onsn1;(Xnsn—j — Xnin—j),
j=h

where the one-step predictors X,,41 are given by

P {o ,m=10
+1= 5
" E;n=1 Hmj(Xm+1—-j - m+1—j) ym=>1

and coefficients 0,,; are computed from recursive equations

vo = ¥(0),
Omm—k = V5 (v(m = k) = 523 0k k—i0mm—jv;), k=0,1,...,m -1,
vm = 7(0) = 22725 O 505
Moreover the prediction mean squared error (PMSE), which measures the
uncertainty of the corresponding forecast can be expressed as
n+h-~1

(4) ‘7121(’1) 1= E(Xn4n — Pan+h)2 = 7(0) — Z 072L+h—1,j Un+h—1-j-
j=h

4. Prediction intervals

We consider now problem of constructing prediction intervals for future
value X, 5 which is closely related to finding the best linear predictor and
corresponding PMSE.

A prediction interval is a random interval based on past observations
X = (X1,X,,...,X,) and constructed for future value X,,,p, h > 1. More
precisely, we define (1 — 2a)-prediction intervals for X, 5 as

I(h, X) = [L(X), R(X)],
so that P(L(X) < Xp4n < R(X)) =1 - 200,

For a stationary Gaussian process the construction of prediction inter-
vals can simply be done using the fact (Brockwell and Davies, 1987, p.175)
that the prediction error Ap(h) := Xp1p — PrnXn+n is normally distributed
with mean zero and variance 2(h). Assuming that the true autocovariance
function of the model () is known we can calculate the best linear h-step
predictor P, X, and corresponding PMSE o2 (h) from the innovations al-
gorithm presented above and then (1 — 2¢)-Gaussian prediction interval is

given by
(5) IG(h) = [P’IIX'IH-h i U’n(h)a Pan+h + @14 Un(h)]y

where ®;_,, denotes the (1 —a)-quantile of the standard normal distribution.
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For non-Gaussian time series we can obtain prediction intervals approx-
imating unknown distribution of the prediction error A, (h) with the aid of
bootstrap method. This approach, for autoregressive time series of known
order p (AR(p)) has been proposed by Stine (1987). We extend this pro-
cedure to the case of AR(00) processes using Biihlman’s sieve bootstrap
scheme.

In the case of construction of bootstrap prediction intervals to determine
predictors and prediction mean squared errors we will use the innovations
algorithm for the autocovariance function of the approximating AR(p(n))
model. Such estimates of optimal predictors and prediction errors will be
denoted respectively as PpX, ., and 62(h). In practice we may calculate
the autocovariance of the AR model with the aid of algorithm for causal
ARM A(p, q) processes (Brockwell and Davies, 1987, p.91-97) which will be
given in details in section 5. It is worth noting that autocovariance of the

fitted model at lags 0,1,....,p(n) coincide with the corresponding sample
autocovariances.

The main idea of using bootstrap in the context of forecasting is to
generate the replicate X7,..., X, of the observed series Xi,...,X, and

next extend this replicate into the future time n + h. In the sieve bootstrap
method we can easily generate the extended replicate by recursion (2). Then,
we can approximate unknown distribution of the prediction error An(h) =
Xo+n — ann+h by the corresponding bootstrap distribution of A} (k) :=
Xoih— P,:X; +h» Where Py X", denotes the best linear predictor for X,
calculated from X7,...,X. This strategy is known as hybrid bootstrap
(Shao and Tu, 1995). Denoting ¢}, and ¢j_, as respectively, a and 1 —
a quantile of distribution A},(h) we obtain (1 — 2a)-bootstrap prediction

interval
(6) IB(h) = [Pan+h + q;l, P Xpnin+ QI_a]-

In practice we estimate ¢}, and ¢j_, as empirical quantiles, basing on B-
bootstrap replicates, where B is sufficiently large.

Another algorithm for obtaining bootstrap prediction intervals, which we
may use is so-called bootstrap-t. For the independent set-up the method was
originally suggested by Efron but has become more popular and attractive
since Hall (1988) showed its good second-order properties. The idea of the
bootstrap-t is in brief to estimate the percentiles of the studentized statistics
T, by bootstraping. The unknown distribution of a studentized statistics

Xn+h — Isnxn-i-h
n(h)

is therefore estimated by the bootstrap distribution of

Tn(h) =
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* D* Y *
n+h Pan+h

Ta(h) =

&7 (h)
Finally, bootstrap-t prediction interval is given by
() Isot (h) = [PaXnsn + £ 6n(h), PaXnsn + t_o 6u(h)],

where t}, and t]_, are corresponding quantiles of T (h) which we may esti-
mate as before using sufficiently large number of bootstrap replications.

Described above construction of hybrid and bootstrap-t prediction inter-
vals (given by (6) and (7)) requires theoretical justification. In other words,
we have to prove the consistency of the proposed intervals, i.e. P(Xp4p €
I(h)) — 1 — 2. Such result was given by Stine (1987) in the case of boot-
strap prediction intervals for AR(p) models. In this article we verify accuracy
of the bootstrap intervals via computer experiments described in section 5.
Theoretical considerations concerned with consistency will be given in the
another paper.

