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Abstract. Nonlinear pseudodifferential equations involving Levy semigroup genera-
tors are used in physical models where the diffusive behavior is affected by hopping and 
trapping phenomena. In this paper we present several results concerning asymptotics and 
high dimensional Monte Carlo-type approximations via interacting particle systems for 
two classes of such equations. 

1. Introduction 
In this paper we present several asymptotic and approximation results 

for the Cauchy problem for nonlinear pseudodifferential equations of the 
form 
( 1 ) ut + Cu + V M u = 0 , u ( x , 0 ) = UQ(X), 

where u = u(x, t), x 6 R.d, t > 0, u : Rd xR+ —> R, — £ is a (linear) generator 
of a symmetric positive semigroup e~tC on L1(Rd), with the symbol defined 
by the Levy-Khintchine formula 

(2) o(f) = ib£ + «?(£) + J (1 - e - iri^{\v\<i}(ri)) H(dr,), 
Rd 

see [3, Ch.l, Th. 1], and J\f is a nonlinear operator to be specified later. 
We will assume that 6 = 0. The function q(£) = ]0j,k=i QjkZjZk is a positive 
definite quadratic function on and the Levy measure II satisfies the usual 
integrability condition H({0}) = 0, min(l, \T}\2) U(dr]) < oo. 

The solutions to the Cauchy problem (1) have to be understood in some 
weak sense and several options are here available and have been studied in 
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the papers quoted in the references. For the sake of this presentation let us 
just say that as the mild solution to (1) we mean a solution of the integral 
equation 

4 
(3) u{t) = e-tcuQ - j V • e-^c{Mu){T) dr, 

o 
motivated by the classical Duhamel formula. 

Such equations are used in physical models where the diffusive behavior 
is affected by hopping, trapping and other nonlocal, but possibly self-similar, 
phenomena (see, e.g., [1], [2], [13], [17], [24], [26], [27], [29], [30], [32], [33]). 

Recently, we have studied the questions of existence, uniqueness, regu-
larity, temporal asymptotics, and interacting particle approximations (prop-
agation of chaos) for certain special cases of equation (1), in particular, the 
fractal Burgers equation (see, [4], [16]), 

(4) ut + (—A)a^2u + c • V(ii |u| r_1) = 0, c £ Rd, 
and the one-dimensional multifractal conservation laws (see [6]), 

(5) ut + Cu + f{u)x = 0, 
with the multifractal operator 

k 
(6) C = - a 0 ^ + J £ a j ( - ^ 2 , 

j = i 

0 < atj < 2, aj > 0 , j = 0 , 1 , . . . , k , where ( - A ) a / 2 , 0 < a < 2, is the 
fractional Laplacian defined as the Fourier multiplier operator 

(7) = 

All these equations are generalizations of the classical Burgers equation 

(8) ut - uxx + (u2)x = 0, 

and the results provided below extend our work quoted above. The detailed 
proofs of these results will appear in [8], [9], see also [7]. 

2. Asymptotics for conservation laws 
Intuitively speaking, our results from [6] have shown that the first or-

der asymptotics (as t —> oo) for solutions of the Cauchy problem for the 
multifractal conservation laws (5-6) is essentially linear. More precisely, if 
1 < a < 2, with 

a = min{ai, ...,afc}, 
and if the nonlinearity / has a polynomial growth then, for 

u0(x) e L1 (R) fl (R), 
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the Cauchy problem has a global-in-time mild solution such that the first 
term of its asymptotic expansion is given by the solution of the Cauchy 
problem of the linear equation ut + Cu = 0 with the same initial data, or 
quantitatively, in any ZT'-norm ||.||p, 1 < p < oo, 

t^Mf" | | u ( i ) - e i £ * u o | | p - 0 

as t —> oo. For the linear equation the asymptotics is clear: there exists 
a nonnegative function r] £ L°°(0, oo) satisfying lim^oc rj(t) — 0, and such 
that 

etC *u0-\ UQ(X) dx • Pc(t) < t-V-Woriit), 
J n p 

where pc(t) is the kernel of the operator £ in (6). 
The results summarized below extend the above first order asymptotics 

results to a more general class of nonlocal diffusion operators £ and also give 
information about the second order asymptotics. They will be formulated 
under various sets of assumptions on either the semigroup e~tC or the symbol 
a of £ which will include the following conditions satisfied for all t > 0, 
1 < p < oo and some 0 < a, a < 2 

