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Abstrac t . The paper presents some recent developments in the theory of permanents 
for random matrices of independent columns. In particular, it is shown that the theory in a 
natural way incorporates and extends that of U-statistics of iid real random variables. An 
extension of the famous martingale decomposition (or H-decomposition) for U-statistics 
to a certain class of matrix functionals, which includes in particular a classical permanent 
function, is given. 

1. Introduction 
Let A = [ojj] be a real m x n matrix with m < n. The permanent of 

matrix A is defined by 
m 

Per A d ^ £ n ^ -

The permanent function has a long history, having been first introduced 
by Cauchy in 1812 in his celebrated memoir on determinants and, almost 
simultaneously, by Binet (1812). More recently several problems in statisti-
cal mechanics, quantum field theory, and chemistry as well as enumeration 
problems in combinatorics and linear algebra have been reduced to the com-
putation of a permanent. Unfortunately, the fastest known algorithm for 
computing a permanent of an n x n matrix runs, as shown by Ryser (1963), 
in 0 (n2 n ) time. Moreover, strong evidence for the apparent complexity of 
the problem was provided by Valiant (1979), who showed that evaluating a 
permanent is #P-complete, even when restricted to 0 — 1 matrix. 
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In this work we will be concerned with a random permanent function 
which often arises naturally in statistical physics or statistical mechanics 
problems, when the investigated physical phenomenon is driven by some 
random process, and thus is stochastic in nature. In the present paper we 
develop the idea of approximating a certain large class of random functionals 
(which contains in particular a random permanent function) by a sum of 
uncorrelated martingales. Based on this representation we further develop 
a method for the (stochastic) approximation for the members of the class 
by a sum of certain iid random variables. The method is closely related 
to that used in approximating generalized averages, or so called U-statistics 
and in fact can be viewed as its natural extension. The paper is organized as 
follows. In the reminder of this section we briefly recall some basic facts from 
the general [/-statistics theory (for details see, for instance, Lee 1990), in 
Section 2 we define the class of random functions of interest as well as state 
the result on their decomposition into a sum of uncorrelated martingales. In 
Section 3 we use this decomposition to obtain the variance formula which 
in turn enables us to prove the approximation result. 

1.1. [/-statistics 
Let Yi , . . . Yj be equidistributed, independent random elements taking 

values in some metric space X and let h^k\y\,..., yjt) be a measurable and 
symmetric kernel function h^ : Ik —> R. We shall also assume that k < I 
and, whenever it doesn't lead to ambiguity, we shall write h, in place of hik\ 

For any such h we define a symmetrization operator irlk(h) as 

for c = 1 , . . . , k — 1. 

DEFINITION 1. For any kernel function h we shall define a corresponding 
U-statistic Uik\h) as 

l 

In the sequel, whenever it is not ambiguous, we shall write u\k) for u\k\h). 

One of the most important tools in investigating [/-statistics is the so 
called H-decomposition. We give its quick overview below. Let B(X) denote 
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the Borel <7-field in the metric space 2. For any probability measure Qi 
(1 < i < I) on (ii, B{2)) we define 

Qi • • • Qkh h{yi,...,yk) dQi(yi) • • • dQk{xk). 

Now, by expanding the simple identity (where 8X is a Dirac probability 
measure at x and P is the distribution law of the Y's) 

k 
h ( y i , . . . , y k ) = 1[[(6yi-P + P)h 

i=l 
in a "binomial-like" fashion and noting that the appropriate operators com-
mute, we arrive at the identity 

k 
(2) h(Yx,..., Yk) - Eh(Yu ..., n) = £ 7T k

c(gc) 
c=1 

where 
c 

9c{y\, • • • ,|fc) d - \ • • • \ hc(zi, ...,zc) - P(dzs)). 
I I 5=1 

Let us note that for c = 1 . . . k the <?c's are symmetric functions (often called 
canonical), satisfying 

(3) \gc(yi,...,yc^,z)P(dz) = 0. 
I 

The direct application of the identity (2) to the kernel h along with the 
change of the order of summation gives the ii-decomposition formula of 
Hoeffding (cf. e.g., Lee 1990) 

(4) U ^ - E U [ k ) = j 2 ( k
c ) u c , i 

where 

Uc,l =f 

I ) 1 £ gdYit, 
l<il<...<ic<l 

and 1 < r < k. The number r — 1 is usually called the degree of degeneration 
of u j h \ whereas k — r + 1 is known as the order of U ^ . We say that 
is of infinite order, ii k — r + 1—>ooasZ-^oo. 

