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Abstract. The paper presents some recent developments in the theory of permanents
for random matrices of independent columns. In particular, it is shown that the theory in a
natural way incorporates and extends that of U-statistics of iid real random variables. An
extension of the famous martingale decomposition (or H-decomposition) for U-statistics
to a certain class of matrix functionals, which includes in particular a classical permanent
function, is given.

1. Introduction

Let A = [a;] be a real m x n matrix with m < n. The permanent of
matrix A is defined by

m
Per A def Z H Qs i,

1<iy #. Fim<n s=1

The permanent function has a long history, having been first introduced
by Cauchy in 1812 in his celebrated memoir on determinants and, almost
simultaneously, by Binet (1812). More recently several problems in statisti-
cal mechanics, quantum field theory, and chemistry as well as enumeration
problems in combinatorics and linear algebra have been reduced to the com-
putation of a permanent. Unfortunately, the fastest known algorithm for
computing a permanent of an n X n matrix runs, as shown by Ryser (1963),
in O(n2") time. Moreover, strong evidence for the apparent complexity of
the problem was provided by Valiant (1979), who showed that evaluating a
permanent is #P-complete, even when restricted to 0 — 1 matrix.
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In this work we will be concerned with a random permanent function
which often arises naturally in statistical physics or statistical mechanics
problems, when the investigated physical phenomenon is driven by some
random process, and thus is stochastic in nature. In the present paper we
develop the idea of approximating a certain large class of random functionals
(which contains in particular a random permanent function) by a sum of
uncorrelated martingales. Based on this representation we further develop
a method for the (stochastic) approximation for the members of the class
by a sum of certain iid random variables. The method is closely related
to that used in approximating generalized averages, or so called U -statistics
and in fact can be viewed as its natural extension. The paper is organized as
follows. In the reminder of this section we briefly recall some basic facts from
the general U-statistics theory (for details see, for instance, Lee 1990), in
Section 2 we define the class of random functions of interest as well as state
the result on their decomposition into a sum of uncorrelated martingales. In
Section 3 we use this decomposition to obtain the variance formula which
in turn enables us to prove the approximation result.

1.1. U-statistics

Let Y3,...Y; be equidistributed, independent random elements taking
values in some metric space Z and let h(k)(yl, ...,Yx) be a measurable and
symmetric kernel function h®) : T8 — R. We shall also assume that k < !
and, whenever it doesn’t lead to ambiguity, we shall write &, in place of QN

For any such h we define a symmetrization operator =i (k) as

(1) Y T A, Y

1<51<... <8, <1

and a conditional expectation of h with respect to o(Y1,...,Ye)
d
he ™ E(ho(vi,...,Y)
fore=1,...,k—1.

DEFINITION 1. For any kernel function h we shall define a corresponding
U -statistic Ul(k)(h) as

om = (1) o

In the sequel, whenever it is not ambiguous, we shall write Ul(k) for Ul(k)(h).

One of the most important tools in investigating U-statistics is the so
called H-decomposition. We give its quick overview below. Let B(Z) denote
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the Borel o-field in the metric space Z. For any probability measure Q;
(1 <i<1)on (R,B(Z)) we define

Q- Quh [ (R, ..., 06) Q1 (1) - - - Qi (v).

Now, by expanding the simple identity (where 6, is a Dirac probability
measure at z and P is the distribution law of the Y’s)

k
h(yly"'7yk) = H(5yi - P+P)h‘

i=1
in a “binomial-like” fashion and noting that the appropriate operators com-
mute, we arrive at the identity

k
(2) h(Y1,...,Yi) — ER(Y3,...,Y) =Z7r§(gc)
where

oo ) oo 120) T (6un(dzs) — Pdzs)).
T s=1

Let us note that forc=1...%k the gc’s are symmetric functions (often called
canonical), satisfying

(3) {gc(y1, .- ye1,2)P(dz) = 0.
z

The direct application of the identity (2) to the kernel h along with the
change of the order of summation gives the H-decomposition formula of
Hoeffding (cf. e.g., Lee 1990)

k
k
) u® _py® =3 (c) Uss
c=r

where

def [1\7?
v () o

= (i)—l > Yy, Vi)

1<61 <. <<l
and 1 <7 < k. The number r —1 is usually called the degree of degeneration
of U( ) , whereas k — r + 1 is known as the order of Ul(k). We say that U(k)
is of mﬁnite order,if k—r+1—> o00asl— oo.
The most important features of the H-decomposition are the properties

of its components U;. More precisely, under our assumptions on: the Y's,
for a fixed ¢ > 1,
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() Ue, is itself a U-statistic with kernel function g.
(ii) Define Fc; = 0{Ucys, Ucit1, ...} Then
E(Uc,llfc,l+1) = Uc,l+1 , Yi=lglg+1,...
That is, (Uei, Fei)i=io,io+1,.. 18 a backward martingale.
(iii) Additionally, we also have
Cov(U¢, 1, Ucyy) =0 for ¢; # ca.
For the proof of the last two properties, see e.g., Lee (1990).

