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Abstract. We consider the problem of constructing prediction intervals for future 
observations of stationary time series. Our approach relies on the sieve bootstrap procedure 
introduced by Biihlmann (1997, 1998) which is asymptotically valid for the rich class of 
linear stationary processes which can be inverted and represented as an autoregressive 
processes of order infinity (yl-R(oo)). We extend the results obtained earlier by Stine 
(1987) for autoregressive time series of known order. A more traditional Gaussian strategy 
is also presented. We verify accuracy of the proposed methods via numerical comparison 
including both Gaussian and non-Gaussian data. 

1. Introduction 
Forecasting of the future values is one of the most popular application of 

time series modeling. Typically, in such situation we consider construction 
of "the best" (in some sense) predictors. In order to verify the accuracy of 
the forecast we need to define the error of prediction, which can be treated 
as a measure of uncertainty of the forecast. A close related problem is the 
construction of prediction intervals for future observations. For this purpose, 
for Gaussian data we may use well-known strategy. On the other hand, we 
cannot expect the Gaussian prediction intervals to perform very well for 
non-Gaussian series. In this context, more general bootstrap-based method 
may be proposed. 

During the last years Efron's bootstrap has become a powerful tool for es-
timating certain statistical characteristics. Unfortunately, in the time series 
context there is not such a unique resampling procedure as for the inde-
pendent set-up. Roughly speaking, two different approaches have been pro-
posed, i.e. "model-based" and "model-free" approach, according to whether 
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or not the dependence mechanism in the time series is known. A review of 
resampling techniques for stationary time series is presented for instance by 
Carlstein (1992). 

A vast literature contributes to the special case where the observed time 
series is an autoregressive process of known order p (AR(p)). In particular 
Stine (1987) applied bootstrap algorithm for such models in order to obtain 
prediction intervals. 

Recently Biihlmann (1997, 1998) has proposed a new resampling method 
called sieve bootstrap which is a purely nonparametric scheme, i.e. has the 
advantage that no particular finite parametric model for data is assumed. 
This approach is based on Grenander's (1981) method of sieves whose main 
idea is the approximation of an infinite-dimensional, nonparametric model 
by a sequence of finite-dimensional parametric models. Moreover Biihlmann 
(1997) showed that for many linear processes the stationary sieve boot-
strap for AR(oo) models has generally a better performance than other 
nonpararmetric resampling technique' called blockwise bootstrap introduced 
by Kunsch (1989). 

In this article the problem of obtaining prediction intervals for station-
ary time series is addressed via Biihlmann sieve bootstrap scheme. Two 
bootstrap-based methods are proposed, i.e. hybrid bootstrap and bootstrap-
t. These approaches can be applicable for wide class of stationary processes 
and thus are generalization of Stine's results. The efficiency of prediction 
intervals is verified via computer simulations made both for Gaussian and 
non-Gaussian data and including comparison with optimal Gaussian strat-
egy of constructing prediction intervals. 

The article is organized as follows. In section 2 we briefly present Biihl-
man's sieve bootstrap scheme. In section 3 we describe construction of the 
best h-step linear predictor for future value of time series and focus on useful, 
from practical point of view, recursive computational algorithm. Construc-
tions of prediction intervals, including traditional Gaussian approach and 
new, based on the sieve bootstrap method are given in section 4. Section 5 
is devoted to numerical study. 

2. The sieve bootstrap procedure 
Consider {Xt}tez - real valued, a zero mean stationary process. The 

sieve bootstrap procedure is valid for the rich subclass of linear stationary 
processes Xt = YHjLo 'll)j£t-j which can be inverted and represented as an 
autoregressive process of order infinity (AR(oo)). Therefore, we have the 
following representation 

oo 
(1 ) Xt-3 - £t > <t>0 = 1, 

3=0 
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where {£t}tez is a sequence of uncorrelated random variables with expec-
tation E[st] — 0 and Y f f L u 0j2 < The representation (1) for purely 
stochastic processes is guaranteed by additional assumptions of invertibility 
(Anderson, 1971, Theorem 7.6.9). 