(9) \\e~tC\\i,P < m m ( c 1 r n ^ p ^ 2 , c 2 r n ^ p ^ a ) , 

(10) ||Ve_t£||iiP < m i n ( c 1 r n ( 1 - 1 / ^ 2 - 1 / 2 , c 2 r ' , ( 1 - 1 « / ( , ) - 1 / a ) , 

(11) 0 < l i m i n f ^ P < l i m s u p ^ < oo, 0 < i n f 4 § , 

(12) limsup ^ ^ — £ o r s o m e > q 
liH«T lil« 

Here and later on, [|.||fc)P stands for the usual Sobolev space Wfc'p-norm. 
The conditions (11)—(12), together with a smoothness assumption on a for 
£ 0, imply decay rates (9)-(10). All these assumptions are verified by, e.g., 
multifractal diffusion operators (6) with ao > 0. 

Theorem 1. Assume that f € C ^ R , ! ^ ) and £ is of the form (2) and 
satisfies (12). Given uq G Ll(Rd) fl Zi°°(Rd), there exists a unique solution 
u € C([0, oo); L 1 (R d ) n L°°(Rd)) of the problem 

(13) ut + £ u + V • f{u) = 0, u (s , 0 ) = u0(x). 

This solution is regular, u G C((0, oo); W2 '2(Rd)) fl ^ ( ( 0 , oo); L2(Rd)), sat-
isfies the conservation of integral property \u{x,t)dx = \uo(x)dx, and the 
contraction property 
(14) IKOIIp < IN||P, 
for each p 6 [l,oo] and all t > 0. Moreover, the maximum and minimum 
principles hold: ess inftto < u(x,t) < ess supuo, a.e. x,t, as well as the 
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comparison principle for uo < vq G L1(Rd): 
( 1 5 ) u(x,t) < v(x,t) a.e. x,t, and ||u(i) — v(i)||i < ||uo — uolli-

The estimates of solutions of the nonlinear equation (13), which turn 
out to be the same as for the linear semigroup, can be proved under quite 
general assumptions on the decay of the semigroup, much weaker than (9). 

THEOREM 2. (i) If the semigroup e verifies the estimate \\e ||i,oo < 
m(t) for some decreasing C1 function m, then positive solutions of the 
Cauchy problem (13) satisfy the bound 
(16) H u W I I ^ m W ^ I K I I i . 

Moreover, ifm(t) — ct~e (as it is whenever (9) holds), then the same esti-
mate is valid for solutions of arbitrary sign. 

(ii) //||e-t£||2,oo < M{t), then ||u(i)||oo < M(i)||u0||2, foru0 of arbitrary 
sign. 

(iii) Under assumption (9) on e~tc the bound 

IHi)||P < Cp mm(t~n(1~1/p^2, i_n(1_1/p)/c*) ||tio||i 
holds for all 1 < p < oo. Moreover, if u0 e L1^) n Lco(Rd), then 

(17) \\u{t)\\p<C(l + t ) - n ^ P ^ a 

with a constant C which depends on ||no||i and ||uo||p-

Two consecutive terms of asymptotics of solutions of (13) are described 
in the next two theorems. 

THEOREM 3. Assume that u is a solution of the Cauchy problem (13) with 
u0 € L1(Rd) n L°°(Rd) and e~tC satisfies (9)-(10) with some 0 < a < 2. 
Furthermore, suppose that f € C1, limsups_^0 |/(s)|/|s|r < oo for some 
(18) r > max( (a - l ) / n + 1 , 1 ) ) . 

