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1. Introduction
Consider the following linear ordinary equation in R?

(1) %Zi = A@t)z + £()C(t)z, 0<t<T,
where A(t), C(t) are d x d deterministic matrices with bounded for ¢ € [0, T}
elements, £(t) is a stochastic process with continuous trajectories.

It is known [1, 2, 3, 6, 7], that for the moments of the solution to (1) we
have an infinite chain of equations. To close this chain, we consider the so
called closure problem. Several methods of closure were proposed (see, for
example, [6, 8]) but only few of them are mathematically justified.

The purpose of the paper is to present a closure method for special
case of process £(t) and to provide a mathematical justification. Asymptotic
expansions for the mean value of the solution of equation (1) are given in the
case of large and fast random perturbations. Similar results can be applied
also to higher-order moments.

2. Infinite chain for mean value

Let the process £(t) in equation (1) be a trigonometric polynomial with
respect to Wiener process w(t). For notational simplicity, consider the case
&(t) = Bsin(aw(t)), where 3, a are nonrandom parameters.

The solution z(t) of equation (1) in this case is a functional with respect
to the process w(t), and therefore we shall write z(t) = z(¢; w(z)). It follows
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from Cameron-Martin formula for the density of Wiener measure under
translation [4], that

2
(2) E [exp {ivw(t) }z(t; w(2))] = exp {—zz—t}Ez(t; w(z) + ivy2).

Since

. _exp {iaw(t)} — exp {—icw(t)}
sin (aw(t)) = 5

using (2) we obtain

@ =0 _ 4B

dt
Jéj —a?t
T %P\ 3
dEz(t;w(z) £ ikaz)
dt
= A(t)Ez(t; w(z) £ ikaz)

}C(t)[E:c(t; w(z) + taz) — Ez(t, w(z) — iaz)),

~ a2
+ g(](t)[exp {—zé T ka’t}Ex(t; w(z) + ikaz + iaz)

a2
— exp {-—g—é + ka?t}Ex(t; w(z) £ ikaz —iaz)], k=1,2,3,...
Let
vo(t) := Ex(t),

12,2
ve(t) == (2:)1: exp { k2a t}[Ea:(t;w(z) + tkaz)

+ (-1)*Ex(t;w(z) - ikaz)], k=1,2,3,....
Then from (3) we obtain for the mean value of the solution of equation (1)
the following infinite chain of differential equation:

d’Uo

5 = Ao+ BCH,
2
d—;t-l- = — %m + A(t)vy + BC(t)v2 + —;—ﬁC(t)vo,
“ dvy, k2a? 1
— = Ukt A(t)v + BC(t)vkgr + Zﬁc(t)vk-l, k=2 ..
vo(0) = z(0), 4
vk (0) 1 14 (-1)*]z(0), k=1,2,3,...

- @k

We prove first that the above chain has a unique solution.
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Let X(t,s) be a Cauchy matrix for the equation ¢ = A(t)z. Since the
matrix A(t) is bounded, there exist a € R, b > 0 such that for all ¢, s € [0, T]
() |X(t,s)| < bexp {—a(t - 5)}.

Let A > 0 and G be a Banach space of infinite sequences of measurable
functions ¢ = {ypk(t)} with the norm

lipll == srzpsgp[e‘”lwk(t)ll, k=0,1,..., t€[0,T].

One can easily verify that {¢x(t)} € G.
Transforming (4) into the integral form we have

vo(t) = X (t,0)z(0) + B X (t,5)C(s)v1(s)ds,
0
2

(6) n(t)= o+/3§exp{-—(t-s)})c(t $)C(s)[va(s) + ”053)1413,

2

+ﬂ§e"1’{ K (t - S)}X(t,s)C(s) ['Uk+1(s) + ”k—41(s) @

The chain (6) can be written in the space G in the form of the following
linear equation

v=g+ Fu,

where the operator F' and g are determined by the right hand side of (6).
Let

c:= sup |C(¢t)] and A > —a.
te[0,T)

Using (5) we obtain the following estimation for the norm [|F|[:

2bcf
2)\ + 2a + k2a?

Consequently there is a A > 0 for which ||F|| < 1 and therefore the chain
(4) has a unique solution.

IFl < max [
k=0,1,.

