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Abstract. In the paper we consider Itô equation on a Hilbert space. We give necessary 
and sufficient conditions ensuring the invariance property of linear subspaces of the state 
space by mild solutions to the equation. 

1. Introduction 
The paper deals with the following Itô equation on a Hilbert space H: 

(1) dX = (AX + D(t,X))dt +B(t,X)dW(t), X(t0) = x0 

on a time interval [io,?1]. Here A : H D D(A) —> H is a linear operator, D 
and B are Lipschitz continuous and W is a cylindrical Wiener process. We 
study the invariance problem related to equation (1) for linear subspaces of 
H. A subspace G of if is called invariant for (1), if for any t0 e [0,T] and 
XQ G G, the mild solution X to (1) stays in G almost surely. We give two 
criterions on the invariance property as necessary and sufficient conditions 
on the coefficients D and B of (1). 

The invariance problem in infinite dimensional case was studied by a 
number of authors. General invariant closed subsets of H are characterized 
by Jachimiak (1998), the set of nonnegative functions in L2 by Kotelenez 
(1992), Goncharuk and Kotelenez (1996)and by Milian (1998). The set of 
positive functions in L2 is characterized by Tessitore and Zabczyk (1998). 
Polyhedrons in Hilbert spaces are characterized by Milian (1998).The in-
variance problem with respect to weak solutions to (1), related to finite-
dimensional submanifolds in H is studied by Filipovic (1999). Compared to 
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result by Jachimiak, we consider linear subspaces of H however our assump-
tions on coefficients are more general. 

2. Statement of the main results 
We are given a probability space (0, J7, P) together with a normal filtra-

tion T = {Ft, t > 0} . Let H and U be separable Hilbert spaces and let Q be 
a bounded, self-adjoint , strictly positive operator on U. Let W be a cylin-
drical Q—Wiener having values in U. Let UQ denote a subspace Q1 (U) of U, 
which, endowed with the inner product (U,V)Q = Q~?v) is a Hilbert 
space. Further,let L\ = L2(UQ, H) be the Hilbert space of Hilbert-Schmidt 
operators acting from UQ to H, with the norm ||.||x,o. Let L(U,H) be the 
Banach space of linear bounded operators from U into H with the norm 
ll-IU-

We shall consider equation (1) on a time interval [0, T], where T > 0 is 
fixed. We will make the following assumptions: 
(2) A generates a strongly continuous semigroup S(t),t > 0 in H; 
(3) D : [0, T] x H H is such that for some C > 0, s, t 6 [0, T] and 

x,y £ H : \D{t,x) - D{s,y)| < C(\t - s\ + ||x - y\\). 
Moreover, we assume that either 

' (i) TrQ < oo, 
(ii) B : [0,T] x H —y L2(U0, H) is such that for some C > 0 : 

|| B(t,x) - B(s,y)\\Lo <C{\t-s\ +\\x - y||), 
s,t E [0 ,T] , x,y<=H, 

(4) 

or 

(5) 

' (i) for an a £ (0, and for some s > 0 : 
s 

\t-2a\\S(t)Wl2{H)dt < oo, 

(ii) B : [0, T] x H L(U, H) is such that for some C > 0 : 
\\B{t,x)-B{8,y)\\L<C(\t-8\+\\x-y\\), 
s,t€[0,T],x,yeH. 

We can formulate two criterions for the invariance property of subspaces 
of H. The proofs are left to the next section. 

THEOREM 1. Assume that (2) , (3) and either (4) or (5) hold. Let G be a 
subspace of H such that G1- C D(A*). If G is invariant by (1) then the 
following condition holds: 
(6) Vt € [0,T],Vx G G, V/ e G x : 

(i) (x,A*f) + (D(t,x),f) = 0, 
(ii) (B(t,x))(U0)cG. 
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Inversely, suppose that (6) holds, further (2), (3) and either (4) or (5) hold, 
C D(A*), moreover assume that dimG^ < oo. 
Then G is invariant by (1). 

T H E O R E M 2 . Assume that ( 2 ) , ( 3 ) and either ( 4 ) or ( 5 ) hold. Let G be a 
closed subspace of H such that S(t) : G —> G, for allt> 0 and Gx C D(A*). 
If G is invariant by (1) then the following condition holds: 

( 7 ) v t e [ o , r ] , V x e G , v / e G1-

(i) (D(t,x),f) = 0, 
(ii) B(t,x)(Uo) C G. 

Inversely, assume that (7) holds, moreover (2), (3) and either (4) or (5) hold, 
G is a closed subspace of H and S(t) : G —> G, for all t > 0. 

Then G is invariant by (1). 

3. Proofs of the main results 
We repeat the needed facts from [6] without proofs, thus making our 

exposition self-contained. The following lemma is a restatement of Lemma 
2 from [6]. 

L E M M A 1. If f e D(A*),x G H are such that (x,f) — 0 , X is a mild 
solution to (1) on [ f , T] satisfying the conditions P{X(t) = x} — 1 and 
P{(X(u),f) > 0,« e [t,T]} = 1, then: 

(8) (i) (x,A*f) + (D(t,x),f) > 0 , 
(ii) B(t,x)(U0)±f. 

We will use also the following lemma, proved in [6] as Lemma 4. 

