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1. Introduction 
Consider the following linear ordinary equation in Rd 

dx 
(1) — = A(t)x + £(t)C{t)x, 0<t<T, 

at 
where A(t), C(t) are d x d deterministic matrices with bounded for t 6 [0, T] 
elements, £(i) is a stochastic process with continuous trajectories. 

It is known [1, 2, 3, 6, 7], that for the moments of the solution to (1) we 
have an infinite chain of equations. To close this chain, we consider the so 
called closure problem. Several methods of closure were proposed (see, for 
example, [6, 8]) but only few of them are mathematically justified. 

The purpose of the paper is to present a closure method for special 
case of process £(£) and to provide a mathematical justification. Asymptotic 
expansions for the mean value of the solution of equation (1) are given in the 
case of large and fast random perturbations. Similar results can be applied 
also to higher-order moments. 

2. Infinite chain for mean value 
Let the process £(t) in equation (1) be a trigonometric polynomial with 

respect to Wiener process w(t). For notational simplicity, consider the case 
£(f) = f3sm(aw(t)), where ¡3, a are nonrandom parameters. 

The solution x(t) of equation (1) in this case is a functional with respect 
to the process w(t), and therefore we shall write x(t) — x(t; w(z)). It follows 
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from Cameron-Martin formula for the density of Wiener measure under 
translation [4], that 

"V2i (2) E [exp {i-Yw{t)}x{t\ w(z))] = exp {—— }Ex(t; w(z) + ryz). ¿t 
Since 

. , . . . exp -ficraii)} — exp {—iaw(t)\ sm(aw(t)) = : 2 % 
using (2) we obtain 

( 3 )
 d-Ml=A[t)Ex[t) 

3 ( —a2t 1 
+— exp < >C(t)[Ex(t; w(z) + iaz) - Ex(t; w(z) - iaz)], 

dEx(t; w(z) ± ikaz) 
~dt 

= A(t)Ex(t; w(z) ± ikaz) 

3 —a2t 
+ ^C(t)[exp { —-— =F ka2t}Ex(t; w(z) ± ikaz + iaz) 

21 2 
—o?t — exp {—-— ± ka2t}Ex(t; w(z) ± ikaz — iaz)\, k = 1 ,2,3, . . . 

Let 
v0(t) := Ex(t), 

1 -k2a2t 
vu(t) := jyy; exP { 2 w(z"> + i k a z ) 

+ (-l)kEx{t-,w(z) -ikaz)], k = 1 ,2 ,3 , . . . . 
Then from (3) we obtain for the mean value of the solution of equation (1) 
the following infinite chain of differential equation: 

^ = A(t)v0 + (3C(t)vu 

= - + A(t)Vl + 0C(t)v2 + Uc{t)v0, 
(4) 

dvb fc^ 1 
- + A(t)vk + (3C(t)vk+1 + -0C(t)vk-lt k = 2 , . . . , at I 4 

«0(0) = ®(0), 

vu(0) = (^fc t1 + ( -1)1 . (0) , A: = 1,2,3, . . . 

We prove first that the above chain has a unique solution. 
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Let X(t, s) be a Cauchy matrix for the equation x = A(t)x. Since the 
matrix A(t) is bounded, there exist a e R, b > 0 such that for alii , s € [0, T] 

(5) \X{t,s)\<bexp{-a{t-s)}. 

Let A > 0 and G be a Banach space of infinite sequences of measurable 
functions <p — (<^fe(i)} with the norm 

M l :=supsup[e-At|^fc(f)|], A: = 0 , 1 , . . . , t e [0,T\. 
k t 

One can easily verify that {(¿>fc(t)} G G. 
Transforming (4) into the integral form we have 

t 
v0(t) = X{t, 0)x(0) + P \ X(t, s)C(s)Vl(s)ds, 

(6) Vl(t) = 0 + /3jexp { ~ { t - s)}X(t,s)C(s)[v2(s) + ^ i f l ] d s , 

+ Vfc+l(s) + 
Vk-l(s) ds. 

