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Abstract. In the article, a transformed diffeomorphic kernel estimator of the hazard
rate function in the presence of censoring is constructed. The estimator is defined in the
framework of multiplicative intensity point process model. It is shown that the proposed
estimator is asymptotically unbiased, consistent and asymptotically normal. Analysis in
the reduction of the bias of the diffeomorphic estimator is carried out. Some simulation
results comparing the obtained estimator with the Ramlau-Hansen estimator are also
presented.

1. Introduction

It is known that the Parzen-Rosenblatt kernel density estimator of a
probability density function performs poorly near the boundary of the sup-
port of the estimated density. To remedy this so called boundary effect
different methods have been proposed:

e the reflection method (Schuster ([11]), Cline and Hart [5}])

e the boundary kernel method (Cheng, Fan and others [4])

e the transformation method (Ruppert and Marron [10], Saoudi, Ghorbel
and others [9], Zhang, Karunamuni and others [13]).

The same problem one meets when estimates a hazard rate function in
survival model. Since Aalen (1978) [1] it is known that the survival model
with censored observations can be described as a multiplicative model of a
point process Ny (t) with the intensity function «(t)Y,(t), where a(t) is the
hazard rate function to be estimated and Y,(t) denotes the total number
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of objects among n being at risk either of failure or censoring up to time t.
The process N,(t) is observed on the interval [0,T]. Let T=1, for simplicity.
In [7] the kernel estimator (the Ramlau-Hansen estimator) of the function «
in a multiplicative point process model has been defined. In the mentioned
paper, asymptotic unbiasedness, consistency and asymptotic normality of
the Ramlau-Hansen estimator have been proved.

Estimating the unknown function a (hazard rate function) at the points
near the boundary of the time interval on which the point process N(t)
is observed, one can see that the analogous boundary effect appears as in
the problem of kernel density estimation. Taking into account applications
in biostatistical and insurance models the problem is rather essential. To
correct the severe bias of Ramlau-Hansen estimator near the boundary of the
time interval we propose a transformed estimator defining a diffeomorphic
kernel estimator of the function a. We have proved that the diffeomorphic
estimator is asymptotically unbiased, consistent and asymptotically normal.
It has been also showed that the bias of the estimator is reduced to the order
b2, where b, is a window bandwidth, the same order as at the points in the
interior of the time interval. The method proposed gives better order of bias
reducing than the reflection method in density estimators, and the same
order as in transformed density estimators introduced in [12].

The presented paper is organized as follows. Section 2 contains prelimi-
nary results concerned with multiplicative point process model and asymp-
totic properties of the Ramlau-Hansen estimator. In Section 3 we introduce
a kernel diffeomorphic estimator of the hazard rate function. Section 4 con-
tains theorems and their proofs on asymptotic properties of the estimator
introduced. In Section 5, approximation describing reducing of the bias for
the diffeomorphic estimator is given. Section 6 is devoted to presentation of
some simulation results concerned with the estimator considered.

2. Multiplicative model of a point process. Nonparametric hazard
rate estimation
Let us consider a point process N' = {N(¢)}, t € [0,T], on a given
probability space (Q, P, F, {¥;}), where {F;}>0 is a non-decreasing right-
continuous family of o- algebras. Under some appropriate assumptions the
following Doob-Meyer decomposition holds,

N@)=A@)+M((), tel0,T],
where A(t) is a predictable nonnegative non-decreasing process and M (t) is a
martingale (see Andersen, Gill [2], for all details). We will refer to the process

A(t) as the compensator of the point process N(t). As long as appropriate
regularity conditions hold there exists a predictable process A(t) such that
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t
Aty={A(s)ds, te[o,T],
0
where A(t) is called an intensity of the point process N(t) and

A(t) = lim }’;P{N(t +R) —N(E) 21| F-}.
In the multiplicative model, the intensity function is of the form
A(t) = a(t)Y (1),
where
a(t) — is a non-negative deterministic function,

Y (t) — is a non-negative left-continuous and observable (predictable) pro-
cess adapted to the filtration F;.

An important example of application of the multiplicative intensity point
process model is the operation-failure model under censoring.