1.2, U-statistics and random permanents

An obvious connection between the permanent and the U-statistic has
been noted first by Borovskikh and Koroljuk (1994) and may be described as
follows. Let X3,..., X| be iid real random variables with a finite coefficient
of variation +.

Observe that for k x | matrix obtained from k row-replicas of [ X7, ... X]]
(one dimensional projection matriz)

Pe’rxdg Per XX K =k!7ffc(HXi)°
................. e
X1 X2 Xl '
Equivalently,
A k
(5) k! 1(k) PerX = P

def (N7 /T
= (k) Wk(HX,-).
i=1
Thus, a normalized permanent of a one dimensional projection matrix
may be viewed as a U-statistic Pl(k) corresponding to the product kernel
h=xy - -zp.
Based on the above observation, one can show with the help of the H-
decomposition that for permanents of one dimensional projection matrices
we have the following

PROPOSITION 1. (van Es and Helmers 88 and Borovskikh and Koroljuk 94)
Let X be an k x | projection matriz and let N(a, 3) and LN (o, 8) denote
respectively, the normal and the lognormal laws with mean o and variance

8. Furthermore, let B denote convergence in law:
(i) If k3/1 — O then

Vi ( PerX

& E PerX B

D 2
k 1)—»/\/(0,7).
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(i) If K2/l = X > 0 then
PerX p
—_
E Per X

(i) If k?/l — oo then no limit exists.! .

LN (=22 /2, 27%).

The above theorem indicates that the limiting behavior of the random
permanent function depends on the relationships between the dimensions of
the matrix. Further, it also points out that for some special types of matrices
the theory of U-statistics of infinite order may provide some insight into
the behavior of the random permanent. This was first noticed by Rempala
and Wesolowski (1999) who have used the idea to derive an analogue of
Proposition 1 for the random permanents based on matrices of iid entries.
We shall further expand on this concept in the next section.

2. P-statistics

DEeFINITION 1. For the sake of simplicity consider in the sequel Z = R and
let X be a real random matrix of m rows and n columns with m < n.
Denoting the i-th row vector by X(;) and the j column vector by X ) we

have
X= [X(1)> e >X(m)]

=[xD ... x®)]

Throughout the reminder of the paper we shall assume the following
about the structure of X:

(A1) Xy, --,X(m) are obtained from the first n elements of exchangeable
sequences (X1,;);>1,--.,(Xm;)j>1, equidistributed with the probabil-
ity law £, and

(A2) XU ... X™ are obtained from the first m elements of independent
sequences (X;1)i>1,- - -, (Xin)i>1, equidistributed with the probability
law L,

where L. and L, are some (possibly different) probability laws in the space
of infinite sequences.

DEFINITION 2. For a given kernel function h the generalized permanent func-
tion Pery X is defined as

Peth: Z h(Xl,j1)X2,j2,"‘7Xm1jm)'
1< 1 A jm<n

1That, is there exist no sequences of real numbers ar and by, such that an(Per X —bn)
converges in law to a non-degenatate random variable.
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(IFrh=T12 v then Perp, X = PerX). A corresponding P-statistic is then
defined as (m) Perp X /m!.

Note that in the case of the one dimensional projection matrices the
above definition reduces to that of a U-statistic from Definition 1, in view
of the relation similar to (5) extended now to an arbitrary kernel h.

2.1. Martingale decomposition of a P-statistic

In the sequel let us denote by X(1,...,4lj1,...,Jq) @ sub-matrix of X
consisting of the entries at the intersections of the rows iy,...,%, and the
columns jq,. .., jq.

Let us note that since Pery, X is a symmetric real function with respect
to both the rows and the columns of X we may define the row and column
versions of the symmetrization operator (1)

mPe’th(pl ) def Z PeTh X(ilw")ipl')?