The chain (6) can be written in the space G in the form of the following 
linear equation 

v = g + Fv, 

where the operator F and g are determined by the right hand side of (6). 
Let 

c : = sup |C(i)| and A > —a. 
t6[0,T] 

Using (5) we obtain the following estimation for the norm ||F||: 

2 bc/3 
IIFII < max 

~ fc=0,li-" 2A + 2 a + k2a2 

Consequently there is a A > 0 for which ||F|| < 1 and therefore the chain 
(4) has a unique solution. 

3. Main result 
To close the chain (4) let us restrict our attention to the first n equations 

letting v n + i ( i ) = 0. Then the functions k = 0 , 1 , 2 , . . . , form the 
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following closed chain: 

(7) ^ = A(t)v^ + (3C(t)v[n\ 

i f = + k = 2 , . . . , n - l , 

dt 
U2„,2 

,2 „.2 

dt 

vin\0) = x(0), 4")(0) = ^ [ l + (-l)fcM0), k = 1,... ,n. 

Let 

(8) iik 
2bcp 

2a + 2a + &2a2 , A; = 0 , 1 , . . . , t?i := 
6c/3 

6c/3 
4 a + 4a + 2A;2o;2 

We shall assume that the parameter a is such that 

2(7 + 2a + a2' 

, A; = 2 , 3 , . . . . 

(9) 

We have 

a > - a , max (//fc%+ 1) < - . 
fc=0,l,... 4 

THEOREM. The solution VQn\t) of the closed chain (7) converges uniformly 
to the mean value Ex(t) of the solution of equation (1) and 

(10) sup l e - ^ E x i t ) - v ( u \ t ) \ 
t€[0,T] L 

< fr(4frc/3)n+1 exp {4bc(3a~2}\x(0)\ 
(a + a ) (2a + 2a + a 2 ) • • • (2a + 2a + n 2 a 2 ) ' 

P r o o f . Let 

« « = sup \ e - ^ \ t ) - v l r } ( t ) \ \ , fc = 0 , 1 , . . . , n, 
te[o,T] L 

I m , fc = 0 , 1 , . . . j m, n < m. • W = sup 
te[o,r] L J 

Transforming (7) into integral form we obtain the following inequalities for 
SU). Vnm.-

(11) 6 < £ 1 < H o i W , ^ = 1, • • • — 1, 
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€ À < ^ + 1 ) + i l n 6 (
n

n - l K n < m, 

and the inequalities for 7 

7 « 0 ) < w i 1 ) + 6W0)|, + 2k+ 1 < m, 

(12) 7 < f > < W f + 1 ) + m ! ? - » + 2-2k+1blx(0)l, 2k < m, 

m = 2p, 7 g p ) < V 2 A T 1 ] + 2-2p+1&|x(0)|, 

m — 2p+ 1, <mP+illiv 

From theorem of Worpitzky for continued fractions [10, p. 42] it follows that 
under conditions (9) we have 

Î13) D(fc) - 1 - > I ( L 6 ) Ui 1 M j + i W - 2" 
1 -

•-Hk-iVk 

Using the positiveness of D ^ from (11) we obtain the estimates: 

-y(n+1) TT a-Irn 11 Mj c(fc-l) 
*(*)< j=fe Vkànm k - i 2 n — 1 

n D<n) D k 
j=k (14) 

7^n+1) n n 
g(°) < "nm - n_x 

n i?}B) 

J=0 
Let m be even, m = 2p, and 

2fc —1 

n(2P) ' 1 ' ' z« /o \ 0 fc=l j j p(2p) 
1=0 

2fc—1 
p n w 

n a ( 2 p ) 

i=2j-l 
n(2p) 

o(2j) 2j — 1 c(2j —1) . _ 1 2 , 
*-'2p 2p ' J — -1' • • • iP-
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By positivity of D ^ again from (12) we obtain 