Suppose we are observing the course of n life insurance policies. Let
T; be the random variable representing the i-th person insured, where the
deterministic function in the multiplicative model is interpreted as a hazard
rate function of the form

P(T; € [t,t +dt) | T; > t) = au(t)dt .

Obviously, in practice we do not have an access to the complete set of
observations regarding the lifetime of the people insured. Data censoring
appears in many cases, i.e. loss of contact with the client before death. We
define the point process of such a model to be

NO@=1{T;<t,D;=1}, i=12,...,n,
where
Ti — is either the time of death or censoring,
D; — is the indicator of loss of contact D; = 1{1:', =T;}.

In order to guarantee the conditional independence of the risk of a failure
(death) and censoring process we assume that (see Anderson, Gill [2])
N ;(t)dt for T; > t
P e ft,t+dt) Di=1]| F) = | Hltdtfor T2,
0 for T; < t.

Defining the process
YO() = 1{T; > 1}
with the filtration
Ft 20({1-;. <s,s St’Dl}) y
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we obtain . '

PAND(t) =1| F-) = ()Y D (2)dt .
As a result we obtain an n-dimensional point process N = (N(U ... N(®)
with intensity function

M@ = ()Y, i=1,2,...,n.

In certain case, it is reasonable to assume that the subjects observed repre-
sent a homogeneous population, which in our interpretation is equivalent to
the equality of the hazard functions, ¢;(t) = a(t) for i = 1,2,...,n. In such
cases we define a sequence of one-dimensional point processes

Nu®) = SONO()
i=1

whose value at time ¢ represents the number of failures (deaths) in the
interval [0, ¢]. The intensity of the process N,(t) is given by

An(t) = i A1) = a(t)Ya(t) ,
=1
where o
Ya(t) =Y YO() = #{i: T, > ¢t}

represents the number of elements still functioning and being under obser-
vation up to time t. We can write

dN,(t) = a(t)Ya(t)dt + dM,(2).
In the multiplicative model of intensity
M(t) =at)Yo(t), te[0,T]
we use the following estimator of the deterministic hazard function «(t),
R 1T t—s\ Jn(s
Gnlt) = — | K ( ) I8 4 (s),

b § bn /) Ya(s)

where J,,(s) = 1{Y,(s) > 0} and J,(s)/Yn(s) = 0, when Y,(s) = 0.
In addition:

1
(2.1) K — the kernel function, with support [-1,1], S K(u)du =1,
-1
(2.2) b, — bandwidth (a positive parameter), b, — 0 as n — co.
The form of this estimator was derived by Ramlau-Hansen (see [7]). It is an

asymptotically unbiased, consistent and asymptotically normal estimator
of the hazard rate function (see [7]). However, the results of simulations
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carried out using this estimator are unsatisfactory at the end points of the
time interval on which the process N(t) is observed. In order to eliminate
this undesired effect, we will introduce a modified estimator of the hazard
rate function. In the sequel, we assume that (2.1) and (2.2) are in force.

3. The kernel-diffeomorphic estimator of the hazard rate

Let {N,(t)} be a sequence of observed point processes and let ¢ : (0,¢) —
(a,b) be a diffeomorphic transformation, that means ¢ is continuously dif-
ferentiable bijection from (0, c) on (a,b), where a,b and ¢ are allowed to be
infinite. Let us define

Nyn(t) = Na(p™ (1))
and

&(t) = a(p™(t))

Yon(t) = Ya(e™ (1),

thus we obtain

dNyn(t) = &(t)Ypnu(t) dt + M, (dp~(t)) .

_r
¢ (p~1(t)

If we treat M,(p~!(dt)) as a perturbation, we may estimate &(t)dt

with
w(dt)so (™ }())
om(t) .
Assume that ¢ = ¢(u). This leads to
&(p(w) = a(p™ (p(u)) = afu).
Thus the function a(u) can be estimated by
17 — s\ £ (p~(s))
oo L (P52 iy tonts)-

Hence, with the aid of the diffeomorphic transformation ¢ we define the
transformed estimator of the hazard function as follows.

