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Abstract. In the paper we consider It6 equation on a Hilbert space. We give necessary
and sufficient conditions ensuring the invariance property of linear subspaces of the state
space by mild solutions to the equation.

1. Introduction
The paper deals with the following It6 equation on a Hilbert space H:

1) dX = (AX + D(t, X))dt + B(t, X)dW (), X(to) = zo

on a time interval [to, T|. Here A: H O D(A) — H is a linear operator, D
and B are Lipschitz continuous and W is a cylindrical Wiener process. We
study the invariance problem related to equation (1) for linear subspaces of
H. A subspace G of H is called invariant for (1), if for any to € [0,T] and
zo € G, the mild solution X to (1) stays in G almost surely. We give two
criterions on the invariance property as necessary and sufficient conditions
on the coefficients D and B of (1).

The invariance problem in infinite dimensional case was studied by a
number of authors. General invariant closed subsets of H are characterized
by Jachimiak (1998), the set of nonnegative functions in L? by Kotelenez
(1992), Goncharuk and Kotelenez (1996)and by Milian (1998). The set of
positive functions in L? is characterized by Tessitore and Zabczyk (1998).
Polyhedrons in Hilbert spaces are characterized by Milian (1998).The in-
variance problem with respect to weak solutions to (1), related to finite-
dimensional submanifolds in H is studied by Filipovié¢ (1999). Compared to
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result by Jachimiak, we consider linear subspaces of H however our assump-
tions on coeflicients are more general.

2. Statement of the main results

We are given a probability space (€2, F, P) together with a normal filtra-
tion F = {F:,t > 0} . Let H and U be separable Hilbert spaces and let @ be
a bounded, self-adjoint , strictly positive operator on U. Let W be a cylin-
drical Q—Wiener having values in U. Let Uy denote a subspace Q1 (U) of U,
which, endowed with the inner product (u,v)o = (Q‘%u, Q_%v) is a Hilbert
space. Further,let LY = Ly(Uy, H) be the Hilbert space of Hilbert-Schmidt
operators acting from Up to H, with the norm ||.|| . Let L(U, H) be the
Banach space of linear bounded operators from U into H with the norm
fl-1lz-

We shall consider equation (1) on a time interval [0,T], where T' > 0 is
fixed. We will make the following assumptions:

(2) A generates a strongly continuous semigroup S(t),¢ > 0 in H;
(3) D:[0,T] x H— H is such that for some C > 0,s,t € [0,T] and

z,y € H:|D(t,z) - D(s,9)] < C(|t = s| + ||z — yl])-

Moreover, we assume that either

(i) TrQ < oo,
() (ii) B:[0,T] x H — L2(Up, H) is such that for some C > 0:
|B(t,z) = B(s,y)llLg < C(I t = s | +llz —yl),

s,t €[0,T), z,y € H,
or
(i) for an & € (0, ) and for some s > 0
s

JE2 1S @, anydt < oo,

(i) B :O[O,T] x H — L(U, H) is such that for some C > 0:
|B(t,z) ~ B(s,y)ll < C(|t—s|+]lz—yll),
{ s,t €[0,T)],z,y € H.
We can formulate two criterions for the invariance property of subspaces
of H. The proofs are left to the next section.

THEOREM 1. Assume that (2), (3) and either (4) or (5) hold. Let G be a
subspace of H such that G+ C D(A*). If G is invariant by (1) then the
following condition holds: '

(6) Vte[0,T),Vz € G,Vfe Gt:

(i) (:IJ,A*f> + (D(taz)a f> =0,
(i) (B(t,z))(Uo) C G.
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Inversely, suppose that (6) holds, further (2),(3) and either (4) or (5) hold,
G ¢ D(A*), moreover assume that dimG+ < co.

Then G is invariant by (1).

THEOREM 2. Assume that (2), (3) and either (4) or (5) hold. Let G be a
closed subspace of H such that S(t) : G — G, for allt > 0 and G+ C D(4*).
If G is invariant by (1) then the following condition holds:

(7) Vte[0,T),Vz € G,VfeG*:

(ii) B(t,z)(Up) C G.
Inversely, assume that (7) holds, moreover (2), (3) and either (4) or (5) hold,
G is a closed subspace of H and S(t) : G — G, for all t > 0.
Then G is invariant by (1).

3. Proofs of the main results

We repeat the needed facts from [6] without proofs, thus making our
exposition self-contained. The following lemma is a restatement of Lemma
2 from [6].

LEMMA 1. If f € D(A*),x € H are such that (z,f) = 0,X is a mild
solution to (1) on [t,T] satisfying the conditions P{X(t) = z} = 1 and
P{(X(u),f) 20,u € [t,T]} =1, then:

@) () (z,4%f) +(D(t,z), f) 2 0,
(ii) B(t,z)(Uo)Lf.

We will use also the following lemma, proved in [6] as Lemma 4.