3. Main result
To close the chain (4) let us restrict our attention to the first n equations
letting v,41(¢) = 0. Then the functions v,(c")(t), k=012,... form the
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following closed chain:

doi™ n n
(7) —— = Aty + FC(t1",

W™ a . o 1 .
U = 2l A + BO@Y + 56007,

d (n) k2 2 n n n 1 n
’(’ikt —_ 2“ v+ Ao +BCW T+ IBCONT, k=2,...,n-1,
(m) 2.2
n 1 n
dv — _n (87 v7(ln) +A(t)1)7(ln)+ Zﬁc(t)v( )

dt 2 n=b
(n) () ! k
vy (0) =z(0), v, ’(0)= (2i)k[1 + (-1)%]z(0), k=1,...,n.
Let
. 2bcf3 _ . bep
(&) P = 20 + 2a + k2a?’ k=01, mi= 20 + 2a + a?’
bel
M= 4o + 4a + 2k2a2’ k=23....
We shall assume that the parameter ¢ is such that
1
- < .
9) o> —a, k___r_%?ﬁ”(ﬂknkﬂ) <7
We have

THEOREM. The solution v(()")(t) of the closed chain (7) converges uniformly
to the mean value Ez(t) of the solution of equation (1) and

(10)  sup [e="|Ba(t) — o 1)]]
t€[0,T)
b(4bcB)" 1 exp {4bcBa~2}|z(0)]
~ (0 +a)(20 +2a+a?)--- (20 + 2a + n2a?)’

Proof. Let
6(1?”)1= sup [e—d‘t|v’£‘n)(t)_v£’n)(t)|]’ k:o,l,'._,n’

77(:)= sup [e_atlv,(cm)(t)]], k=0,1,...,m, n<m.

Transforming (7) into integral form we obtain the following inequalities for
().
nm-

(11) 69 < po6), 6% < pedHV) +msl, k=1,...,n-1,

nm? nm
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67(::3» < fn 'Yr(r7:+1) + %57(3771), n<m,

and the inequalities for '7(J ),

1 < vy +8l2(0)], YEEY < porr Vet + s EH), 2k +1<m,
(12) 72 < pary Y + o2 4 2724 1pi2(0)], 2k < m,
m = 2p, ,yépp) <1 p,y(2p 1) +9- 2P+1b|x(0)|,

2 2
=2p+1, ’Yz(:pTi ) < n2P+17§p;-?1‘

From theorem of Worpitzky for continued fractions [10, p. 42] it follows that
under conditions (9) we have

*) .1 _ 5T +1 1
(13) D" =1 1 - Hi+1li+2 22'
1_~
:—/‘k—lnk

Using the positiveness of ng) from (11) we obtain the estimates:

D) &
Tm I #; k6(k 1)

50) < I=k o k=12,..,n-1,
(14) =k .
75:4'1) H 1
50 « =0 "
S =t )
I1 D;
§=0

Let m be even, m = 2p, and

2Iﬁ1
1
b
5(0) — |-”3((20) + blz( Zz—zkﬂ 1=0
D H D(2P)
2’i_[1
i
(21 1) . —2k+1_ = 23 1
= blz(0 |Z2
H D(zp)
1=25-1
De?)
S(ZJ) = 25— 13(2J 1)7 ]_ 1 2 3

H2j—1
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By positivity of D(.k) again from (12) we obtain

(i-1)
i N
(15) W(J)S’Df—;’m+S§Q, i=1...,20-1, 29 < sQ.
J

Now, from (15) we have

(16) 7§:+1) S(n+1)+z (k) T}n l+1.

Taking into account (13) we obtain the estimates for S, (27-1) and S’éij );

92k—4j+2(hc3)2k—2+1

S5 < bla 0>|Z
=j H (20 + 2a + 1202)

1=25-1
2727+ (2bep) 272+ (2bef)’®
< 4b|:1;(0)][ (2j —1)2a2 ' (2 — 1)2a2(27)202(2j + 1)202

2—2j+1(9pe3)2p—27+1
+ @ = 1)2052 C'B()2p — 1)20:2] < 4b|z(0)| exp {2bcBa~?},

S < blz(0)|

p

2-23+2(2pc)2k~2
" g (20+2a+(2j)%0?)(20+2a+(2j+1)%?) - - - (20+20+(2k—1)%0?)

< 4bjz(0)| exp{2bcBa2}.
Combining these estimations with (13), (16) we get

n n—k
Wyt < 401a(0)] (1 + D0 2"+ T] 2141 ) exp {2bc8a~%)

2bc
< 2 —2 ..
< 4b|z(0)| exp {2bcBa }[1 + To Tl T 2n 1202 +
2n+1(bcﬁ)n+1

(20 + 2a + a?)(40 + 4a + 2(2a)?) - - - (40 + 4a + 2(n + 1)2a?)
< 4b|z(0)| exp {4bcBa~?}.
Notice, that in the same way one can obtain similar estimates for odd m.
Finally from (13), the last estimate in (14) and the uniqueness of the

solution of the chain (4) we conclude that v( )( t) converges uniformly to
vo(t) and the estimate (10) holds.
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4. Asymptotic expansions

Let € be a small parameter, § = ¢7+, a = €77, i.e. the random distur-
bances are large and fast. According to the estimate (10) we have

1 1

(17) |Ez(t) — o{" ()| = O(e™™), €— 0.
In order to get an asymptotic expansion for Ez(t) in powers of ¢ it is suf-
ficient to obtain it for the solution of the chain (7). Let ug(t) =: vé")(t),
ui(t) == s‘lvgn)(t), uk(t) := v,(c")(t), k=2,3,...,n.