Then, for every 1 < p < oo, the relation 
(19) lim in(1"1/p)/a||u(i) - e~tcu0 |L = 0 

t—>oo 
holds. 

THEOREM 4. Let the symbol a of C satisfy the assumptions (11), the semi-
group satisfy (9)—(10), and f 6 C2, /'(0) — 0.1fn~l and a > 1, suppose 
moreover that f 6 C3, /"(0) = 0. Then for each 1 < p < oo, the solution of 
(13) satisfies the limit relation 

(20) lim t » d - i / p ) / a + i / a \\uu\ _ e-tCUQ + p . ( V e " i £ 5 0 ) lip = 0 
t—>00 

with F = \Rd f(u(y, r)) dy dr. 
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3. Critical nonlinearity exponents 
By contrast with the results of the previous section, let us note that the 

first order asymptotics of solutions to the Cauchy problem for the Burgers 
equation (8) is described by the relation 

t{1-1/p)/2\\u(t) - UM(t)\\P -> 0, as t-* co, 

where 
. x/Vt 

UM(x,t) = r 1 / 2 e x p ( - x 2 / 4 1 ) ( K ( M ) + - \ exp(-,£2/4) <%) 
- l 

is the, so-called, source solution such that u(x, 0) = M6Q. It is easy to 
verify that this solution is self-similar, i.e., UM{x,t) = t~1^2U{xt~1/2,1). 
Thus, the long time behavior of solutions to the classical Burgers equation 
is genuinely nonlinear, i.e., it is not determined by the asymptotics of the 
linear heat equation. 

As it turns out that genuinely nonlinear behavior of the Burgers equa-
tion is due to the precisely matched balancing influence of the regularizing 
Laplacian diffusion operator and the gradient-steepening quadratic inertial 
nonlinearity. 

The next result finds such a matching critical nonlinearity exponent for 
the nonlocal multifractal Burgers equation so that the solutions of (13) with 
a multifractal operator £ (see (6)) behave asymptotically like self-similar 
source solutions U of (4) with singular initial data M<50. Note that here uq 
is not necessarily positive, while positivity of U is a subtle consequence of 
(4) and M > 0. 

T H E O R E M 5. Letu be a solution of the Cauchy problem ( 13 ) with the operator 
C = (—A)Q/2 -f K. for some 1 < a < 2, and another Levy operator K, whose 
symbol k fulfills lim^o &(0/l£|Q ~ ^ Particular, C can be a multifractal 
operator of the form (6) with a^ > 0, 1 < a j < 2, a = min{ai,... , ajk}), and 
uq € Ll(Rd), $Rd uo(x)dx = M > 0. Assume that f satisfies the condition 

(21) lim , G R. V ' s—>0 s |s |(Q - 1)/n 

Then, for each 1 < p < oo, 

(22) lim t^-Vp)/" | |u(t) - U(t) |L = 0, t—>oo 
where U = Um is the unique solution of the problem (4) with r = 
max((a — 1 ) /n + 1,1)) and the initial data M8Q. Moreover, U is of self-
similar form U(x,t) = t-n^aU(xt-^a, 1), $RD U(x, 1) dx = M, and U> 0. 
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4. Interacting particle approximations 
The results of this section can be viewed as extension of our work from 

[16] where we established the existence of McKean's nonlinear diffusions, and 
related interacting particle approximation schemes (propagation of chaos in 
a wide sense) for the fractal Burgers equation and of [10], where we studied 
global and exploding solutions for equations of the form 
(23) ut + ( - A ) q / 2 u - V • (uB(u)) = 0. 
Here u : Q, x (0, T) C Rd x R+ -> R, (-A)<*/2 is a fractional power of the 
minus Laplacian in Rd, 0 < a < 2, and 

B(u){x) = \ b(x,y)u(y) dy 

is a linear Revalued integral operator with the kernel b : Rd xRd Rd. The 
dimension is restricted to the physically interesting cases d = 1,2, or 3. The 
proofs of the statements provided below appear in [5]. 