Assume now that we have observations X i , . . . , X n being realizations 
of the process { X t } t e z - First and fundamental step in the sieve bootstrap 
method is fitting an autoregressive process of order p — p(n) increasing 
"sufficiently slow" as the sample n increases, i.e. p(n) —> oo (n —> oo) and 
p(n) — o(n). Various techniques have been proposed in literature for select-
ing an appropriate AR model. We follow Biihlmann's suggestion and choose 
the approximating order p = p(n) using Akaike information criterion (AIC) 
in an increasing range [1 ,Cn] with Cn growing as n increasing. In practice 
Cn = 101og10(n) for the increasing range is used. 

We estimate autoregressive coefficients 0 i , . . . , 0p(n) basing on observa-
tions {Xt}"=1. The estimates 0P = (0 i , . . . , <f>p(n))' can be computed by the 
familiar Yule-Walker method (Brockwell and Davies, 1987, p. 232-233). 

r p 0 p - —7p, 
where Tp = [7(2 - j )]? J = 1 and % = (7(1),7(2),. . . ,7(p))', and 7 is the 
estimate of autocovariance function defined as 

iW = - S xt,"xt+\j1,n. hI < n - 1-
n t=1 

From computational point of view it is more convenient to calculate the 
Yule-Walker coefficients using the recursive Durbin-Levinson algorithm: 

¿11 = ! ^ , *l = 7(0)[l 

m— 1 

0mm = (7(m) - 0m-l,j ~ j))/t>m-l, 
j=1 

0m,1) 0m—1,1 0m-l,m-l 

= 0mm 

0m,m-1 0m—l,m—1 0m-1,1 

C>m = i>m-l(l-0mm)-

Using above recursions bypasses the matrix inversion required in the direct 
computation of 0P. Next we compute residuals 

P(n) ^ 

£t,n = 4>j,n X t - j , 0O,n = 1, t = p + l , . . . , n . 
j=0 
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Then we construct the resampling. For this purpose let us center residuals 

1 " 

and next we draw residuals e* from the empirical cumulative distribution 
function of {et,n}t^p+1> i-e- ¿t i-i-d- ~ Fe,n, where 

1 n 

= £ Mit.n&l n pt=p+i 
Finally the bootstrap replicate {Xt*} is defined by the recursion 

pW ^ 
(2) £ Xt-j = £t > = 1. 

J=0 

In practice we generate the bootstrap process {X*} starting the recursion 
with some starting values, e.g. equal to some resampled innovations if . 

The obtained bootstrap replicate can be used for various purposes. Par-
ticularly, if we have any statistics Tn = Tn(Xi,..., Xn) being a measurable 
function of n observations, we can define the bootstrapped statistics T* by 
the plug-in principle: T* = Tn(X{,..., X*). Biihlmann (1997) has proved 
consistency of the sieve bootstrap method for various kinds of statistics Tn 
including arithmetic mean and some class of nonlinear estimators. 

It is worth noting that sieve bootstrap scheme can be also extended to 
non-stationary time series of the form Yt = s(t) + Zt, t € Z, where s(t) is a 
deterministic trend and Zt is a stationary AR(oo) noise process with mean 
zero (Biihlmann (1998)). 

3. The best linear predictor 
It is known (Brockwell and Davies, 1987, p. 159-162) that for a zero 

mean stationary process, the best linear combination of l , X i , . . . ,Xn for 
predicting Xn+h, (h > 1) is the projection of Xn +h onto the closed linear 
subspace ~sp{Xi,..., Xn}. "The best" denotes here element with minimum 
mean-square distance from Xn+h- Thus, we can denote the /i-step predictor 
as 