1<i1<...<ip<m

d . .
mg Perp X(lq) = lef Z Pery, X(+|j1,- -, Jq)-

1< <. <Gg<n
By the Laplace expansion formula for permanents (cf Minc 1978 chapter 2)

(6) Perp, X = 7y Pery, X(1,2,...,m|m).

Thus, in order to decompose PerpX, we will first decompose
PerpX(1,2,...,m|j1,J2,---,Jm) Assuming for convenience that Eh = 0
(or taking h = h — Eh in the sequel), let us consider o = (¢ (j1), - . -, (jm)),
some fixed permutation of the set of m column numbers {ji,...,Jjm}

For given o, denoting h(X1 4(j,)» - - - » Xm,o(jm)) DY, 525, B(W1,..., Wn|o)
we have by Hoeffding’s theorem

h(Xl,a(j1)7 ey Xm,U(jm)) = h(Wl, ey WmIO') = Z ’ﬂ';n'(gclO')

where

gc(wl,...,wc(0)=5 S (21,. zm|a)H ,(dzs)—P(dz,)) [ P(dzs).

R R s=c+1

In view of the above, the decomposition of PerpX(1,2,...,m|
J1,Jd2,--.,Jm) can be obtained as follows
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Pery, X(l, 2,...,mlj1... ,jm) = Z h(Xl,a(jl)y X2,¢7(j2)) e )Xm,a(jm))

= 23w ado) = o (o)

o c¢c=1

—Zvr Perg, X(cljs - -, jm).

Thus,
Pery X = mp Perp X(1,2,...,m|m)
= Y Per,X(1,2,...,mlj1,...,im)

1< <. <jm<n

m
= z Z'/r;"Pergc X(c|gry---sJm)

1<51<...<jm<n c=1

= Z Z ZPerg 11,---a7:c|j1;-'-;.7'm)

1<j1<...<jm<n 1<151 <...<tc<mc=1

m n_c . . . .
= (m— C) (m —c)! > > Perg X(in, ... dcljt, -y dc)

1< <. <jm<n 1<61<... <t <M

def e [N —C

" -

= E < ) (m — e\t ainl* Pergy, X(c|c),
Z\m—c

where the last expression is a definition. Re-writing the above as

m -1
Perp X = Z m! ( " ) (Z) womy Perg, X(clc)/c!
c=1

m

and denoting

-1 -1
(7) ymm) %! (’Z) (") T an Pery, X (clc) /!

c
-1 -1
= (T:) (TCL) wyme Perg, X(clc)/c!

THEOREM 1. Under our assumptions on X, suppose that a kernel h satisfies
Elh| < 0o. Then

n -1 o (™ (m, 'n)
(m) (Perp X — EPery X)/m! =) ( . ) U™ .

c=1

we obtain

REMARK. If X is a one dimensional projection matrix then the P-statistic is
simply a U-statistic and the above reduces to the H-representation theorem.
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Let us also note that for any fixed ¢ > 1 the component U( ") i simply
a symmetrization (with respect to the rows and the columns of X) of a
P-statistic with a kernel function g. based on a ¢ x ¢ submatrix of X.

Our next result is the P-statistic version of the result for classical per-
manent function obtained in Rempata and Wesotowski (2000Db).

PROPOSITION 2. Assume m = my, is a non-decreasing sequence in n. Under
our assumptions on the entries of the matriz X, for a fired ¢ > 1

(i) if we define F™ = o{U(m"’n) Upemtl Y then
BU{mm|FntD)y = gmastntl - oyn =g ng+ 1.

that is, (Ug, (m,n) fc(n))nzno,noﬂ,m is a backward martingale.
(i) Additionally, we have also
C'ov(U(m ™\ U, m”)) =0 for ¢1 # ca.

Proof. (i) Let us denote an element of the Hoeffding-like decomposition (7)
of an m, X n matrix obtained from the m,4; X (n 4+ 1) matrix by deleting

the my 1 — my, rows, say, l1,...,ln,,,—m, and deleting the k-th column by
U™ (1, by —mns K), e
(m n) def RAAN c.-1
U " (ll’ mn+l mny k) = c c (ue!)™"x
X > > Perg, X (i1, ..., clj1, - -+, je)-
1<i1 <...<ic<muq 1<j1<...je€n+1

Gityeric} Oy —ma} =0 k€ {1,050}

Observe that
n+1

3 3 UL (U, by mmans ) =

k=1 1Sl1<--~<lmn+1—mn5mn+l

mn+1—c) n+l—c 11 me
= Ty Te e ' Perg, X(c|c)/c!.
("2 ) Ty e ey, X(ele)/
Since ( TntlTe ) (Me)7l = (m"+1) (™n+1) 7! the above entails