DEFINITION 3.1. Diffeomorphic estimator G, of the hazard rate function
a is defined by the following formula

(3 1) & (’u)=-];§K<(p(u)—s) (pl((p—l(s))'] ( _1(8))dN (S)
G *F SN MR AT O) i

where Jp(t) = 1{Y,(t) > 0}. If Yo(t) = O we define J,(t)/Y,(t) = 0. The
kernel K being a symmetric function and parameter b, satisfy conditions
(2.1), (2.2) respectively.
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4. Asymptotic properties of the diffeomorphic estimator of the
hazard rate

Let us now consider the properties of the estimator (3.1). We, will show
that the estimator constructed above is asymptotically unbiased. First, let
us calculate the expected value of the estimator (3.1). Using the fact that the
expected value of a stochastic integral of a predictable process with respect
to a martingale is equal to zero and taking into account that the kernel K
is equal to 0 outside [—1, 1] we obtain

b u) — s\ ¢ (p71(s
(41) Elan(w) = B[;- | K (E822) 210D 1 6(5)an, o(0)]

bn bn Ya(p~1(s))
1 b o(u)~s _ ¢ (9™1(s))
=g i (B2 B o0 iy
1 1
xa(p™ (s))Yale™ (s)) (p’((p_l(s))ds

for sufficiently large n such that min (ﬁ't%_—a, iﬁ}f&j < —1and

max (‘p—("bl;a, ‘P(z—')rb) > 1. Thus, we get

THEOREM 4.1. Suppose that « is a continuous function. If Vu EJ,(u) — 1
uniformly in some neighbourhood of u then

n-—-00

(4.2) E{ayn(u)] — a(u) .
Proof. We have

1
Elépa(w)] | K(v)alp™ (vba + 0(w))EJn(p™ (vbn + p()))dv
-1
n—00 1
= | K(v)EJa(u)a(u)dy
-1
1
a(u) S K(v)dv = a(u).
-1

1R

Moreover, the following results concerned with the convergence to zero of
the variance and the mean square error (MSE) of the estimator can be also
obtained. Let us first calculate the variance
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a5 (u) = Var anp(u) = Elén,e(u) — Ednp(u))?
b _ 7 —1
= B[ {xc (B=2) £ BD g (71 ())aNn(s)

bn 5 ba Ya(e~1(s))
b u)—3s 2

—i— éK (-‘P—(b)n——) EJn(<p"1(s))a((,o'1(s))ds]
n—oo b u) — 1, =1 s 9
= sl (270) 21 o)

1_q° u) — s (o~ 1(s
_ EE[,S,KZ(SO( )-2) ;i((i_l((g)))) Tl D (Mot ) |
b

- el () G it
noso 10 u)— 8 -l(g
& 5 Vi (B2 o oty {

where (M,(.)) denotes the predictable variation process of M,,.
PROPOSITION 4.1. Suppose the following conditions are satisfied

e nb, - 00 asn— oo,

o {K2(t)dt < oo,
o nE {J—"((%} 7—5 uniformly in a neighbourhood of u,
e a(s) and y(s) are continuous in a neighbourhood of u.

Then

'n.-—#oo
(4.3) (u)
Proof. We have

b u)—3S8 (s
= g 7 (E=0) e (et () { alp_ () } ds
1
% _51 K2(t)¢' (w)a(w)E { ;],:EZ; } dt

1
- i}-cp'(u)a(u)E{Jn(Z)} [ K2(t)dt

nby, y(u) -1
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Furthermore, from (4.2) and (4.3) it follows that

n—oo

E(Gpn(t) — a(t))® —
and thus the estimator &, is consistent.

4.1. Asymptotic normality

Using Rebolledo’s theorem (see [8]), we show that the kernel diffeomor-
phic estimator is asymptotically normal.

THEOREM 4.2. Let us assume that the following conditions hold:

e nb, — 00 asn — oo,

o [ K%(t)dt < o0,

® « is a continuous function,

o there exists a continuous function y such that

Ve sup | ~Ya(s) —y(s)| - 0.
s€lt—ejt+e] T
Then 5
”bn(d%n(t) - Eéw,n(t)) - N(O’TQ(t)),

where
1

72(t) = % —Sl K?(u)du.