5. Simulations
5.1. Introduction

We investigate our procedures of construction prediction intervals on
some simulated examples. For this purpose the following models are consid-
ered:

(M1) ARMA(1,1), X;=0.8X;_1—0.6e;_1 + &4, where ¢ i.i.d. ~ N(0,1).

(M2) AR(48), Xi= Y216 Xij+e, ¢ = (-1V175/(j+1)° (=
1,...,48), where g; i.i.d. ~ (logN(0,1) — y/€)/\/e(e = 1).

(M3) Ornstein-Uhlenbeck process, i.e. X; is a stationary Gaussian and Mar-

kovian process with expectation 0 and covariance function K(h) =
ae P where o = 1, 8 = 0.01.

The data sets of sample n = 100 are generated according to M1-M3.
Ornstein-Uhlenbeck process is simulated using the formula: X; =
Vae PtW(e?), where W is the standard Wiener process.

We choose the order p(n) of the approximating autoregressive process
by minimizing the AIC (Akaike Information Criteria) in a range 1 < p <
10log,g(n). The results of the data-driven choices of parc based on 100
realizations of the model are given in table.

E@arc)  SD(parc)  Min(parc)  Maz(parc)
M1 2.35 2.16 1 15
M2 2.79 258 1 17
M3 2.02 2.77 1 20
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Prediction intervals are constructed using Gaussian (Ig), hybrid boot-
strap (/p) and sieve bootstrap-t (Ip_;) approaches. The optimal Gaussian
prediction intervals are computed assuming that the true autocovariance
function of the model is known. For bootstrap intervals to determine predic-
tors and prediction mean squared errors we use the autocovariance function
of the approximating AR(p(n)) model. Because in practical application the
true autocovariance function is unknown in the case of Ornstein-Uhlenbeck
process (model M3) we construct also Gaussian prediction intervals based
on autocovariance of the fitted autoregressive process. In practice the values
of the autocovariance function (-) for ARM A processes can be found from
the following algorithm (Brockwell and Davies, 1987, p.91-97) . If we assume
that X is the causal ARM A(p,q) process denoted as ¢(B) X; = 6(B) Z;,
where ¢(2) = 1 — 1z — -+ — ¢p2P, 0(z) = 1+ b1z + -+ + 6329, B is the
backward shift operator (B X; = X;_1) and {Z;} is white noise with zero
mean and variance o2. Then, to determine autocovariance function of X;
the following equations are used:

(k) = p1y(k —1) = - — ¢py(k — p) = 0% Thcjcg O5%i—ks
0 < k < max(p,q+1)
(k) — pryv(k — 1) — -+ — ¢py(k — p) =0, k > max(p,g + 1)

where 1); satisfy

Py — Z Prj—k =05, 0 < j < max(p,q+ 1)
0<k<g
1/)_1' - Z ¢k¢j—k = Ov .7 > ma.x(p,q + 1)
0<k<p
where 6y = 1,0; = 0 for j > q and ¢; = 0 for j > p. In practice, first we
find 4(0),...,7(p) from the equations with k = 0,1,...,p and then use the
subsequent equations to compute y(p + 1),v(p + 2), . . . recursively.

5.2. Results

Figures 1-6 show prediction intervals for all considered models con-
structed for nominal coverage equal 95%.

The accuracy of presented prediction intervals is studied in terms of em-
pirical coverage. More precisely, we repeat the procedure of construction
intervals and check coverage frequencies for each h = 1,...,10. For boot-
strap intervals we use B=200 replicates. In our study the nominal coverage
equals 80% and 95%. Tables 1-3. contain coverage percentages with esit-
mated standard errors in parentheses (in percentages) which were obtained
by simulating 100 different realizations of models M'1— M3. For all methods
the average lengths of intervals are also included.
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Figure 1. Gaussian prediction intervals for M1: true future values (solid line with squares},
predictors (dotted line with squares), Gaussian intervals (dotted line).

Figure 2. Bootstrap prediction intervals for M1: true future values (solid line with squares),
predictors (dotted line with squares), hybrid sieve bootstrap interval (dashdot line), sieve
bootstrap-t (dotted line).
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Figure 3. Gaussian prediction intervals for M2: true future values (solid line with squares),
predictors (dotted line with squares), Gaussian intervals (dotted line).