Equations (23) describe various physical phenomena involving diffusion 
and interaction of pairs of particles when suitable assumptions are made 
on the possibly singular integral operator B. Since our main interest is in 
u as a description of the density of particles in Rd, we will only consider 
nonnegative solutions to (23). For instance, if b(x,y) = c(x — y)\x — y\~d 

then the equation (23) models the diffusion of charge carriers (c < 0) in 
electrolytes, semiconductors or plasmas interacting via Coulomb forces. If 
c > 0, it describes gravitational interaction of particles in a cloud, or galaxies 
in a nebula, or the Biot-Savart kernel b(x,y) = (2n)(x2 — 2/2,2/1 ~ xi)\% — 
y|~2 in R2, the equation (23) with a = 2 is equivalent to the vorticity 
formulation of the Navier-Stokes equations. Its solutions are global in time. 
Also, formally, the singular kernel b(x,y) = c6(x — y) leads to the classical 
Burgers equation (8). 

We restrict ourselves to the most important in the applications case of 
convolution operators B in (23), so that from now on b(x,y) = b(x — y). 
Moreover, we assume that b satisfies potential estimates like either 

(24) |6(x)| < C\xf~d 

or 
(25) |£>6(x)| < 
for some 0 < ft < d, 0 < -y < d, which is motivated by the above men-
tioned physical examples. Formally, the case of the Burgers equation (8) 
corresponds to the limit case ¡3 = 0 but, of course, the operator B(u) = cu, 
0 / c S Rd, is not an integral one. In fact, assumptions (24), (25) can be 
weakened as, e.g., in [10], but we prefer to keep the potential character and 
smoothing properties of B clear. 
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We begin with the construction of a nonlinear Markov process for which 
the equation (23) serves as the Fokker-Planck-Kolmogorov equation. The 
assumption a 6 (1,2) permits us to freely use the expectations of the a-
stable processes involved in the construction. 

Let u > 0 be a (local in time) solution of (23). Without loss of generality 
we can assume that u is bounded, i.e. 

(26) sup |u(x,f)| < oo. 
x€R,i,t€[0)T] 

Moreover, since we are working with (L1 H L°°)-solutions 

sup |5(u(i))(x)| < oo 
x£]R<i,te[0,T] 

follows from the potential estimate (24), Sobolev embedding theorem and 
(26). 

Consider a solution X(t) of the stochastic differential equation 

(27) dX(t) = dS(t) - B{u(t)){X(t)) dt, 

where it is a given (bounded) solution of (23), X(0) ~ u(x, 0) dx in law, and 
S(t) is a standard a-stable spherically symmetric process with its values in 
Rd. Since the coefficient B(u) in (27) is bounded, based on the work [20], 
we infer that the stochastic differential equation (27) has a unique solution 
X. The measure-valued function 

(28) v(dx,t) = P(X(t) e dx) 

satisfies the weak forward equation 

(29) jt(v(t),r)} = (v(t),£u(t)Tl), 

for all r] G <S(Rd), the Schwartz class of functions on Rd, with the initial 
condition v(0) = u(x, 0) dx and the operator 

Cu = - ( - A ) Q / 2 - B{u) • V, u = u(x,t). 

THEOREM 6. Let 1 < A < 2 and u be a solution of (23) satisfying (24). 
The process X(t) in (27) is the McKean process (nonlinear Markov process) 
corresponding to (23), that is, it satisfies the relation 

P(X(t) 6 dx) = u(x,t) dx. 

The proof of the above result can be sketched as follows. From the results 
of [14] (see [15]), the following two statements are equivalent: 

• The martingale problem for the operator £u(t) is well posed, and 
• The existence and uniqueness theorem holds for the corresponding 

linear weak forward equation (29). 
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Here, the martingale problem associated with (27) is well posed. How-
ever, u(dx, t) = u(x, t) dx is also a solution of (29) since 

ft(u(t),V) = (-(-AT'2u + V- (uB{u)U}) = (u,CnV)-

Since the coefficients of the linear equation (29) are regular (B(u) € L°°), 
the problem u>t = Cuw, w(0) = 0, has the unique solution w = 0. This can 
be easily seen from the energy estimates used in [10]. Now, the uniqueness 
for (29) implies that v(dx,t) = u(dx,t), which yields Theorem 6. 

