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Abstract . In the article, a transformed diffeomorphic kernel estimator of the hazard 
rate function in the presence of censoring is constructed. The estimator is defined in the 
framework of multiplicative intensity point process model. It is shown that the proposed 
estimator is asymptotically unbiased, consistent and asymptotically normal. Analysis in 
the reduction of the bias of the diffeomorphic estimator is carried out. Some simulation 
results comparing the obtained estimator with the Ramlau-Hansen estimator are also 
presented. 

1. Introduction 
It is known that the Parzen-Rosenblatt kernel density estimator of a 

probability density function performs poorly near the boundary of the sup-
port of the estimated density. To remedy this so called boundary effect 
different methods have been proposed: 

• the reflection method (Schuster ([11]), Cline and Hart [5]) 
• the boundary kernel method (Cheng, Fan and others [4]) 
• the transformation method (Ruppert and Marron [10], Saoudi, Ghorbel 

and others [9], Zhang, Karunamuni and others [13]). 

The same problem one meets when estimates a hazard rate function in 
survival model. Since Aalen (1978) [1] it is known that the survival model 
with censored observations can be described as a multiplicative model of a 
point process Nn(t) with the intensity function a(t)Yn(t), where a(t) is the 
hazard rate function to be estimated and Yn(t) denotes the total number 
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of objects among n being at risk either of failure or censoring up to time t. 
The process Nn(t) is observed on the interval [0,T]. Let T=l , for simplicity. 
In [7] the kernel estimator (the Ramlau-Hansen estimator) of the function a 
in a multiplicative point process model has been defined. In the mentioned 
paper, asymptotic unbiasedness, consistency and asymptotic normality of 
the Ramlau-Hansen estimator have been proved. 

Estimating the unknown function a (hazard rate function) at the points 
near the boundary of the time interval on which the point process N(t) 
is observed, one can see that the analogous boundary effect appears as in 
the problem of kernel density estimation. Taking into account applications 
in biostatistical and insurance models the problem is rather essential. To 
correct the severe bias of Ramlau-Hansen estimator near the boundary of the 
time interval we propose a transformed estimator defining a diffeomorphic 
kernel estimator of the function a. We have proved that the diffeomorphic 
estimator is asymptotically unbiased, consistent and asymptotically normal. 
It has been also showed that the bias of the estimator is reduced to the order 

where bn is a window bandwidth, the same order as at the points in the 
interior of the time interval. The method proposed gives better order of bias 
reducing than the reflection method in density estimators, and the same 
order as in transformed density estimators introduced in [12]. 

The presented paper is organized as follows. Section 2 contains prelimi-
nary results concerned with multiplicative point process model and asymp-
totic properties of the Ramlau-Hansen estimator. In Section 3 we introduce 
a kernel diffeomorphic estimator of the hazard rate function. Section 4 con-
tains theorems and their proofs on asymptotic properties of the estimator 
introduced. In Section 5, approximation describing reducing of the bias for 
the diffeomorphic estimator is given. Section 6 is devoted to presentation of 
some simulation results concerned with the estimator considered. 

2. Multiplicative model of a point process. Nonparametric hazard 
rate estimation 
Let us consider a point process A/* = {N(t)}, t € [0, T], on a given 

probability space (i), P, T, {Ft}), where {Ft}t>Q is a non-decreasing right-
continuous family of a- algebras. Under some appropriate assumptions the 
following Doob-Meyer decomposition holds, 

N(t) = A(t) + M(t) , t e [0, T] , 

where A(t) is a predictable nonnegative non-decreasing process and M(t) is a 
martingale (see Andersen, Gill [2], for all details). We will refer to the process 
A(i) as the compensator of the point process N(t). As long as appropriate 
regularity conditions hold there exists a predictable process A(i) such that 
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t 
A(i) = 5 A(s)ds , t € [0, T] , 

o 
where X(t) is called an intensity of the point process N(t) and 

X(t) = l i m \ p { N { t + h)~ N(t) > 1 | J F t _ } . 
h—>0 h 

In the multiplicative model, the intensity function is of the form 

A(t) = a ( t ) Y ( t ) , 

where 

a(t) — is a non-negative deterministic function, 
Y(t) — is a non-negative left-continuous and observable (predictable) pro-

cess adapted to the filtration Tt-
An important example of application of the multiplicative intensity point 

process model is the operation-failure model under censoring. 
Suppose we are observing the course of n life insurance policies. Let 