Proof. The following result can be obtained by similar calculations to those
carried out earlier

Vb (& n(t) — Edypa(t))

_ 2 (o(t) = s\ ¢ (p7(s)) ~1 -1
= /ol K (B2 ) By oo™ Dbl )
Let us define the following predictable process
-5\ ¢ (o (s
Hyn(s) = nftn K (2=2) £ (1,

and let {M,} denote a sequence of martingales of the form

H1o(2) = | Ho(5)4Mn ™ (5)).

a
~ P
We will show that (M,(z)) —— V(z), where V is non-decreasing and non-

negative function and n — oco. We have
z

(Ma(2)) = §Hn(s)d(Ma(p™'(5)))

q
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o g @ (T (Wb + (1))
- _SIK ) y(o=1(vby + 0(t)))

XJn(p” (vb + p(t))elp ™ (vba + @(2)))dv
"= 20a S K2(w)do = ().

Let {Mn,s}, be the following sequence of martingales

Wne(2) = | Hypm()1{ Hon(s)] > €}dMal(o™(5))

a

It remains to show that

~ P
(Mpne(2)) — 0, when n — oo.
Observe that

(Mne(2)) = [ HQ (8)1{[Hpn(s)] > e}d(Mn(p™"(5)))

g -5\ ¢ (s
P H o) — s\ ¢'(¢71(s))
£ l/bn§K2 ( . ) C N Honl0)] > €} o

because

—s\ ¢ (p~Ys
1{|Hpn(s)| > e} =1 {nK (So(tgn ) ;f)'n((g;*l((s)))) >e nbn}
)

o~ l{K (so(t) - S> de ) nbn}

ba y(p~1(s))
converges to zero uniformly in probability, when nb, — 00 as n — oo.
Finally, all the assumptions of Rebolledo’s theorem ([2]) hold. Thus we have

VT (6. (t) — Edyn(t)) 2 N(0,72), asn — 00 .

5. Reducing the bias

As mentioned before, the Ramlau-Hansen estimator does not give ac-
curate results at the end points of the time interval. The estimator has a
larger bias at the end points than in the interior. A diffeomorphic estimator
might be a solution to this problem. We now consider the order of the bias
for the Ramlau-Hansen estimator (R-H) as well as for the diffeomorphic
estimator. We assume that the function to be estimated is defined on the
interval (0,1). We consider points in the neighbourhood of zero, defined by



456 B. Janiszewska, R. Rézanski

u = Cby, where C € (0,1), thus the points © € (0,b,). Assume also that

Jn(8) £ 1, as n — oo and the functions a and ¢ are twice differentiable.
First we estimate the bias of the Ramlau-Hansen estimator &,

saco = oftx(55) Hgonc]

1
51- jx ( - )a(t)E[Jn(t)]dt

bn(1+C)
| K(C—t/b)a(t)dt
0

IIZi

oo 1
bn
C
S K(v)a(u — vb,)dv

[y

C "
= —S K(v {a(u) — o/ (u)vb, + 2 2(u) (vbn)z} dv + o(b2)

T 4 1a(C) + ol

= a(u)pe(C) — o (wbnp (C) +

where pi(C) = gfl v®* K (v)dv. In this case the bias at 0 is approximately
proportional to b,a'(u) as b, — 0.

Let us choose a diffeomorphism ¢ such that o(u)—by, >a and @(u)+b, <b
for n > mnp. Thus in the case of diffeomorphic estimator &, , we obtain

b
Bagn(@) = 11K (2822) (o (0)ate™ (6))ds

o(u)+bn s
o K (P20 B eate o)s

K (v)a(e™H(p(u) + vby))dv = *x,

where in contrast to the previous case we integrate on the whole support of
the kernel K (i.e [—1,1]). Further, applying Taylor’s expansion we get.

n—00 1

ok v)a [ o (p(u Sl ol Von | 4V
(5.1) —SIK( ) (w (p(u)) + 7o o)) b )d

_ ! b,y Uy a(u) [ vby 2} v + o2
_ SIK(v){a(u)+a(u)(P,(u)+ 32 () o+
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, bn, o"(u) [ by \?
—a(wio(V) + o' (W) (1) + 5 () ) + of8)
_ a"(u) bn \? 2
= a(w) + 55 () (1) + oft2).