The most important features of the ii-decomposition are the properties 
of its components Ucj. More precisely, under our assumptions on the y ' s , 
for a fixed c > 1, 
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(i) U c j is itself a [/-statistic with kernel function gc. 

(ii) Define = a{UCil, Uc,i+i, • • •}• Then 

E{UCii\JrCji+1) = UC}[+1 , VI - l0, lo + 1, • • • 

That is, {U C t i , J r C j i ) i = i 0 t i 0 + i s a backward martingale. 

(iii) Additionally, we also have 

Cov(UCuU UC2,i) = 0 for ci ^ c2. 

For the proof of the last two properties, see e.g., Lee (1990). 

1.2. [/-statistics and random permanents 
An obvious connection between the permanent and the [/-statistic has 

been noted first by Borovskikh and Koroljuk (1994) and may be described as 
follows. Let X\,... ,Xi be iid real random variables with a finite coefficient 
of variation 7 . 

Observe that for k x I matrix obtained from k row-replicas of [X i , . . . Xi] 

(one dimensional projection matrix) 

PerXd=f Per 

Xi 

Xi 
X 2 

X2 

xt-} 

Xi 

.Xi Xi Xx 
¿=1 

Equivalently, 

(5) A;!"1 

- 1 
Per X = Pt 

def 

(k) 

I 

k 4 
¿=1 

Thus, a normalized permanent of a one dimensional projection matrix 
(k) 

may be viewed as a [/-statistic P{ ' corresponding to the product kernel 
h = x\---xk. 

Based on the above observation, one can show with the help of the H-
decomposition that for permanents of one dimensional projection matrices 
we have the following 
PROPOSITION 1. (van Es and Helmers 88 and Borovskikh and Koroljuk 94) 

Let X be an k x I projection matrix and let N{a,($) and CAf(a,(3) denote 

respectively, the normal and the lognormal laws with mean a and variance 

j3. Furthermore, let ^ denote convergence in law: 

(i) If k2/l -* 0 then 

VI / PerX _ > 

~k V E Per X ~ 

D 
A/"(0,72). 
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(ii) If k2/l —v A > 0 then 

PerX D 

EPerX 

(Hi) If k2/1 —> oo then no limit exists.1 

£AT ( -A 7 2 /2 ,A 7 2 ) . 

The above theorem indicates that the limiting behavior of the random 
permanent function depends on the relationships between the dimensions of 
the matrix. Further, it also points out that for some special types of matrices 
the theory of ¡7-statistics of infinite order may provide some insight into 
the behavior of the random permanent. This was first noticed by Rempala 
and Wesolowski (1999) who have used the idea to derive an analogue of 
Proposition 1 for the random permanents based on matrices of iid entries. 
We shall further expand on this concept in the next section. 

2. P-statistics 
DEFINITION 1. For the sake of simplicity consider in the sequel X = R and 
let X be a real random matrix of m rows and n columns with m < n. 

Denoting the z-th row vector by X^ and the j column vector by X^ we 
have 

Throughout the reminder of the paper we shall assume the following 
about the structure of X : 

( A l ) . . . , X ( m ) are obtained from the first n elements of exchangeable 
sequences • • •, (^m, j ) j> i i equidistributed with the probabil-
ity law Cr and 

(A2) 
are obtained from the first m elements of independent 

sequences (-X"i ) i ) j>i , . . . , (Xi < n ) i> i , equidistributed with the probability 
law £ f , 

where £ c and C r are some (possibly different) probability laws in the space 
of infinite sequences. 
DEFINITION 2. For a given kernel function h the generalized permanent func-

tion Perh X is de f ined as 

Perh X = H x i , j i . x2,j2' • • • > Xm,jm)-

1That, is there exist no sequences of real numbers an and bn such that an(Per X — fcn) 
converges in law to a non-degenatate random variable. 
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(If h = UT=x Ili then Per^ X = P e r X ) . A corresponding P-statistic is then 
defined as P e r h X / m \ . 

Note that in the case of the one dimensional projection matrices the 
above definition reduces to that of a {/-statistic from Definition 1, in view 
of the relation similar to (5) extended now to an arbitrary kernel h. 

2.1. Martingale decomposition of a P-statistic 
In the sequel let us denote by X(«i , . . . , i p \ j \ , • •• , j q ) a sub-matrix of X 

consisting of the entries at the intersections of the rows i \ , . . . , i p and the 
columns j i , . . . , j q . 