LEMMA 2. Assume that A, D and B satisfy (2), (3) and either (4) or (5), f €
D(A*) and fort € [0,T] and = € H such that (z, f) = 0 the condition (8)
is satisfied.
Then the half-space {z € H : (z, f) > 0} is invariant by (1).

Proof of Theorem 1. Let us fix to € [0,7], zo € G and f € Gt. Let X(¢),
t € [to,T] be the mild solution to (1) such that X (tp) = z¢ as. If G is
invariant by (1), then the assumptions of Lemma 1 are satisfied and we
have (6)(i2) and moreover

(zo, A™f) + (D(to, z0), f) 2 0.

Taking —f instead of f and repeating application of Lemma 1 we obtain

(6)(2)-
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To prove that (6) is also sufficient for the invariance of G, denote by II the
orthogonal projector of H onto G and let us choose a complete orthonormal
system fi,... f, in G*. Define

D(t,z) = D(t,1Iz) +Z ”f ”2 —z, A*f)fi, B(t,z) = B(t,IIz).

Consider the equation
(9) dX = (AX + D(t, X))dt + B(t, X)dW (t), X(to) = 0.

Note that D and B are Lipschitz continuous and there exists a mild solution
X to (9). Let us fix j € {1,...n} and note that (z¢, f;) > 0 and f; € D(A4%).
By (6), for € H such that (z, f;) = 0 and for ¢ € [0,T] we have:

(e, A" f3) + (D(t,2), f;) = (I, A" f;) + (D(t, Iz, f;) > 0 and
(B(t,x)g,fj) = (B(t,Iz)b, f;) = 0 for every g € Up.
Hence the assumptions of Lemma 2 are satisfied and we obtain:
P{(X(t), ;) 2 0,¢ € [to, T]} = 1.

Similar considerations apply to the half-space {zx € H : (z,—f;) > 0} and
we conclude that

P{(X(t), f;) =0,t € [to,T]} = 1.
But f; was fixed arbitrary which gives:
P{X(t) € G,t € [to,T]} = 1.

Since TIX (t) = X(t), D(t,z) = D(t,z) and B(t,z) = B(t,z) for z € G, it
follows that X = X and the invariance of G is proved. m

Proof of Theorem 2. Let ¢y € [0,T},z0 € G and f € G*. As in the proof
of Theorem 1, we get (7)(i¢) and the following condition:

<:L‘0,A*f> + <D(t0,1§0), f) =0.
Since S(t)z € G for t > 0, we have

(20, 4°1) = tsy (0, =)
= lim 3 (o0, 5°(0) = limy 1 (St)z0, 1) =0

and (7)(z) follows. This finishes the proof of necessity of (7) for the invariance
of G.
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To prove sufficiency of the condition, let us fix tp € [0,T},zo € G and
let X be the mild solution to (1) starting at #y from zg. Denote by Ay the
Yosida approximation of A and let II be the orthogonal projector of H onto
G. Let Xy be the mild solution to the problem:

(10) dX = (AJIX + D(t,I1X))dt + B(t,IIX)dW (t), X(to) = zo.

We show that X stays in G. For this purpose, let us choose f € G+ and
consider the half-space K = {z € H : (z, f) > 0}. Since Ay oIl is bounded,
we can treat (10) as the equation (1) with the operator A = 0 and with
lipschitzean coefficients

D(t,z) = Ayllz + D(t,1Iz), B(t,z) = B(t,Iz).
It is evident that f € D(A*). Let t € [0,T] and z € H be such that
(z, f) = 0. By (7)(¢) we have:
(D(t,IIz), f) = 0 and (B(t,Iz)u, f) = 0 for every u € Up.
Since G is invariant by S(t),¢ > 0 and G is closed,

o0

R(k,A)z = S e *S(t)zdt € G for z € G.
0

Hence Axz = (k*R(k, A) — kI)z € G and consequently (A;Ilz, f) = 0. The
application of Lemma 2 enables us to assert that

P{(Xk(t), f) 2 0,t € [to, T]} = 1.
Proceeding analogously to the proof of Theorem 1 we conclude that
P{Xi(t) € G,t € [to,T]} = 1.
Finally, the theorem is proved, letting k tend to infinity. =
COROLLARY 1. Let (2), (3) and either (4) or (5) hold. Assume that

(11) Vt e [o,T),Yz € H,Vf € D(A*) such that (z, f) = 0 we have :
(i) (z,4*f) + (D(t,2), f) = 0,
(ii) (B(t,z)u, f) =0 for all u € Uy.

Then each subspace G of H such that G+ C D(A*) is invariant by (1).

Proof. Let H = GoU,®V,, where dimV,, < 00, V,, C Vpyrand ;o Vi =
G*1. By Theorem 1 it follows that for each ¢y € [0, T] and 2o € G the solution
X to (1) satisfies the condition

P{X(t)e GoUp,te [t T]} =1
But n was arbitrary so we conclude that
P{X(t)eG,te[ty,T)]}=1. =
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