Now we can describe our high dimensional interacting particle approxi-
mation for the equation (13). Results in this spirit, when £ is replaced by the 
usual Laplacian, have been proved in various situations after the pioneering 
work [22]. The following references contain reformulations, extensions and 
generalizations of the McKean's scheme (also often called "propagation of 
chaos results") for various evolution problems of physical origin: [19], [12], 
[21], [25], [31], [34], [11]. Besides a purely mathematical interest, they also 
give reasonably well working tools for the numerical approximation of so-
lutions, especially when convergence rates can be found. In the case of the 
Biot-Savart kernel mentioned at the beginning of this section, they coincide 
with the "random vortex method" for the two-dimensional Navier-Stokes 
equations (see, e.g., [18]). 

Let us consider a standard smoothing kernel 

(30) 6c(x) = (27re)-' i/2exp(-|x|2/(2e)), e > 0, 

and the system of regularized equations (27) 

(31) dJT-n'e(i) = dS^t) - - £ be ( X ^ i t ) - Xi>n>e(t)) dt, 
jyil 

where b(x,y) = b(x — y), be = b*8t. Then define random empirical measures 

(32) Yn'€(t) = - ¿ ¿ ( j r ' " ' e ( i ) ) . 
71 . -1=1 

T h e o r e m 7. Let the conditions ensuring the local in time existence of solu-
tions of (23) on x (0, T) be satisfied. Moreover, assume that 

(which is, of course, compatible with the potential estimate (24)), and that 
the initial conditions {Xî,n'£(0)}i=i)..Mn satisfy 

sup sup n 1 - 1 /« ( l + l A r r ^ K r ^ O ) -u £ (x , 0 ) ,xa ) | < oo 
« A£Rd 

for some a > 0 and all the characters X\(x) = elXx- Then: 
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(i) For each t > 0 the empirical process is weakly convergent 

Yn'£(t) =>• ue(x,t) dx, in probability, as n —> oo. 

The limit density ue = u£(x,t), x G t G (0, T), solves the regularized 
equation (13) 
(33) u\ + ( - A ) Q / V - V • {u'Be(ue)) = 0 

iwift Be = 6e* B defined by the kernel be = 6e* b. 
(ii) For each e > 0 , there exists a constant Ce such that for any <f> G <S(Md) 

E\(Y^(t) - U E ( I ) , <f>)\ < CeTi1^'1 J ( 1 + | A | A ) | ( ^ ) ( A ) | dX. 
Rd 

(iii) Under the assumptions guaranteeing the global in time existence of 
solutions of (23), the conclusions (i), (ii) are valid for all t G (0, oo). 

A crucial tool in the proof of Theorem 7 were the estimates for a-stable 
stochastic Itô integrals from [23]. It is also possible to prove the "propaga-
tion of chaos in a wide sense" for equation (23), by which we mean that 
given any sequence of regularizations (33) with e —> 0, the family of em-
pirical distributions {Fn , e( i)} contains a subsequence weakly convergent to 
a solution u(t) of (23). 

T H E O R E M 8. Let the general conditions of Theorem 7 be satisfied. Assume 
that uc{t) are solutions of the regularized equation (33) such that their initial 
conditions satisfy | u c ( 0 ) - u ( 0 ) | 2 —»• 0 as e —» 0 for some u(0) G L2(Rd). Then 
given any sequence e^ —> 0 as k —• oo, there exists a sequence nfc —> oo and 
a weak solution u(t) of (23) such that for each <j) G C o ° ( R d ) 

E\(Yn^"(t)-u(t),cf>) | - 0 . 
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