Let us note that since Pern X is a symmetric real function with respect 
to both the rows and the columns of X we may define the row and column 
versions of the symmetrization operator (1) 

n™PerhX(p\-) =f ] T PerhX(h,.. .,tp[-), 
l<ii<...<ip<m 

t t J P e r h X ( - \ q ) ^ £ Perh X ( - \ j l t . . . , jq). 
l<jl<-<jq<n 

By the Laplace expansion formula for permanents (cf Mine 1978 chapter 2) 

( 6 ) PerhX = 7r^PerhX(l,2,...,m\m). 

Thus, in order to decompose Perh X, we will first decompose 
P e r h X ( l , 2 , . . . ,rn\ji,j2, • • • , j m ) Assuming for convenience that Eh = 0 
(or taking h = h — Eh in the sequel), let us consider a = (<r(ji),..., cr(jm)), 

some fixed permutation of the set of m column numbers { j \ , . . . , j m } . 

For given a, denoting h { X l M ] l ) , . . . , X m ^ j m ) ) by, say, h(Wx,..., W m \ a ) 

we have by Hoeffding's theorem 
m 

h ( X h < 7 i j l ) , X m M j m } ) = h ( W 1 , . . . , Wm\a) = *?{9c\v) 
c= 1 

where 
c m 

gc(w1,...,wc\a) = \ \ h ( z i , . . . , z m \ a ) Y [ ( 6 W 3 ( d z s ) - P ( d z s ) ) JJ P(dz3). 
R R 5 = 1 S = C + 1 

In view of the above, the decomposition of Per-^X(1,2,. . . ,m\ 
hi32^ • • • > jm) can be obtained as follows 
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PerhX( 1,2,.. .,m\ji.. . , j m ) = E^^MjO'^M^)' • • •>Xm,<r(jm)) 
a 

m m 

= EE^Okk) = E^iE^ck)) 
a c=l c=l a 
m 

= E n?Per9c X(c|jl . . . , j m ) . 
c= 1 

Thus, 

PerhX = n?nPerhX(l,2,...,m\m) 

P e r / l X ( l , 2 , . . . ,m\ji,... , j m ) 
l < j l < . . . < j m < n 

m 

<n c= 1 
m 

E E E - P e r 9 c X ( i l ' - - - » i c | i l , - - - , j m ) 

l<ji<...<jm<n l<ii<...<ic<mc=l 
m / 7X c \ = E ( m _ J ( m _ c ) ! E E i ' e r J c X ( i i ) . . . , i c | j i , . . . 1 j c ) 

c = l ' l < j i < . . . < j m < n l < i i < . . . < i c < m 

m / \ 

d - E Q l j (rn - c ) \ ^ P e r 9 c X(c|c), 

where the last expression is a definition. Re-writing the above as 

P e r , X = £ m ! ^ P e r 9 c X(c|c)/c! 

and denoting 

( 7 ) u M */ - 1 Q - 1 x ( c | c ) / d 

= ( ™ y \ n c ) ~ l *>?Per9cMc\c)/c\ 
we obtain 

THEOREM 1. Under our assumptions on X , suppose that a kernel h satisfies 
E\h\ < oo. Then 

P " 1 (PerhX - EPerh X)/m\ = ± (™) U ^ . 

REMARK. If X is a one dimensional projection matrix then the P-statistic is 
simply a U-statistic and the above reduces to the if-representation theorem. 
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Let us also note that for any fixed c > 1 the component Ug™'n̂  is simply 
a symmetrization (with respect to the rows and the columns of X) of a 
P-statistic with a kernel function gc based on a c x c submatrix of X . 

Our next result is the P-statistic version of the result for classical per-
manent function obtained in Rempala and Wesolowski (2000b). 

PROPOSITION 2. Assume m = mn is a non-decreasing sequence in n. Under 
our assumptions on the entries of the matrix X , for a fixed c > 1 

(i) if we define JFc(n) = a{U^n'n), U™cn+1'n+l,...}, then 

E(U^n'n)|J"in+1)) - n + 1 , Vn = no.no + 1, • • • 

that is, (Ug^'n\!Fc^)n=no,no+i,... a backward martingale, 
(ii) Additionally, we have also 

C o o ( u f c n \ u £ r t ) = 0 for C l / c2. 