We have the following equations

d
7:?0 = A(t)uo + C(t)uy,
d 1 1
52—;—1 = —Zu + A + Ct)uz + 5C(Huo,
(18)
52% = —2uy + 2 A(t)ug + eC(t)us + -}IEZC(t)ul,
2due K

1
i — Uk + 2 A(t)ug + C(t)ups1 + ZeC(t)uk_l, k=3,....,n—1,

2%1 = —%iun + 2 A(t)u, + %aC(t)un-l,
up(0) = z(0), wux(0) = (21?[1 +(-1D)*z(0), k=1,...,n.

Consequently we obtain for ug(t) the chain of differential equations with a
small parameter in the derivatives. The construction of asymptotic expan-
sions in powers of € for these equations is well known (see [5, 9]). If the
matrices A(t), C(t) are smooth enough, for this purpose we can use the
boundary function method since all conditions required by this method are
fulfiled in our case.

According to the boundary function method, we seek the asymptotic
expansions as the sum of regular parts and boundary layer parts

uk(t) ~ Y € ukm(t) + Y €M gkm(T), T =1t

m=0 m=0
Substituting the regular parts of these expansions to (18) we obtain the
equations:

du, 1 1
—dgo = A(t)ugo + C(t)u1o, g0 + C(t)uzo + EC(t)uoo =0,

16
—2ug0 =0, —5Us0 = 0, 5 U0 = 0,
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du 1 L
—7 = A)uor + C(t)uns, —zun + C(tJuz + 5C(Huor = 0,
9 1
—2up; + C(t)ugp = 0, —gustt C(t)uso + ZC’(t)U2o =0,
d
___222 = A(t)uoz + C(t)use,
Qo _ 1t Ao + Ctyuse + ~C(2)
7 = 2’(1,12 U10 U929 2 uo2,
d 1
% = —2ugz + A(t)uzo + C(t)us + ZC(t)ulo'

Therefore U0 = 0, Uz = 0, Ugg =0, uo; =0, uz; = 0, Ui = C(t)uOo and
Ugg, U1, Upz are solutions to the equations:

d
%]' - A(t)UOO + Cz(t)’u,oo,
d

(19) =% = A(t)uor + C2(t)uor,
d
_Ztﬂ = A(t)uoz + C*(t)uoz

+20(HAWC() - COAD) - C'(1) ~ 2C*(0)uoo

In order to find the initial values to the equations (19) we consider the
boundary layer parts of the asymptotic expansions.

Assume that A(1e?) = A(0) + O(e), C(r€?) = C(0) + O(¢). Considering
in the equations (18) the stretched time 7 = te~2 and substituting the
boundary layer parts of asymptotic expansions, we obtain

d d d
% =0, % =0, % = A(0)goo + C(0)g10,
(20) ] T T T |
gio 1 1 g2o _
= ot C(0)g20 + 20(0)900, e 2920.

Taking into account the initial values to (18) and conditions

lim gxm(T) =0,

T—00

from (20) we obtain that

—e~272(0
900(7) =0, go1(7) =0, ugo =2(0), up1 =0, g20(7) = ——-2—(2,

3/ 0(0)2(0), aua(0) = SCHO)=(0),

gio(T) = 3
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1
ug2(0) = —202(0)33(0), go2(T) = 6[16e-f/2 — e727]C?(0)=(0).
Therefore by (17) and [5, 9] we have the following result.

PROPOSITION. If the matrices A(t) and C(t) are twice differentiable for
t € [0,T), the mean value Ez(t) of the solution of equation (1) has the
following asymptotic expansion

Ez(t) = ugo(t) + e2ugs () + 52g02(r) + 0(53), r=te"% -0,

where ugo(t), uo2(t), go2(7) are determined by equations:

% = A(t)uoo + C2(t)uco, u0o(0) = 2(0),
‘12—;’2 = A(t)uoz + C2(t)uoz
+20()[A0)C() ~ COAD) ~ C'(1) ~ < C(t)uoo,
u02(0) = — ng(O)x(O),

goa(7) = %[1ee-f/2 — 7|2 (0)2(0).

Notice that the above approach permits also to construct asymptotic
expansions in the case of fast random disturbances.
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