L E M M A 2 . Assume that A, D and B satisfy ( 2 ) , ( 3 ) and either ( 4 ) or ( 5 ) , / € 

D(A*) and for t G [0,T] and x € H such that ( x , f ) = 0 the condition (8) 
is satisfied. 

Then the half-space {x £ H : (x, /} > 0} is invariant by (1). 
P r o o f of Theorem 1. Let us fix t0 G [0,T], x0 6 G and / e Let X(t), 
t € [io^r] be the mild solution to (1) such that X(to) — XQ a.s. If G is 
invariant by (1), then the assumptions of Lemma 1 are satisfied and we 
have (6)(n) and moreover 

(x0,A*f) + {D{t0,x0),f) >0. 

Taking —/ instead of / and repeating application of Lemma 1 we obtain 
(6)(i). 
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To prove that (6) is also sufficient for the invariance of G, denote by II the 
orthogonal projector of H onto G and let us choose a complete orthonormal 
system f i , . . . f n in G±. Define 

n . 
D{t, x) = D(t, Ex) + J2 nTii2 < n x - x ' A*h)fii B{t, x) = B(t, Ex). 

i=i ll^ll 

Consider the equation 

(9) dX = (AX + D(t,X))dt + B(t,X)dW(t), X(t0) = x0. 

Note that D and B are Lipschitz continuous and there exists a mild solution 
X to (9). Let us fix j € {1, . . . n} and note that (x0, f j ) > 0 and f j € D(A*). 
By (6), for x € H such that {x, f j ) = 0 and for t E [0, T] we have: 

(x,A*fj) + {D(t,x),fi) = ( n x , A * f j ) + {D(t,Hx), f j ) > 0 and 

(B(t, x)g, f j ) = (B(t,Ux)b, f j ) = 0 for every g € U0. 

Hence the assumptions of Lemma 2 are satisfied and we obtain: 

P{{X(t),fj)>0,te[t0,T\} = l. 

Similar considerations apply to the half-space {x € H : (x, — f j ) > 0} and 
we conclude that 

P{(X(t)jj) = o,te[t0,T}} = i. 

But f j was fixed arbitrary which gives: 

P { X ( i ) e G , i 6 [ i 0 , r ] } = l. 

Since nX(i ) = X(t),D(t,x) = D(t,x) and B{t,x) = B(t,x) for x G G, it 
follows that X — X and the invariance of G is proved. • 

P r o o f of Theorem 2. Let t0 E [0,T],x0 E G and / E G^. As in the proof 
of Theorem 1, we get (7)(ii) and the following condition: 

(xo,A*f) + (D(to,xo),f) = 0. 

Since S(t)x E G for t > 0, we have 

/ n r / S*(t)f-f 
{XQ, A / ) = lim ( X Q ) 

= lim i ( x 0 , S*(t)f) - Jim \(S(t)x0, / ) = 0 

and (7)(i) follows. This finishes the proof of necessity of (7) for the invariance 
of G. 
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To prove sufficiency of the condition, let us fix to G [0, T], xq G G and 
let X be the mild solution to (1) starting at to from xo- Denote by Ak the 
Yosida approximation of A and let II be the orthogonal projector of H onto 
G. Let Xk be the mild solution to the problem: 

( 1 0 ) dX = (AkUX+ D(t,UX))dt + B{t,UX)dW(t), X(t0) = x p. 

We show that Xk stays in G. For this purpose, let us choose / G G 1 and 
consider the half-space K — {x G H : (x, f) > 0}. Since Ak ° II is bounded, 
we can treat (10) as the equation (1) with the operator A = 0 and with 
lipschitzean coefficients 

D(t, x) = AkIix + D{t, I I x ) , B(t, x) = B(t, I I x ) . 

It is evident that / e D(A*). Let t 6 [0 ,T] and x € H be such that 
(;x, /) = 0. By (7)(t) we have: 

(D{t,Ux),f) = 0 and <B(t,IIi)u,/) = 0 for every u e U0. 

Since G is invariant by S(t), t > 0 and G is closed, 
oo 

R{k,A)x - J e~ktS{t)xdt G G for x G G. 
o 

Hence Akx = (k2R(k, A) - kl)x G G and consequently {AkIix, f ) — 0. The 
application of Lemma 2 enables us to assert that 

P { ( x f c ( i ) , / ) > o , i e [ i o , r ] } = i. 

Proceeding analogously to the proof of Theorem 1 we conclude that 

P{Xk(t)eG,te[t0,T}} = i. 

Finally, the theorem is proved, letting k tend to infinity. • 

COROLLARY 1. Let ( 2 ) , ( 3 ) and either ( 4 ) or ( 5 ) hold. Assume that 

( 1 1 ) Vi G [o, T ] , V x G H, V / G D(A*) such that ( x , f ) = 0 we have : 
( i) (x,A*f) + (D(t,x),f) = 0 , 
(ii) {B(t, x)u, /) = 0 for all u G U0. 

Then each subspace G of H such that G1- C D{A*) is invariant by ( 1 ) . 

Proof . Let H - G®Un®Vn, where dimV„ < o o 1 7 n C Vn+1 and lXL x K -
G1. By Theorem 1 it follows that for each to G [0, T] and xo G G the solution 
X to (1) satisfies the condition 

P { A - ( t ) e G © t f n , i e [ t o , r ] } = i. 

But n was arbitrary so we conclude that 

P{X(t)eG,t€[t0,T}} = l. m 
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