Tj be the random variable representing the i-th person insured, where the 
deterministic function in the multiplicative model is interpreted as a hazard 
rate function of the form 

P(Ti E[t,t + dt) \ T i > t ) = cti{t)dt. 

Obviously, in practice we do not have an access to the complete set of 
observations regarding the lifetime of the people insured. Data censoring 
appears in many cases, i.e. loss of contact with the client before death. We 
define the point process of such a model to be 

JVW(i) = i { f i < t, Di = 1 } , i = 1,2,... ,n , 

where 
Ti — is either the time of death or censoring, 
Di — is the indicator of loss of contact Di = l{Ti = Ti}. 

In order to guarantee the conditional independence of the risk of a failure 
(death) and censoring process we assume that (see Anderson, Gill [2]) 

\ l) tor ±i < t. 

Defining the process 
y « ( i ) = 1 {Ti> t } 

with the filtration 
Jrt = a ( { f i < 8 , a < t , D i } ) , 
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we obtain 
P(dN®(t) = l\Ft-) = cti(t)Y®{t)dt . 

As a result we obtain an n-dimensional point process N = ..., N^) 
with intensity function 

A«(t) = a i ( t ) y « ( t ) , » = 1 , 2 , . . . , « . 
In certain case, it is reasonable to assume that the subjects observed repre-
sent a homogeneous population, which in our interpretation is equivalent to 
the equality of the hazard functions, «¿(i) = a(t) for i = 1 , 2 , . . . , n. In such 
cases we define a sequence of one-dimensional point processes 

iVn(i) = f > M ( i ) , 
¿=1 

whose value at time t represents the number of failures (deaths) in the 
interval [0,i]. The intensity of the process Nn(t) is given by 

An(i) = E A « ( i ) = a ( i ) r n ( i ) , 
¿=i 

where 

Yn{t) = YjY^{t) = # { i : f i > t } 
»=l 

represents the number of elements still functioning and being under obser-
vation up to time t. We can write 

dNn(t) = a(t)Yn(t)dt + dMn{t). 

In the multiplicative model of intensity 

An(i) = a(t)Yn(t) , t e [0,T] 

we use the following estimator of the deterministic hazard function a(t), 

*•">-£!*( 
where J n(s) = l{yn(a) > 0} and Jn(s)/Yn{s) = 0, when yn(s) = 0. 
In addition: 

l 
(2.1) K — the kernel function, with support [-1,1], \ K{u)du = 1, 

- l 
(2.2) bn — bandwidth (a positive parameter), bn —> 0 as n —> oo. 

The form of this estimator was derived by Ramlau-Hansen (see [7]). It is an 
asymptotically unbiased, consistent and asymptotically normal estimator 
of the hazard rate function (see [7]). However, the results of simulations 
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carried out using this estimator are unsatisfactory at the end points of the 
time interval on which the process N(t) is observed. In order to eliminate 
this undesired effect, we will introduce a modified estimator of the hazard 
rate function. In the sequel, we assume that (2.1) and (2.2) are in force. 

3. The kernel-diffeomorphic estimator of the hazard rate 
Let {Nn(t)} be a sequence of observed point processes and let ip : (0, c) —• 

(a, b) be a diffeomorphic transformation, that means ip is continuously dif-
ferentiate bijection from (0, c) on (a, b), where a, b and c are allowed to be 
infinite. Let us define 

Nv,n(t) = Nnitp-^t)) 

and 

thus we obtain 

à(t) = a(<p-x(i)) , 
Yv,n(t) = Yn(<p-1(t)), 

dNv<n{t) = a(t)Yvn(t) + Mn{dip~\t)) . 
VVP (t)J 

If we treat Mn((p~1(dt)) as a perturbation, we may estimate a(t)dt 
with 

Y<p,n{t) 

Assume that t = ip(u). This leads to 

a(<p(u)) = a(y_1(v3(u))) = a(u). 