PnXn+h = P-sp{X1,...,Xn} Xn+h-

The above predictor can be found from appropriate prediction equations. 
However in order to save the time of computation we use rather one of the 
recursive methods. The best linear /i-step predictor PnXn+h can easily be 
found using the innovations algorithm (Brockwell and Davies, 1987, p. 167-
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168), i.e. 
n+h—l 

( 3 ) PnXn+h = ^ On+h-ilj{Xn+fl^j — Xn+h~j), 

where the one-step predictors Xm+i are given by 
x +i = i ° ' m = = 0 

I 1 Qmj{Xm+i-j — Xm+1 - j ) ,171 > 1 

and coefficients 6mj are computed from recursive equations 
^o = 7(0), 

< 0m,m-k ~ V^ilfim — k) - Y^jZo 0k,k-j0m,m-jVj), k = 0, 1, . . . , 771 - 1, 

. «r» = 7(0) - EpO1 

Moreover the prediction mean squared error (PMSE), which measures the 
uncertainty of the corresponding forecast can be expressed as 

n+h-l 

(4) al(h) : = E(Xn+h - PnXn+h)2 = 7 ( 0 ) - X I ^n+fc- i j «n+h-1- j -
j=h 

4. Prediction intervals 
We consider now problem of constructing prediction intervals for future 

value X n + h which is closely related to finding the best linear predictor and 
corresponding PMSE. 

A prediction interval is a random interval based on past observations 
X — (Xi,X2, • • • ,Xn) and constructed for future value Xn+h, h > 1. More 
precisely, we define (1 — 2a)-prediction intervals for Xn+h as 

I(h,X) = [L(X),R(X)}, 

so that P{L{X) < Xn+h < R(X)) = 1 - 2a . 

For a stationary Gaussian process the construction of prediction inter-
vals can simply be done using the fact (Brockwell and Davies, 1987, p.175) 
that the prediction error A n ( h ) Xn+h — PnXn+h is normally distributed 
with mean zero and variance cr^(h). Assuming that the true autocovariance 
function of the model 7(-) is known we can calculate the best linear /i-step 
predictor PnXn+h and corresponding PMSE cr£(/¡,) from the innovations al-
gorithm presented above and then (1 — 2a)-Gaussian prediction interval is 
given by 

( 5 ) IG{h) = [PnXn+h - an{h), PnXn+h + $a_a an(h)], 

where denotes the (1 —a)-quantile of the standard normal distribution. 
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For non-Gaussian time series we can obtain prediction intervals approx-
imating unknown distribution of the prediction error An(/i) with the aid of 
bootstrap method. This approach, for autoregressive time series of known 
order p (AR(p)) has been proposed by Stine (1987). We extend this pro-
cedure to the case of AR(oo) processes using Biihlman's sieve bootstrap 
scheme. 

In the case of construction of bootstrap prediction intervals to determine 
predictors and prediction mean squared errors we will use the innovations 
algorithm for the autocovariance function of the approximating AR(p(n)) 
model. Such estimates of optimal predictors and prediction errors will be 
denoted respectively as PnXn+h and In practice we may calculate 
the autocovariance of the AR model with the aid of algorithm for causal 
ARMA(p,q) processes (Brockwell and Davies, 1987, p.91-97) which will be 
given in details in section 5. It is worth noting that autocovariance of the 
fitted model at lags 0,1, ,p(n) coincide with the corresponding sample 
autocovariances. 

The main idea of using bootstrap in the context of forecasting is to 
generate the replicate Xf,...,X* of the observed series Xi,...,Xn and 
next extend this replicate into the future time n + h. In the sieve bootstrap 
method we can easily generate the extended replicate by recursion (2). Then, 
we can approximate unknown distribution of the prediction error An{h) = 
Xn+h — PnXn+h by the corresponding bootstrap distribution of A* (h) := 
X*+h — P*X*+h, where P*X*+h denotes the best linear predictor for X*+h 
calculated from Xy,..., X*. This strategy is known as hybrid bootstrap 
(Shao and Tu, 1995). Denoting q* and as respectively, a and 1 — 
a quantile of distribution A* (/i) we obtain (1 — 2a)-bootstrap prediction 
interval 

In practice we estimate q* and q\_a as empirical quantiles, basing on B-
bootstrap replicates, where B is sufficiently large. 