Proof , (i) Let us denote an element of the Hoeffding-like decomposition (7) 
of an mn x n matrix obtained from the mn+1 x (n + 1) matrix by deleting 
the mnjr\ — rnn rows, say, . . . , ljnn+i—mn and deleting the /c-th column by 
U{gc \l\,... ,lmn+1-mn', k), i.e., 

X E E PergcX(i1,...,ic\ji,...,jc). 
1 < » ! < . . . < ic < m n + 1 1 < Ji < • • • jc < " + 1 

{»l,...,»c}n {«!,..., imrl+1_m„} = 0 k g {ji,...,jc} 

Observe that 
n+1 
y! y! . . . , lmn+i-mn] k) = 
fc= 1 l<h<...<lmn+l-mn<fnn+l 

Since L™n + 1 ™ ) ( m , n ) _ 1 = ( m " + 1 ) - 1 , the above entails \m„+i-mn) \ c > \ m„ ) \ c ) ' 
n+1 

(8) E E U^'n\h,...,lmn+1-mn-,k) 
k=1 l</l<...<imn+1-mn<mn+l 

V mn / 
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Let us note that in view of our assumptions (A1)-(A2) it follows that the 
conditional distribution of Ug™n'n\h,..., lmn+i-mn'> k) given J7^1^ is the 
same for any particular choice oik G {1 , . . . , n + 1 } and {¿ i , . . . , lmn+i-mn} C 
{ 1 , . . . , m n + i } . Consequently, 

E[U%*<n\h,..., lmn+1-mn-, = 

= E[U^'n\n + 1,n + 2 , . . . , m n + 1 ; n + = E[U<c
m'n) |^c

(n+1)], 

which entails 
n+1 

(9) E{J2 £ U^'nHh,...,lmn+l-mn-,k)\Hn+1\ 
fc= 1 l<il<...<im7l+1-mn<'™n+l 

(10) = (n + 1) ( m n + l N ) E ( u ^ n ) 

V mn / 
But on the other hand, in view of the identity (8) we have that (9) is equal 
to 

(11) (n + 1) f m n + 1 ) E ( U ^ ' n + V \ T j ? + V ) = (n + 1) f m " + 1 ) 
V mn J ° \ mn ) 

Comparing the expression (10) with that at the right-hand side of (11), we 
arrive at (i). 

In order to show (ii) it is enough to show that for c\ ^ C2 we have 
Cov [ « P e r S c X ( c 1 | c 1 ) , 7 r - < P e r e c X ( C 2 | c 2 ) ] = 0 

which will follow if we can show that for any pairs of fixed sets of rows 
{ i i , . . . , i C l } , { k i , . . . , k C 2 } and columns { j 1 } . . . , j C l } , { h , . . . , / c J we have 

(12) Cov [Per9c X ( i \ , . . . , i C l | j i , • • • ,jci), Per9c X(k\,..., kC2\h,..., lC2 )] = 0. 

Consider an arbitrary pair of fixed sets of rows {¿ i , . . . ,iCl}, • • • ,kC2} 
and columns {ji,..., jCl}, { / i , . . . , lC2}. Let us note that by the linearity 

Cov (Per9cX(ii, ...,iCl \ji, • •., jCi), Per9cX(k1,... ,kC2\h,.. . ,iC2)) 

= £ E(gc{Xix^0:1),.--,^tcl,<T0"c1)) 9c{Xkua(h), • • • ,Xkc20(lc2))} 

where the summation is taken over all respective permutations aCl of 
( j i ) - - -, Jci} and aC2 of { l i , . . . , ZC2}. Since ci / c2 we may assume without 
loosing generality that ci > c2. It follows that there exist at least one col-
umn js € { j i , . . . , jCl} such that js ^ {/i,•• •, lC2}- But by the assumption of 
the independence of columns and the property of canonical functions (3) the 
standard conditioning argument implies now that all the summands above 
are zero and thus (12) follows. The proof of the proposition is complete. • 

Let us provide a simple example of the application of Theorem 1. 
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EXAMPLE (Random permanent decomposition). Let EXij = /Z ^ 0 and 
consider the kernel h(yi,..., ym) = 2H- Then 

c 
9c(vi, • • •, y c ) = ~ Mm_c 

¿=1 
and by Theorem 1 we have 

where 

P e r [ 4 i J i = 1 c , 
l<»l<...<ic<m l<ji<...<jc<n u = l,...,e 

for Xy = (Xij - n)/(i, (i = 1 , . . . , m, j = 1 , . . . , n). 