Thus the function a(u) can be estimated by 

> ( t i ) - s \ ¡ / ( ^ ( s ) ) fH! 
un n \ 

dN^^s) . 
a . bn J Yn(^(s)) 

Hence, with the aid of the diffeomorphic transformation (p we define the 
transformed estimator of the hazard function as follows. 

DEFINITION 3.1. Diffeomorphic estimator a^^ of the hazard rate function 
a is defined by the following formula 

where Jn(t) = 1 {Yn(t) > 0}. If Yn(t) = 0 we define Jn{t)/Yn{t) = 0. The 
kernel K being a symmetric function and parameter bn satisfy conditions 
(2.1), (2.2) respectively. 
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4. Asymptotic properties of the diffeomorphic estimator of the 
hazard rate 
Let us now consider the properties of the estimator (3.1). We, will show 

that the estimator constructed above is asymptotically unbiased. First, let 
us calculate the expected value of the estimator (3.1). Using the fact that the 
expected value of a stochastic integral of a predictable process with respect 
to a martingale is equal to zero and taking into account that the kernel K 
is equal to 0 outside [—1,1] we obtain 

(4 , ) « ) ] = E [ 1 \K ( m z ± ) g ™ 

Yn(<p-Hs)) °n a V 

1 
= j K(v)a(<p-1{vbn + <p{u)))EJn(<p-1{vbn + <p(u)))dv, 

- l 
for sufficiently large n such that min , < — 1 and 

m a x (V&Lii, iei jhi) > i. Thus, we get 

THEOREM 4.1. Suppose that a is a continuous function. If Vu EJn(u) —> 1 
uniformly in some neighbourhood of u then 

n—»oo 

(4.2) E{ ay 

Proof . We have l 
E[av,n{u)} = \ K^ai^ivbn + ^u^EJniip-^vbn + ipiu^dv 

-1 
n—>oo \ 

£ \ K(v)EJn(u)a(u)dv 
- l 

l 
S a(«) \ K(v)dv = a(u). 

- l 
Moreover, the following results concerned with the convergence to zero of 
the variance and the mean square error (MSE) of the estimator can be also 
obtained. Let us first calculate the variance 
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2/_.\ ir cr^ /..M2 a<p(u) = Var àn,<p{u) = E[àn,<p{u) - Eàn,v(u)} 

= E 

~ r \ K 

ip(u) — s 
EJnitp-^sfiaitp-^ds 

n—>00 
^ E 00) 

r b 

= U i E 
K 

= ? E "n 

2 / V f a ) ( V'iV H 5 ) ) ^ 
L a 
r b 

j x * 2 i f ( u ) - s \ H 5 ) ) Jn(<p-\s))a{v-\s))ds 
bn ) Yn{v~\s)) 

Uv-Hs)) I 

where (Mn( . )) denotes the predictable variation process of Mn. 

PROPOSITION 4 . 1 . Suppose the following conditions are satisfied 

• nbn —> oo as n —> oo, 

• \K2{t)dt < oo, 
• ni? | y"| —+ ^y uniformly in a neighbourhood of u, 
• a(s) andy(s) are continuous in a neighbourhood ofu. 

ds , 

Then 
( 4 . 3 ) 

P r o o f . We have 

0 . 

bn 

Jn(<P~H')) 
Yniv-H*)) 

K > ( t ) M ) E { ^ } d t 

= b M E { W ) } i K 2 { t ) d t 

4 - i K \ t ) d t 
nbn y[u) 

0. 
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Furthermore, from (4.2) and (4.3) it follows that 
« n—>oo 

E(âv>n(t) - a(t))2 > 0 
and thus the estimator is consistent. 

4.1. Asymptotic normality 
Using Rebolledo's theorem (see [8]), we show that the kernel diffeomor-

phic estimator is asymptotically normal. 