Another algorithm for obtaining bootstrap prediction intervals, which we 
may use is so-called bootstrap-t. For the independent set-up the method was 
originally suggested by Efron but has become more popular and attractive 
since Hall (1988) showed its good second-order properties. The idea of the 
bootstrap-t is in brief to estimate the percentiles of the studentized statistics 
Tn by bootstraping. The unknown distribution of a studentized statistics 

(6) •TbCO = [PnXn+h + Qa< PnXn+h + Ql-a\-

Tn(h) = 
crn(h) 

is therefore estimated by the bootstrap distribution of 
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X* — P* X* rp*(v\ ^ n + / t 1 n-^n+h 
n W ~ K ( h ) ' 

Finally, bootstrap-t prediction interval is given by 

( 7 ) iB-t ( h ) = [PnXn+h + t*a an{h), PnXn+h + t\_a an(h)\, 

where i* and t\_a are corresponding quantiles of T*(h) which we may esti-
mate as before using sufficiently large number of bootstrap replications. 

Described above construction of hybrid and bootstrap-t prediction inter-
vals (given by (6) and (7)) requires theoretical justification. In other words, 
we have to prove the consistency of the proposed intervals, i.e. P(Xn+h € 
1(h)) —> 1 — 2a. Such result was given by Stine (1987) in the case of boot-
strap prediction intervals for AR(p) models. In this article we verify accuracy 
of the bootstrap intervals via computer experiments described in section 5. 
Theoretical considerations concerned with consistency will be given in the 
another paper. 

5. S imulat ions 
5.1. In troduc t ion 

We investigate our procedures of construction prediction intervals on 
some simulated examples. For this purpose the following models are consid-
ered: 

(Ml) ARMA(1,1), Xt = 0 . 8 X t - i - 0.6et_i + et, where et i.i.d. ~ JV(0,1). 
(M2) AR(48), Xt = 4>jXt-j + eu <f>j = ( ~ 1 ) J + 1 7 . 5 / ( j + l ) 3 ( j = 

1,. . . , 48), where et i.i.d. ~ [logN{0,1) - y / e ) / y / e ( e - 1). 
(M3) Ornstein-Uhlenbeck process, i.e. Xt is a stationary Gaussian and Mar-

kovian process with expectation 0 and covariance function K(h) = 
cte'Pwhere a = 1, (3 = 0.01. 

The data sets of sample n = 100 are generated according to M1-M3. 
Ornstein-Uhlenbeck process is simulated using the formula: Xt = 
v'ae"^' W(e2/3t), where W is the standard Wiener process. 

We choose the order p(n) of the approximating autoregressive process 
by minimizing the AIC (Akaike Information Criteria) in a range 1 < p < 
101og10(n). The results of the data-driven choices of PAIC based on 100 
realizations of the model are given in table. 

E(PAIC) SD(PAIC) Min(pAIC) Max(pAIC) 

Ml 2.35 2.16 1 15 
M2 2.79 2.58 1 17 
M3 2.02 2.77 1 20 
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Prediction intervals are constructed using Gaussian (/G)> hybrid boot-
strap (Ib) and sieve bootstrap-t ( I s - t ) approaches. The optimal Gaussian 
prediction intervals are computed assuming that the true autocovariance 
function of the model is known. For bootstrap intervals to determine predic-
tors and prediction mean squared errors we use the autocovariance function 
of the approximating AR(p(n)) model. Because in practical application the 
true autocovariance function is unknown in the case of Ornstein-Uhlenbeck 
process (model M3) we construct also Gaussian prediction intervals based 
on autocovariance of the fitted autoregressive process. In practice the values 
of the autocovariance function 7(-) for ARM A processes can be found from 
the following algorithm (Brockwell and Davies, 1987, p.91-97) . If we assume 
that Xt is the causal ARMA(p,q) process denoted as <p(B) Xt = 0(B) Zt, 
where (f>(z) = 1 - faz <j>pzp, 0(z) = 1 + 0iz + ••• + dqzq, B is the 
backward shift operator (B Xt = Xt-1) and {Zt} is white noise with zero 
mean and variance a 2 . Then, to determine autocovariance function of Xt 
the following equations are used: 