Figure 4. Bootstrap prediction intervals for M2: true future values (solid line with squares),
predictors (dotted line with squares), hybrid sieve bootstrap interval (dashdot line), sieve
bootstrap-t (dotted line).
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Figure 5. Gaussian prediction intervals for M3: true future values (solid line with squares),

predictors (dotted line with squares), Gaussian intervals (dotted line).

o4 e \

Figure 6. Bootstrap prediction intervals for Ornstein-Uhlenbeck process: true future values
(solid line with squares), predictors (dotted line with squares), hybrid sieve bootstrap
interval (dashdot line), sieve bootstrap-t (dotted line).
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Gaussian hybrid bootstrap-t
h | coverage E(length) | coverage E(length) | coverage E(length)
1 | 93%(2.55) 3.92 90%(3.00) 3.83 94%(2.37) 3.94
2 | 96%(1.96) 4.00 95%(2.18) 3.93 95%(2.18) 4.04
3 | 93%(2.55) 4.05 92%(2.71) 3.97 92%(2.71) 4.10
4 | 94%(2.37) 4.08 92%(2.71) 3.96 92%(2.71) 4.07
5 | 92%(2.71) 4.10 89%(3.13) 3.99 91%(2.86) 4.13
6 | 95%(2.18) 411 94%(2.37) 4.00 94%(2.37) 4.11
7 | 97%(1.71) 4.12 93%(2.55) 4.06 94%(2.37) 421
8 | 96%(1.96) 4.12 93%(2.55) 3.99 94%(2.37) 411
9 | 96%(1.96) 4.13 92%(2.71) 4.00 92%(2.71) 411
10 | 98%(1.40) 4.13 95%(2.18) 4.04 96%(1.96) 4.15
Table 1. Empirical coverage for M1. Nominal coverage = 95%
Gaussian hybrid bootstrap-t
h | coverage E(length) | coverage E(length) | coverage E(length)
1 | 93%(2.55) 2.56 74%(4.39) 1.71 80%(4.00) 1.82
2 | 91%(2.86) 3.51 T7%(4.21) 2.55 78%(4.14) 2.78
3 | 91%(2.86) 3.84 74%(4.39) 2.87 78%(4.14) 3.12
4 | 90%(3.00) 3.98 76%(4.27) 2.99 80%(4.00) 3.28
5 | 92%(2.71) 4.05 76%(4.27) 3.01 82%(3.84) 3.31
6 | 87%(3.36) 4.08 72%(4.49) 3.02 75%(4.33) 3.33
7 | 90%(3.00) 4.09 73%(4.44) 3.03 79%(4.07) 3.35
8 | 92%(2.711) 4.10 T7%(4.21) 3.04 83%(3.76) 3.35
9 | 89%(3.13) 4.10 T7%(4.21) 3.05 78%(4.14) 3.38
10 | 91%(2.86) 4.10 76%(4.27) 3.06 82%(3.84) 3.40
Table 2. Empirical coverage for M2. Nominal coverage = 80 %

Optimal Gaussian Gaussian hybrid bootstrap-t
h]coverage E(length)|coverage E(length)|coverage E(length)|coverage E(length)
1/96%(1.96)  0.55 |93%(2.55) 0.59 |87%(3.36) 0.50 |90%(3.00) 0.59
2194%(2.37) 078 [86%(3.47)  0.82 |86%(3.47) 0.71 |90%(3.00)  0.85
3(93%(2.55) 0.95 |[88%(3.25)  0.98 |86%(3.47) 0.85 [91%(2.86)  1.06
4]94%(2.37) 109 |88%(3.25)  1.10 |79%(4.07) 096 |90%(3.00)  1.23
5195%(2.18) 121 |86%(3.47)  1.19 |84%(3.67) 1.04 |91%(2.86)  1.38
6]96%(1.96) 1.32 |87%(3.36)  1.27 |84%(3.67) 1.10 |91%(2.86)  1.51
7198%(1.40) 142 |88%(3.25)  1.34 |84%(3.67) 1.7 |93%(2.55)  1.63
8|96%(1.96) 151 |89%(3.13)  1.40 |85%(3.57)  1.23 |93%(2.55) 175
9|96%(1.96) 159 |89%(3.13) 145 {85%(3.57)  1.27 |92%(2.71)  1.85
10]97%(1.71)  1.67 |[87%(3.36)  1.49 |82%(3.84) 131 |91%(2.86) 1.93

Table 3. Empirical coverage for M3. Nominal coverage = 95 %




Prediction intervals for stationary time series 481

5.3. Summary

We observe that for Gaussian series both bootstrap-t and optimal Gaus-
sian prediction intervals perform similarly and outperfom hybrid bootstrap
method. On the other hand for non-Gaussian data Gaussian intervals have
tendency to exceed the nominal coverage what we can see especially for
nominal coverage equals 80 %. In these cases the average length of Gaus-
sian interval is greater than corresponding bootstrap intervals. Moreover for
non-Gaussian models hybrid bootstrap also seems to be less effective than
bootstrap-t method.

For Ornstein-Uhlenbeck process (model M3) the optimal Gaussian pre-
diction intervals are the most effective. Moreover, we can see that for both
nominal coverage levels (80% and 95%) bootstrap-t intervals perform bet-
ter than both hybrid bootstrap and Gaussian intervals based on estimated
autocovariance.
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