THEOREM 4 .2 . Let us assume that the following conditions hold: 

• nbn —> oo as n —• oo, 
• \K2(t)dt < oo, 
• a is a continuous function, 
• there exists a continuous function y such that 

Ve sup \-Yn(s) - y{s)\ 0. 
se[t-£;t+e] n 

Then 
\Jnbn(â,pin (t) - Eâv,n(t))N(0,T2(t)), 

where 

P r o o f . The following result can be obtained by similar calculations to those 
carried out earlier 

VÏÎâ^.nW - Eâ^>n(t)) 

Let us define the following predictable process 

and let {Mn} denote a sequence of martingales of the form 
z Mn(z) = \Hv>,n(s)dMn{<p-1(s)). a 

P 
We will show that (M n ( z ) ) > V(z), where V is non-decreasing and non-
negative function and n —• oo. We have 

<Mn(z)) = \Hln(s)d(Mn(^\S))) 
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~ [ V ) y ( < p - \ v b n + <pm 

xJni^ivbn + y{t))a(<p~l(vbn + <p{t)))dv 

Let { M „ i £ } , be the following sequence of martingales 
z 

M n , £ (z ) = j f r v > n ( s ) l { | f r v , n ( a ) | > e}dMn(ip~1(s)). 
a 

It remains to show that 
p 

(M n > £ (z)) > 0, when n —> oo. 

Observe that 

<M„,e(z)> = \Hln{s)l{\H^n{s)\ > e}d(Mn{<p-\s))) 

because 

converges to zero uniformly in probability, when nbn —> oo as n —> oo. 
Finally, all the assumptions of Rebolledo's theorem ([2]) hold. Thus we have 

- EA^^T)) ^ N(0,t2), a s n oo . 

5. Reducing the bias 
As mentioned before, the Ramlau-Hansen estimator does not give ac-

curate results at the end points of the time interval. The estimator has a 
larger bias at the end points than in the interior. A diffeomorphic estimator 
might be a solution to this problem. We now consider the order of the bias 
for the Ramlau-Hansen estimator (R-H) as well as for the diffeomorphic 
estimator. We assume that the function to be estimated is defined on the 
interval (0,1). We consider points in the neighbourhood of zero, defined by 
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u = Cbn, where C E (0,1), thus the points u £ (0, bn). Assume also that 
P 

Jn{s) —• 1, as n —> oo and the functions a and ip are twice differentiable. 
First we estimate the bias of the Ramlau-Hansen estimator dn 

Eàn(u) -- E [1 [ / u - i \ Jn(t) Ari dNn(t) Yn{t) 

71—»OO 1 W + V 
S — K (C — t/bn) a(t)dt 

bn 0 

= j K(v)a(u — vbn)dv 
- l 
C 

= J K(v) |a(n) - a'{u)vbn + ^^-{vbn)2 J dv + o(b: 

= a(«)Mo(C) - a'(u)bnm(C) + ^ ( b n ) 2 f i 2 ( C ) + o(b2
n), 

where Hk(C) = \<^_1vkK(v)dv. In this case the bias at 0 is approximately 
proportional to bna'(u) as bn —> 0. 

Let us choose a diffeomorphism ip such that ip(u)—bn>a and ip(u)+bn<b 
for n > TIQ. Thus in the case of diffeomorphic estimator otwtn we obtain 

1 lfi(u)+bn / ( \ _ \ 
= £ \ K EJnfr-HsVair-H'))* 

(f>(u)-bn 

j K(v)a(ip 1(ip(u) + vbn))dv = **, 
- l 

where in contrast to the previous case we integrate on the whole support of 
the kernel K (i.e [—1,1]). Further, applying Taylor's expansion we get. 

n—> oo j / , 1 \ 
(5.1) « a 
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- + o'M^« + G&))»« + 0{bi) 

(fa)' 
The results above give an approximation of the bias for diffeomorphic esti-
mator. It is of the order a"(u)b^/2 for all points u € (0,1), and thus also at 
the end points. 