7(k) - <i>i~i{k - 1) 0„7(k -p) = a2 Ek<j<g Orfj-k, 
< 0 < k < max(p, q + 1) 

_ 7(fc) - 0 i7 ( k - 1) - ••• - 0 p 7 ( f c - p) = 0, k > max(p, q + 1) 

where satisfy 

- Mj-k = 0j, 0 < j < maxO, q+1) 
< o<k<j 

~ Y j M j - k = 0, j> max (p ,q + 1) 
0 <k<p 

where 6q = l,8j — 0 for j > q and (ftj = 0 for j > p. In practice, first we 
find 7 ( 0 ) , . . . , 7 ( p ) from the equations with k = 0 , 1 , . . . ,p and then use the 
subsequent equations to compute 7 ( p + 1), 7 ( p + 2 ) , . . . recursively. 

5.2. Resul ts 
Figures 1-6 show prediction intervals for all considered models con-

structed for nominal coverage equal 95%. 
The accuracy of presented prediction intervals is studied in terms of em-

pirical coverage. More precisely, we repeat the procedure of construction 
intervals and check coverage frequencies for each h — 1 , . . . , 10. For boot-
strap intervals we use 5 = 2 0 0 replicates. In our study the nominal coverage 
equals 80% and 95%. Tables 1-3. contain coverage percentages with esit-
mated standard errors in parentheses (in percentages) which were obtained 
by simulating 100 different realizations of models M1 — M3. For all methods 
the average lengths of intervals are also included. 
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Figure 1. Gaussian prediction intervals for Ml : true future values (solid line with squares), 
predictors (dotted line with squares), Gaussian intervals (dotted line). 

Figure 2. Bootstrap prediction intervals for Ml : true future values (solid line with squares), 
predictors (dotted line with squares), hybrid sieve bootstrap interval (dashdot line), sieve 
bootstrap-t (dotted line). 
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Figure 3. Gaussian prediction intervals for M2: true future values (solid line with squares), 
predictors (dotted line with squares), Gaussian intervals (dotted line). 

Figure 4. Bootstrap prediction intervals for M2: true future values (solid line with squares), 
predictors (dotted line with squares), hybrid sieve bootstrap interval (dashdot line), sieve 
bootstrap-t (dotted line). 
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Figure 5. Gaussian prediction intervals for M3: true future values (solid line with squares), 
predictors (dotted line with squares), Gaussian intervals (dotted line). 

Figure 6. Bootstrap prediction intervals for Ornstein-Uhlenbeck process: true future values 
(solid line with squares), predictors (dotted line with squares), hybrid sieve bootstrap 
interval (dashdot line), sieve bootstrap-t (dotted line). 
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Gaussian hybrid bootstrap-t 
h coverage E(length) coverage E(length) coverage E(length) 
1 93%(2.55) 3.92 90%(3.00) 3.83 94%(2.37) 3.94 
2 96%(1.96) 4.00 95%(2.18) 3.93 95%(2.18) 4.04 
3 93%(2.55) 4.05 92%(2.71) 3.97 92%(2.71) 4.10 
4 94%(2.37) 4.08 92%(2.71) 3.96 92%(2.71) 4.07 
5 92%(2.71) 4.10 89%(3.13) 3.99 91%(2.86) 4.13 
6 95%(2.18) 4.11 94%(2.37) 4.00 94%(2.37) 4.11 
7 97%(1.71) 4.12 93%(2.55) 4.06 94%(2.37) 4.21 
8 96%(1.96) 4.12 93%(2.55) 3.99 94%(2.37) 4.11 
9 96%(1.96) 4.13 92%(2.71) 4.00 92%(2.71) 4.11 