(15) 7g } < + j = 1 , • . , 2P - 1, 7g> < S g \ 
i 

Now, from (15) we have 

<16) 
fc=0 1=0 n—i+1 

Taking into account (13) we obtain the estimates for and S ^ : 

!•>• - A 2 2 k - 4 i+ 2 (bcB) 2 k ~ 2 i + 1 

O ) i e L ( ^— 
*=i n + 2a + / 2 a 2 ) 

l=2j-l 
< 4 ^ ( 0 ) 1 [ 2 - 2 j + 1 ( 2 6 ^ + 2 ' 2 J + 1 ( 2 ^ ) 3 + 

(2j — l ) 2 a 2 (2j — l ) 2 a 2 ( 2 j ) 2 a 2 ( 2 j + l ) 2 a 2 

< 4i>|x(0)| exp{2bc/3a~2}, 
2~2i+1(2 bcP)2P~2j+1 

(2j — l)2a2 • • • (2p — l ) 2 a 2 J 

S% i ] < 6|x(0)| 
P 2-2J+2(2 bc(3)2k~2i 

x £ ( 2 c r + 2 a + ( 2 j ) 2 a 2 ) ( 2 a + 2 a + ( 2 j + l ) 2 a 2 ) • • • ( 2 a + 2 a + ( 2 f c - l ) 2 a 2 ) K—j 

< 4f>|x(0)| exp{26c/?a - 2}. 

Combining these estimations with (13), (16) we get 

7 g + 1 ) < 46|x(0)| ( l + £ 2n~k+1 J ] 2 V i + i ) exp {2bc(3a~2} 
k—0 1=0 

- 2 < 46|x(0)| exp {2bcj3a~ } 
2bcfi 

+ 4cr + 4o + 2(n + l ) 2 a 2 + 

2 n + 1(6c/3) n + 1 

(2<j + 2a + a 2 ) ( 4 a + 4a + 2(2a)2) • • • (4a + 4a + 2(n + l)2a2)_ 

< 46|sc(0)| exp {46c/3a -2}. 

Notice, that in the same way one can obtain similar estimates for odd m. 
Finally from (13), the last estimate in (14) and the uniqueness of the 

solution of the chain (4) we conclude that Vqn\t) converges uniformly to 
vq (t) and the estimate (10) holds. 
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4. Asymptotic expansions 
Let e be a small parameter, p = e~l, a = e _ 1 , i.e. the random distur-

bances are large and fast. According to the estimate (10) we have 

(17) | J S x ( i ) - 4 n ) ( i ) | = 0 ( e n - 1 ) , E > 0. 

In order to get an asymptotic expansion for Ex(t) in powers of e it is suf-
ficient to obtain it for the solution of the chain (7). Let uo(t) —: VQn\t), 
ui(t) := e - ^ i t ) , uk(t) := v£n)(t), k = 2 , 3 , . . . , n. 

We have the following equations 

^ = A{t)u0 + C{t)uu 
at 

£2^!± = _ 1 + £2A^Ui + C^U2 + ic(t)u 0, 
(18) / 2 I 

e 2 - ^ - -2u2 + £2A(t)u2 + eC(t)u3 + -e2C(t)Ul, 

duk k2 1 
£2 —— = —-uk + e2A(t)uk + eC(t)uk+1 + -eC(t)uk-\, k = 3,..., n - 1, 

at 2 4 
O dUiyi ft 9 j / \ 1 / \ 

= 7Tun + £ A(t)un + -eC(i)un_i, 
dt 

1 
«o(0) = x(0), ufc(0) = - ^ [ l + ( - l ) f e ]x(0) , k = 1,... ,n. 