3. Approximation of a P-statistic 
3.1. The variance formula 

Using the representation of Theorem 1 we shall prove here a general 
approximation theorem for P-statistics. In order to do so we shall need the 
expression for the variance of a P-statistic given by the following 

THEOREM 2. (The variance formula for P-statistics) Under our assumptions 
on X let us suppose Eh2 < oo then for c = 1 , . . . , m 

v^-iTCftC:;)^-
where 

D(c,r)^f±(r)(-irlpCil 
i=o w 

for r = 0 ,1 , . . . , c and 

Pc,i d—E jgc(-Xii> • • • > Xu,Xil+lii+i..., Xic,c)x 

9c(Xii,..., Xu, Xjl+1j+1..., XjCtC)] 

where ik jk for k = 1,... ,c — l + l and I = 0 , . . . , c . 

Let us note that for the classical permanent function the above result 
reduces to that obtained in Rempala and Wesolowski (2000a). Let us also 
note that it implies, in particular, that if the rows of X are also independent, 



The martingale decomposition 441 

then 
D(c, r) = 0 unless r = c 

and, since p(c, c) = Vargc, that 

Me-Hrn:)"1^' 
which entails (by orthogonality) 

Var ( P e V h X \ _ V i l l Var9c VO-7 ho c! ' 
Again, in a special case of random permanent function, this particular 

formula has been obtained by Rempala and Wesolowski (1999) by means of 
quite involved combinatorial calculations. 

On the other hand if X = X (one dimensional projection matrix) then 
we have 

D(c,r) = 0 unless r = 0 

and we obtain the standard variance formula for [/-statistics (cf. e.g., Lee 
1990) 

Var{-w)^-oVar9c-
Let us now prove Theorem 2. 

P r o o f . First, let us note that by Proposition 2 it follows that 
(13) V a r P e r h X 

O m! Vm/ 

=t c ) 2 ^ E <m 0 0 <*» ^ 
m , x 2 

c=1 
Now, for c = 1 , . . . m 

n x 2 

C, 

= £ V ° r ( E P e r 9c u = i, ..., c ) 
l<jl<-..<jc<n l<ix<...<ic<m v = l , . . . , c 

since, by independence of columns of X, we have (cf. also the proof of part 

c!2 Var U = Var tt^tt?Per9c X(c|c) 
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(ii) of Proposition 2) 

Cov( £ Per9c[Xiujv}u = u _ c , £ Per 9 c [ X u J u = 1 e ) = 0 

l<ii<...<ic<m v = l c l<h<...<ic<m « = l,...,c 

if only 0 ' i , . . . , j c } ^ {¿ i , . . . ,/ c } . 
Since the columns of X are identically distributed, the latest expression 

simplifies to 

(c) (mc)2 cl2VarUt'n) =M E e). 
l<il<...<ic<m j = l,...,c 

Let us note that the number of pairs of c x c submatrices of X having 
exactly k rows in common equals (£) , for max(0, 2c—m) < k < c, 

and each such pair has equal covariance (since the row vectors of X are 
identically distributed). Hence, for given c, the above right-hand side can be 
written as 

m\ /c\ fm — c\ J E UU-JX 

x Cov |Pcr9c[Xy]j = li>i-ifci.ib+ii.i>iie,Peri,c[Xii]i = li...ifcilt+ii...i 

\ j - 1, • • • , c j = 1,..., c 

where { i f c + i , . . . , ic} n {lk+1,..., /c} = 0. 
Observe that each term of the above sum is itself a sum of the partial 

covariance elements of the form 

E [i/cpCix,!, • • • ,Xihl,Xil+ul+1...,-X"ic,c) 9c(Xil}i,. • • ,Xihi,Xjl+1j+1... ,-XjClc)] 

where ii+i,...,ic and ji+i,---,jc are fixed non-overlapping subsets of 
{I + 1,... ,m} for some 0 < / < k. By the assumptions about the en-
tries of the matrix X it follows that the partial covariances having exactly 
I (0 < I < k) elements in common are the same and equal to 

Pc,l = 

E [ffc(-Xii) • • •, Xu, Xil+Ui+x..., XiC!C) gc{Xn,..., Xu, Xjl+1j+1..., Xjc<c) . 