10 98%(1.40) 4.13 95%(2.18) 4.04 96%(1.96) 4.15 

Table 1. Empirical coverage for M l . Nominal coverage = 95% 

Gaussian hybrid bootstrap-t 
h coverage E(length) coverage E(length) coverage E(length) 
1 93%(2.55) 2.56 74%(4.39) 1.71 80%(4.00) 1.82 
2 91%(2.86) 3.51 77%(4.21) 2.55 78%(4.14) 2.78 
3 91%(2.86) 3.84 74%(4.39) 2.87 78% (4.14) 3.12 
4 90%(3.00) 3.98 76%(4.27) 2.99 80%(4.00) 3.28 
5 92%(2.71) 4.05 76%(4.27) 3.01 82%(3.84) 3.31 
6 87%(3.36) 4.08 72%(4.49) 3.02 75%(4.33) 3.33 
7 90%(3.00) 4.09 73%(4.44) 3.03 79%(4.07) 3.35 
8 92%(2.71) 4.10 77%(4.21) 3.04 83%(3.76) 3.35 
9 89%(3.13) 4.10 77%(4.21) 3.05 78%(4.14) 3.38 

10 91%(2.86) 4.10 76%(4.27) 3.06 82%(3.84) 3.40 

Table 2. Empirical coverage for M2. Nominal coverage = 80 % 

Optimal Gaussian Gaussian hybrid bootstrap-t 
h coverage E(length) coverage E(length) coverage E(length) coverage E(length) 
1 96%(1.96) 0.55 93%(2.55) 0.59 87%(3.36) 0.50 90%(3.00) 0.59 
2 94%(2.37) 0.78 86%(3.47) 0.82 86%(3.47) 0.71 90%(3.00) 0.85 
3 93%(2.55) 0.95 88%(3.25) 0.98 86%(3.47) 0.85 91%(2.86) 1.06 
4 94%(2.37) 1.09 88%(3.25) 1.10 79%(4.07) 0.96 90%(3.00) 1.23 
5 95%(2.18) 1.21 86%(3.47) 1.19 84%(3.67) 1.04 91%(2.86) 1.38 
6 96%(1.96) 1.32 87%(3.36) 1.27 84%(3.67) 1.10 91%(2.86) 1.51 
7 98%(1.40) 1.42 88%(3.25) 1.34 84%(3.67) 1.17 93%(2.55) 1.63 
8 96%(1.96) 1.51 89%(3.13) 1.40 85%(3.57) 1.23 93%(2.55) 1.75 
9 96%(1.96) 1.59 89%(3.13) 1.45 85%(3.57) 1.27 92%(2.71) 1.85 

10 97%(1.71) 1.67 87%(3.36) 1.49 82%(3.84) 1.31 91%(2.86) 1.93 

Table 3. Empirical coverage for M3. Nominal coverage = 95 % 
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5.3. Summary 
We observe that for Gaussian series both bootstrap-t and optimal Gaus-

sian prediction intervals perform similarly and outperfom hybrid bootstrap 
method. On the other hand for non-Gaussian data Gaussian intervals have 
tendency to exceed the nominal coverage what we can see especially for 
nominal coverage equals 80 %. In these cases the average length of Gaus-
sian interval is greater than corresponding bootstrap intervals. Moreover for 
non-Gaussian models hybrid bootstrap also seems to be less effective than 
bootstrap-t method. 

For Ornstein-Uhlenbeck process (model M3) the optimal Gaussian pre-
diction intervals are the most effective. Moreover, we can see that for both 
nominal coverage levels (80% and 95%) bootstrap-t intervals perform bet-
ter than both hybrid bootstrap and Gaussian intervals based on estimated 
autocovariance. 
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