Consequently we obtain for uo{t) the chain of differential equations with a 
small parameter in the derivatives. The construction of asymptotic expan-
sions in powers of e for these equations is well known (see [5, 9]). If the 
matrices A(t), C(t) are smooth enough, for this purpose we can use the 
boundary function method since all conditions required by this method are 
fulfiled in our case. 

According to the boundary function method, we seek the asymptotic 
expansions as the sum of regular parts and boundary layer parts 

oo oo 

M*) ~ S (0 + £m9km(T), T = t£~2. 
m=0 m=0 

Substituting the regular parts of these expansions to (18) we obtain the 
equations: 

^ ^ = A{t)u00 + C(t)uio, ~\uw + C{t)u20 + ^C(t)u00 = 0, 

9 16 
-2«20 = 0, - - n 3 O = 0, — - u 4 0 = 0, 
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^ = A{t)u 01 + C(t)uu, ~un + C(t)u2i + ^C(t)u 01 = 0, 

9 1 
-2U21 + C(t)u 30 = 0, - - « 3 1 + C(t)ui0 + jC(t)u 20 = 0, 

du02 

dt 
= A{t)u 02 + C(t)u12, 

^JT = + A(t)u10 + C(t)u 22 + \c(t)u0 2, 
at 1 2 

^ = -2u 2 2 + A(t)u20 + C(i)u3 l + 

Therefore U20 - 0, U30 = 0, U40 — 0, U21 0, «31 = 0, uio = C(t)u00 and 
uoo, uoi> u m are solutions to the equations: 

^=A(t)uoo + C2(t)uoo, 

(19) =A(t)u0i + C2(t)u01, 
at 

du02 , „2, 

dt 
= A(t)u02 + c2(t)u 02 

+ 2C(t)[A(t)C(t) - C(t)A(t) - C'(t) - ^C3(i)]«oo-
o 

In order to find the initial values to the equations (19) we consider the 
boundary layer parts of the asymptotic expansions. 

Assume that A(re2) = 4(0) + O(e), C(re2) = C(0) + O(e). Considering 
in the equations (18) the stretched time r = te~2 and substituting the 
boundary layer parts of asymptotic expansions, we obtain 

^ 1 = 0 , ^ = A(0)9oo + C(0)9io, 

(20) 

^ = 4*0 + C(0)g20 + l-C(0)9oo, ^ = - 2 , 2 0 -

Taking into account the initial values to (18) and conditions 

l i m gkm(r) = 0, T—*00 

from (20) we obtain that 

- e - 2 r x ( 0 ) 
500(7") = 0, goi(r) = 0, u00 = x(0), u 0 i = 0, g2o(r) = , 

9io(r) = ^\e-3r/2 ~ 4]C(0)*(0), So2(0) = ¿C2(0)*(0) , 
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u O 2 (0 ) = ~ C 2 ( 0 ) x ( 0 ) , g02(r) = hl6e~T/2 - O)x(O). 
1 t) 

Therefore by (17) and [5, 9] we have the following result. 

PROPOSITION. If the matrices A(t) and C(t) are twice differentiable for 
t € [ 0 , T ] , the mean value Ex(t) of the solution of equation (1) has the 
following asymptotic expansion 

Ex(t) = uoo{t)+£2uo2(t) + e2go2{T) + 0(e3), r = te~2, e 0 , 

where itoo(i), U02(t), 9o2{t) are determined by equations: 

^ = A(t)u00 + C2{t)u oo, u o o ( 0 ) = x ( 0 ) , 
at 

^ = A(t)u02 + C2(t)u02 
at 

+ 2C{t)[A(t)C{t) - C(t)A(t) - C'(t) - |c3(i)]u00, 
o 

u O 2 ( 0 ) = 0)®(0) , 

9 0 2 { t ) = ^ [ 1 6 e _ T / ' 2 — e - 2 T ] C 2 ( 0 ) x ( 0 ) . 

Notice that the above approach permits also to construct asymptotic 
expansions in the case of fast random disturbances. 
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