The results above give an approximation of the bias for diffeomorphic esti-
mator. It is of the order o (u)b2 /2 for all points u € (0,1), and thus also at
the end points.

6. Simulation results

Computer simulations have been carried out, in order to illustrate the
properties of the diffeomorphic estimator. We assume that failure times
Ti,... Ty, where n = 1000 are observed on the interval (0,1) and data are
generated from

(i) the Weibull distribution with hazard function of the form a(t) = ypt*~!,
where v =1 and p = 0.5,

(ii) the distribution with U? density function f(t) = 0.5¢7%5 for ¢ € (0, 1),
for which the hazard function is of the form Tt([l)_'—s—m'

Additionally these lifetimes were censored by n independent censoring time
Ui,...,Us generated from exponential distribution with the mean 4. We
define T; = min(T},U;) and the indicator of censoring D; = 1{T; = T;}.
In this case, the point process N is of the form N(t) = 2%, 1{T; < t}.
This process counts the total number of failures in the interval (0,¢), where
t € (0,1) and the intensity function is given by A(t) = a(t)Y,(t), where
Yo = 27, 1{T > t}. The process Yy(t) counts the number of elements at
risk of failure just to time ¢. In both cases, we set b, = 0.25, which is of
order n=Y/5 and the kernel K(z) = 3(1 — z?) for z € [—1,1]. We take the
diffeomorphism ¢ to be ¢(z) = log(z/(1 — z)) for z € (0,1).

6.1. Data from the Weilbull distribution

Figurel(a) illustrates the diffeomorphic estimator together with the haz-
ard function for the Weibull distribution and figurel(b) illustrates the be-
haviour of the Ramlau-Hansen estimator for the same model. The oscilations
in the diffeomorphic estimator in the neighbourhood of zero may be caused
by the fact that the variance of the estimator is larger at the end points of
the interval. It can be seen from these graphs that the diffeomorphic estima-
tor approximates the hazard function well on the entire domain, in contrast
to the R-H estimator, which gives a poor approximation, especially in the
neighbourhood of zero. The results obtained by simulating the bias of both
estimators (Figs. 2(a) and (b)) are a confirmation of this fact. It can be
seen that the bias of the R-H estimator (Fig.2(b)) is of much higher order,
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a) b)

Figure 1. (a) The estimator &n, (solid line) and true hazard rate function (dashed line),
(b) The Ramlau-Hansen estimator (solid line) and true hazard rate function (dashed line).

a) b)

02 0 00 02 04 08 08 10

84

60 02 as

Figure 2. (a) the expected value of estimator &y, n(dashed line), bias(solid line), (b) the
expected value of estimator R-H (dashed line), bias(solid line).

especially in the neighbourhood of zero, than the bias of the diffeomorphic
estimator (Fig. 2(a)). The difference in the bias is much less noticeable in
the neighbourhood of 1. The bias of the diffeomorphic estimator is about
0.02, whilst the bias of the R-H estimator is about 0.3.

6.2. Data from the U? distribution

Figures 3(a) and 3(b) illustrate the diffeomorphic and R-H estimators,
respectively, in the case of the U2%-density. The hazard rate function in this
case has two poles at 0 and at 1. Figures 4(a) and 4(b) give approximate
values for the expected value and bias of these estimators. Since these graphs
do not illustrate the behaviour of the estimators in the neighbourhood of
zero well, figures 3(b) and 5 present the same estimates, but in this case
restricted to the interval (0,0.1).

The quality of the simulation can be improved by choosing an appropri-
ate value of the parameter b,, depending upon the realisations of the failure
times T;. The method of cross-validation can be used to choose the optimal
value of the parameter.
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a) b)
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Figure 3. (a) The stimator dn, (solid line), the estimator R-H (dotted line) and true
hazard rate function (dashed line), (b) as above, but on (0,0.1)
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Figure 4. (a) the expected value of estimator & n(dashed line), bias(solid line), (b) the
expected value of estimator R-H (dashed line), bias(solid line).
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Figure 5. On (0,0.1):(a) the expected value of estimator &, »(dashed line), bias(solid line),
(b) the expected value of estimator R-H (dashed line), bias(solid line).
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