Mpg1—Mn c my

n+1

(8) Z Z Ug(:‘nn,n) (ll’ v ’lmn+l_mn; k)

k=1 1< <"~<lmn+1—mn <Mp41

—(n+1) <mn+1) ymermt),

e
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Let us note that in view of our assumptions (A1)-(A2) it follows that the
conditional distribution of U™ ™ (I1, ..., lm.,,—mn; k) given F*+ is the

c

same for any particular choice of k € {1,...,n+1} and {l1,...,lmpy1-ma} C
{1,...,mp41}. Consequently,

EUI™ (11, .. g gy —mo; K)FEOD] =

= E[Ué:nn,n)(n +1,n+2,...,mpp1;n+ 1) FP)) = E[Ug(:n,n) FD),

which entails
n+1

® E[ 2 2 uimm (U, lmn+1_mn;k)|.7-'c("+1)]

k=1 15l1<"'<lmn+1—mn <Mnpt1

(10) = (n+1) (m"“) E(U{mmm)| Fn+D),

My

But on the other hand, in view of the identity (8) we have that (9) is equal
to

Mpt1 (Mmng1,n+1)| £(ntl)y (m"+1) (Mnt1,n+1)

11 1 E(U,Mn+ F, = 1 U
(1) (1) (") B OLE ) = ) (T ) U
Comparing the expression (10) with that at the right-hand side of (11), we
arrive at ().
In order to show (7i) it is enough to show that for ¢; # c; we have
Cov [r0imy, Perg, X(c1ler), g, Perg, X(cale2)] =0

which will follow if we can show that for any pairs of fixed sets of rows
{21, ,ie, }, {k1,. .., ke, } and columns {j1,...,5¢, }, {l1,---,lc;} we have

(12) Cov[Perg, X(i1,. .- ,ic,|d1,- s Jer), Perg. X(K1, ... keyll1, ..oy 1c;)] = 0.

Consider an arbitrary pair of fixed sets of rows {i1,...,%c,},{k1,..., kcp}
and columns {j1,...,7¢ }, {l1,---,lc; }- Let us note that by the linearity

COU(PeTgCX(ilv---,iclijla---,jcl),PeTgcx(kly---akczlll,“-alca))
= Y E(gc(Xh,a(jl),---:Xicl,a(jcl)) gc(Xkl,a(ll)v---’Xk52,a(152)))

Tcqs Ocy
where the summation is taken over all respective permutations o, of
{71,.--,Je } and o¢, of {l1,...,lc,}. Since ¢; # c; we may assume without
loosing generality that ¢; > cg. It follows that there exist at least one col-
umn js € {j1,--.,Jc, } such that js & {l1,...,1,}. But by the assumption of
the independence of columns and the property of canonical functions (3) the
standard conditioning argument implies now that all the summands above
are zero and thus (12) follows. The proof of the proposition is complete. =

Let us provide a simple example of the application of Theorem 1.
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EXAMPLE (Random permanent decomposition). Let EX;; = p # 0 and
consider the kernel h(yi,...,ym) = [T/~ ¥i. Then

c

9c(y, - ve) = [[ (v — ) u™ ¢

i=1

and by Theorem 1 we have

ﬂ_ =1+ i (m) Uc(m,n)’

(’1':1) m!#’m c=1

n n\ 7! /m\1 _
Uém, ) — <c) (C) ) 1
Z Z PC’I‘ [X":ujv]u= 1,..., c?

1<61 <. <he<m 1<51<... <l v=1,...,¢

for Xij =Xy —p)/p, (i=1,...,m, j=1,...,n).

where

3. Approximation of a P-statistic
3.1. The variance formula

Using the representation of Theorem 1 we shall prove here a general
approximation theorem for P-statistics. In order to do so we shall need the
expression for the variance of a P-statistic given by the following

THEOREM 2. (The variance formula for P-statistics) Under our assumptions
on X let us suppose Eh? < oo then forc=1,...,m

-1 -1 ¢
(mm) ") (m) (m"") D(er)
VarUe (c c rgo c—7 7!

where

def o [T —
D(c,r) lef <l) (-1) lpc,l
1=0

forr=20,1,...,c and
d
Pe,i 2 [gc(Xu, vy Xty X415 Xige) X
ge(Xa1, -, X X1 - Xioe)|
where iy # ji fork=1,...,c—1l+1and 1 =0,...,c

Let us note that for the classical permanent function the above result
reduces to that obtained in Rempala and Wesolowski (2000a). Let us also
note that it implies, in particular, that if the rows of X are also independent,
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then
D(c,r)=0 wunless r=c

and, since p(c, c) = Varg,, that

-1 -1
Var (Uézn'”)) = (T) (:) V(ch,

which entails (by orthogonality)

m m
Var (Peth) _ Z (ﬁ) Vargc'

(m)mt) = ()

Again, in a special case of random permanent function, this particular
formula has been obtained by Rempata and Wesolowski (1999) by means of
quite involved combinatorial calculations.