6. Simulation results 
Computer simulations have been carried out, in order to illustrate the 

properties of the diffeomorphic estimator. We assume that failure times 
Ti,... Tn, where n = 1000 are observed on the interval (0,1) and data are 
generated from 
(i) the Weibull distribution with hazard function of the form a(t) = 7 p t p ~ l , 

where 7 = 1 and p = 0.5, 
(ii) the distribution with U2 density function f(t) = 0 .5i _ a 5 for t 6 (0,1), 

for which the hazard function is of the form '^q^zytj-

Additionally these lifetimes were censored by n independent censoring time 
Ui,..., U2 generated from exponential distribution with the mean 4. We 
define Tj = mili(Ti,Ui) and the indicator of censoring Di — 1 {T̂  = Tj}. 
In this case, the point process N is of the form N(t) = 1 < i}-
This process counts the total number of failures in the interval (0,i), where 
t € (0,1) and the intensity function is given by A ( t ) = a(t)Yn(t), where 
Yn = ]Cr=i > 0 - The process Yn(t) counts the number of elements at 
risk of failure just to time t. In both cases, we set bn = 0.25, which is of 
order 71-1/5 and the kernel K(x) = | ( 1 - x2) for x € [—1,1]. We take the 
diffeomorphism <p to be </?(x) = log(x/(l — x)) for x 6 (0,1). 

6.1. Data from the Weilbull distribution 
Figurel(a) illustrates the diffeomorphic estimator together with the haz-

ard function for the Weibull distribution and figurel(b) illustrates the be-
haviour of the Ramlau-Hansen estimator for the same model. The oscilations 
in the diffeomorphic estimator in the neighbourhood of zero may be caused 
by the fact that the variance of the estimator is larger at the end points of 
the interval. It can be seen from these graphs that the diffeomorphic estima-
tor approximates the hazard function well on the entire domain, in contrast 
to the R-H estimator, which gives a poor approximation, especially in the 
neighbourhood of zero. The results obtained by simulating the bias of both 
estimators (Figs. 2(a) and (b)) are a confirmation of this fact. It can be 
seen that the bias of the R-H estimator (Fig.2(b)) is of much higher order, 
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a) 

Figure 1. (a) The estimator ân<p (solid line) and true hazard rate function (dashed line), 
(b) The Ramlau-Hansen estimator (solid line) and true hazard rate function (dashed line). 

Figure 2. (a) the expected value of estimator âv,n(dashed Une), bias(solid line), (b) the 
expected value of estimator R-H (dashed line), bias(solid line). 

especially in the neighbourhood of zero, than the bias of the diffeomorphic 
estimator (Fig. 2(a)). The difference in the bias is much less noticeable in 
the neighbourhood of 1. The bias of the diffeomorphic estimator is about 
0.02, whilst the bias of the R-H estimator is about 0.3. 

6.2. Data from the U2 distribution 
Figures 3(a) and 3(b) illustrate the diffeomorphic and R-H estimators, 

respectively, in the case of the f/2-density. The hazard rate function in this 
case has two poles at 0 and at 1. Figures 4(a) and 4(b) give approximate 
values for the expected value and bias of these estimators. Since these graphs 
do not illustrate the behaviour of the estimators in the neighbourhood of 
zero well, figures 3(b) and 5 present the same estimates, but in this case 
restricted to the interval (0,0.1). 

The quality of the simulation can be improved by choosing an appropri-
ate value of the parameter bn, depending upon the realisations of the failure 
times Ti. The method of cross-validation can be used to choose the optimal 
value of the parameter. 
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Figure 3. (a) The stimator àn<p (solid line), the estimator R-H (dotted line) and true 
hazard rate function (dashed line), (b) as above, but on (0,0.1) 

a) b) 
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Figure 4. (a) the expected value of estimator â^ ,n(dashed line), bias(solid line), (b) the 
expected value of estimator R-H (dashed line), bias(solid line). 

Figure 5. On (0,0.1):(a) the expected value of estimator â ^ n (dashed line), bias (solid line), 
(b) the expected value of estimator R-H (dashed line), bias(solid line). 
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