Now, to compute the covariance of such k x c permanents it suffices to 
find the number of pairs of c-tuples of arguments of the function gc with 
exactly I elements in common, (0 < I < k < c). Observe that it equals 
to the number of pairs of c-tuples having exactly I common elements in a 
permanent of the matrix h e , multiplied by (c — k)\2 - the number of all 
possible permutations of ik+i, • • • ,ic and lk+i, • • • ,lc-
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To compute the number of pairs of c-tuples with exactly I elements in 
common let us start with finding the number of c-tuples present in the 
defining formula for Per9c c], where Y[fc,c] is a k x c matrix, having 
exactly / elements in common with the diagonal entries y\\. ..ykk- First, 
we fix I factors in (^¡^j ways. If we assume that y n , . . . ,yu are fixed, then 
the remaining factors, in the c-tuples we are looking for, have to be of the 
form yi+i,Ji+1, • • •, yk,jk > where jr r, r = I + 1 , . . . , k. Finding the number 
of such c-tuples (say, lZi(k,c)) is equivalent to computing the number of 
summands in a permanent of the matrix of dimensions (k — l)x(c — l) which 
do not contain any diagonal entry. To this end, we subtract the number of all 
summands having at least one factor being the diagonal entry, from the total 
number of all summands in that permanent. Using the exclusion-inclusion 
formula we get that 

where the absolute value of the j-th member of the above sum denotes the 
number of c-tuples having exactly j factors being the diagonal entries (equal 
to the number of choices of j positions on the diagonal) multiplied by the 
number of c-tuples of k — I — j factors from the outside of the diagonal 
(equal to number of c-tuples in the permanent of the matrix of dimensions 
(k — I — j) x (c — l — j)). Thus, in a slightly more compact form, 

d 4 ) Mk, c ) = ) > ( * : •') Q : | : ]) a*-1 - j ) i . 

Consequently, the number of pairs of c-tuples in PerY[k, c] with exactly 
I factors in common equals to 

G M i ) * « * - " -

Hence, combining the above formula with an earlier one for the number 
of pairs of c-tuples with I identical factors we arrive at 

C°V ( P e r 9c [Xij] i = i,..., fc, ii+u..., ic. Per gc[Xij] i = l f , 
j = 1 , . . . , c j = 1, . . . , c 

Now, returning to the formula for the variance of U ^ ' n > we obtain 
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by (14) 

<15) O X T ) ^ " " " 

-^WUï-r)*™ 
since 

k e (j) =g (j) w C : 0 (r_ > - o. 

Observe that we can further simplify the expression (15), since 

y^ /m — c\ y^ f c — r \ D(c, r) 
.„„ , \C — fc/ „ \ fc - r / r! fc=max(0,2c-m) r=0 

E
c D(c,r) ^ /m - c\ /c — r\ _ / m — r\ D(c,r) 
_ r\ , A c - f c J U - r J r! ' 

where the last equality follows by applying the hypergeometric summation 
rule for the inner sum. Thus, we can rewrite (15) as 

which along with (13) completes the proof. • 

3.2. Approximation theorem 
With the just derived variance formulas for the components of the or-

thogonal decomposition, we are now finally in a position to state as our last 
result the following simple approximation theorem for P-statistics. 

T H E O R E M 3. (Approximation Theorem for P-statistics). Suppose m/y/n—*0 
as n —• oo, Eh2 < oo and g\ = h\ — Eh / 0 and 3M st. for c= 1 ,2 ,3 , . . . 

Vr<c D(c,r) <M° < oo. 
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Then 
PerhX 

V 771 / lJ 

REMARK . In particular, if h ( y i , . . . , ym) = r i i^ i Vi a n d Eh = fi ^ 0 then 
faiXij)] = — /i] and thus the above formula provides the ap-
proximation for the classical permanent function since then we may take 
M = Var (Xn). 

Proof . The result is a simple consequence of Theorems 1 and 2 since for 
c = 1 

IJ 

and thus by Theorem 1 
PerhX 1 ^ 
( n ) TTl\ ~ E k = + Rm,n-
V m / ij 

To complete the proof it is enough then to show i?m,n = op(m/y/n) which 
will follow if we can argue that 

VarRm n - > 0 

as n —̂  oo and m2/n —> 0. Since under the assumptions of the theorem we 
have 

as (™rr
r) < (™) for (1 < r < c < m) and by Theorem 2 

m / \ 2 
(m,n) 

2 - 1 

c ; c=2 
m / 2 ̂  c 

in view of 

< —jexp(M) V — - , 
m c ^ 2 \ n J 

\2 /™2 \ c 

« . < 2 1 < ( 2 1 
C ) " U 
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Consequently, 
2 m ( 2 \ c ~ ^ i 

- ^ V a r ^ < exp(M)— £ — ± 0, m n \ 71 J 
since the sum above is bounded by a constant and m2/n —• 0. • 
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