On the other hand if X = X (one dimensional projection matrix) then
we have

D(c,r)=0 wunless r=0

and we obtain the standard variance formula for U-statistics (cf. e.g., Lee
1990)

Pery X\ _ 3= ()
V‘“’( ) )‘Z iy Vo se

Let us now prove Theorem 2.

Proof. First, let us note that by Proposition 2 it follows that

Var Ufmm 4+ 3 (m) (m) Cov (U™, U™

c=1 ) 1< #c2<m G c2
m e\ 2
:Z ) Var U™
Ge
C
c=1

Now,forc=1,...m
2 2
(n) (m) ?Var Ué:"’") = Var n}n*Pery, X(clc)

c c
= Z Var( Z Pe"gc[Xiuju]u_—.l,...,c)

1<51<...<Je<n 1<i1<...<ic<m v=1,...,¢

since, by independence of columns of X, we have (cf. also the proof of part
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(1) of Proposition 2)

CO’U( Z Pergc[Xiujv]u=1 ceaye? Z Pergc[Xiulv]u=l,...,c)=0

1<i1<...<i.<m =1,...,c 1<i1<...<i.<m v=1,...,¢

if Oniy {jl) v ajc} :lé {lla tey lc}
Since the columns of X are identically distributed, the latest expression
simplifies to

2
(n> (m) PVarUM™ =Var (Y Perg[Xigluoy,...)-

C C . .
1<i1 <. < <m i=1,...,¢

Let us note that the number of pairs of ¢ x ¢ submatrices of X having
exactly k rows in common equals () () (T_"kc), for max(0,2c—m) <k <,
and each such pair has equal covariance (since the row vectors of X are
identically distributed). Hence, for given ¢, the above right-hand side can be
written as

(0,2 )

c k c—k

k=max(0,2c—m)

x Cov (Pergc[X'ij]iz1,...,k,ik+1,...,ic ’P"gc[XiJ']i=1,...,k,tk+1,...,tc)

i=1,...,¢c i=1,...,¢c

where {ig11,-. -0} N {lgs+1, -5} = 0.
Observe that each term of the above sum is itself a sum of the partial
covariance elements of the form

E [gc(X,-lyl, e aXiz,la Xil+1,l+1 e ,Xic,c) gc(Xil,l, ey Xi;,l’ Xj1+1,l+1 ey ch,c)]

where 7;41,...,%. and j41,...,Jc are fixed non-overlapping subsets of
{L+1,...,m} for some 0 < [ < k. By the assumptions about the en-
tries of the matrix X it follows that the partial covariances having exactly
1 (0 £ 1 < k) elements in common are the same and equal to

Pecl =
E [gc(Xn, o Xut X g1 o5 Xigie) 9e(Xan, o Xuty Xy g1 - - - ch,c)] .

Now, to compute the covariance of such k& x ¢ permanents it suffices to
find the number of pairs of c-tuples of arguments of the function g, with
exactly ! elements in common, (0 < ! < k < ¢). Observe that it equals
to the number of pairs of c-tuples having exactly | common elements in a
permanent of the matrix k x ¢, multiplied by (c — k)!* — the number of all
possible permutations of ix41,...,% and lgy1,..., L.
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To compute the number of pairs of c-tuples with exactly ! elements in
common let us start with finding the number of c-tuples present in the
defining formula for Perg, Y[k, c], where Y[k, c| is a k x ¢ matrix, having
exactly ! elements in common with the diagonal entries y1i...ygg. First,
we fix [ factors in (’f) ways. If we assume that yi1,...,y; are fixed, then
the remaining factors, in the c-tuples we are looking for, have to be of the
form Y4151y -+ Yk, Where jr # 7,7 =1+1,..., k. Finding the number
of such c-tuples (say, R;(k,c)) is equivalent to computing the number of
summands in a permanent of the matrix of dimensions (k—{) x (c—!) which
do not contain any diagonal entry. To this end, we subtract the number of all
summands having at least one factor being the diagonal entry, from the total
number of all summands in that permanent. Using the exclusion-inclusion
formula we get that

Rtk = (1) - S () (£ ) -

j=1

where the absolute value of the j-th member of the above sum denotes the
number of c-tuples having exactly j factors being the diagonal entries (equal
to the number of choices of j positions on the diagonal) multiplied by the
number of c-tuples of kK — [ — j factors from the outside of the diagonal
(equal to number of c-tuples in the permanent of the matrix of dimensions
(k—1—j) x (c=1—7j)). Thus, in a slightly more compact form,

(14) Rz(k,c)=§(—1)j(k;l>(;iéi;)(k—l—j)!.

Consequently, the number of pairs of c-tuples in Per Y[k, ¢] with exactly
[ factors in common equals to

(Z) Kl ('l“) Ru(k, ).

Hence, combining the above formula with an earlier one for the number
of pairs of c-tuples with [ identical factors we arrive at

COU<PeTgc[Xij]i=1,...,k,ik+1,...,ic7Per9c[Xij]i=1 ..... k,l,,_H,...,lc) =

ji=1,...,¢c i=1,...,¢

= (c— k)P i (;) k! (';) peiRi(k, c).

1=0

Now, returning to the formula for the variance of U_,g:"'n) we obtain
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by (14)
> (3)(2) v
1 k

=5 Z (2)2 (Tcn-_kc) Be~RE 2 (1;) pet Ralk )

k=max(0,2c—m) =0

- (MOS() Aoen

k=max(0,2c—-m) =0

:o (?) peiRi(k,c) = i (k> pczrz_: (]::f) (Z::) (k—r)!

(o) e ()2 (7) oo

_i(c—r) .D(c T).

Observe that we can further simplify the expression (15), since
- m—c\ <~ (c—r\ D(c,r)
Z c—k Z k-r r!
Ic—max(O 2¢~m) =0
D(cr) < m—c\ (c—1\ = (m-r\ Dcr)
—Z Z (c—k)(k—r)_z(c—r) rt

r=0 k=max(r,2c—m) r=0

o

il
M I
Il = I

where the last equality follows by applying the hypergeometric summation
rule for the inner sum. Thus, we can rewrite (15) as

-1 -1 ¢
(man) _ (P m) (m—r) D(c,r)
Var Uy, (c) (c Z c—r rl

r=0

which along with (13) completes the proof. =

3.2. Approximation theorem

With the just derived variance formulas for the components of the or-
thogonal decomposition, we are now finally in a position to state as our last
result the following simple approximation theorem for P-statistics.

THEOREM 3. (Approzimation Theorem for P-statistics). Suppose m//n—0
asn — 00, Eh? < 00 and g1 = hy — ER # 0 and 3M st. forc=1,2,3,...

Vr<e D{c,7) < M€ < oo0.
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Then Perp X 1
er, m
==Y g1(X Y.
(m (Mym! Eh n 9l ])+Op(\/ﬁ)

REMARK. In particular, if h(yi1,...,ym) = [[i=,; ¥; and Eh = p # 0 then
[91(Xi;)] = p™[Xi; — p] and thus the above formula provides the ap-
proximation for the classical permanent function since then we may take
M =Var (X 11).

Proof. The result is a simple consequence of Theorems 1 and 2 since for
c=1 . .
def fm\ =~ [n\~
o () (1) et Per, Xl

1
= 2 1(89)
ij
and thus by Theorem 1

W_Eh_ 291 zij) + Rmp.

To complete the proof it is enough then to show R, , = 0p(m/+/n) which
will follow if we can argue that

%Var Ryppn—0
m

as n — oo and m?/n — 0. Since under the assumptions of the theorem we

have
-1 -1 c -1
(mp) _ (T m) (m—r) D(c, 1) < (n)
VarUy’ (c) (c 1;0 c—r a1 S, exp(M)
as (TZ__:) < (T) for (1 <7 < ¢ < m) and by Theorem 2
2V ar R = — Z( ) Var Ufmm
m\?2 /n\!
< — M
- m2exP( )(;(c) (c)
n ™ (m?\° 1
in view of
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Consequently,

n m? I (m2\ 7 1
;1—2Var Rnn < exp(M)—T;- Z (—) — =0,

!
=2 n c:

since the sum above is bounded by a constant and m?/n — 0. =
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