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Abstract. Nonlinear pseudodifferential equations involving Lévy semigroup genera-
tors are used in physical models where the diffusive behavior is affected by hopping and
trapping phenomena. In this paper we present several results concerning asymptotics and
high dimensional Monte Carlo-type approximations via interacting particle systems for
two classes of such equations.

1. Introduction

In this paper we present several asymptotic and approximation results
for the Cauchy problem for nonlinear pseudodifferential equations of the
form
(1) us + Lu+ VNu =0, u(z,0)=up(z),
where u = u(z,t),z € R, t > 0, u: RExR* — R, —L is a (linear) generator
of a symmetric positive semigroup e ** on L!(R?%), with the symbol defined
by the Lévy-Khintchine formula
(2) a(€) = b€ +q(€) + § (1 — €7 — in&k (<13 (m)) (dn),

Rd

see {3, Ch.1, Th. 1], and N is a nonlinear operator to be specified later.
We will assume that b = 0. The function ¢(¢) = Z?,k:l q;x€;€k is a positive
definite quadratic function on Rg and the Lévy measure II satisfies the usual
integrability condition II({0}) = 0, (g« min(1, [n|?) I(dn) < oo.

The solutions to the Cauchy problem (1) have to be understood in some
weak sense and several options are here available and have been studied in
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the papers quoted in the references. For the sake of this presentation let us
just say that as the mild solution to (1) we mean a solution of the integral

equation
t

(3) u(t) = e Huy — S v. e‘(t“T)L( u)(7)dT,
0
motivated by the classical Duhamel formula.

Such equations are used in physical models where the diffusive behavior
is affected by hopping, trapping and other nonlocal, but possibly self-similar,
phenomena (see, e.g., [1], [2], [13], [17], [24], [26], [27], [29], [30], [32], [33]).

Recently, we have studied the questions of existence, uniqueness, regu-
larity, temporal asymptotics, and interacting particle approximations (prop-
agation of chaos) for certain special cases of equation (1), in particular, the
fractal Burgers equation (see, [4], [16]),

(4) ug + (-A)*?u 4 ¢ V(uu[""') =0, ceR?,
and the one-dimensional multifractal conservation laws (see [6]),
(5) ue + Lu+ f(u); =0,
with the multifractal operator
k
(6) L = —agA + Zaj(—A)"‘j/z,
j=1

0<a; <2 aj >0,57=01,...,k, where (—A)a/2,0 < a < 2,is the
fractional Laplacian defined as the Fourier multiplier operator

(7) ((=8)*v) = F7H(E|*(Fv)(£)).
All these equations are generalizations of the classical Burgers equation
(8) Ut — Ugg + (Uz)z =0,

and the results provided below extend our work quoted above. The detailed
proofs of these results will appear in [8], [9], see also [7].

2. Asymptotics for conservation laws
Intuitively speaking, our results from [6] have shown that the first or-
der asymptotics (as ¢ — oo) for solutions of the Cauchy problem for the
multifractal conservation laws (5-6) is essentially linear. More precisely, if
1< a<?2, with
a = min{ay, ..., ag},

and if the nonlinearity f has a polynomial growth then, for
up(z) € L1(R) N L*®(R),
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the Cauchy problem has a global-in-time mild solution such that the first
term of its asymptotic expansion is given by the solution of the Cauchy
problem of the linear equation u; + Lu = 0 with the same initial data, or
quantitatively, in any LP-norm |.||p, 1 < p < oo,

01/ u(t) - et x uglly — 0

as t — oo. For the linear equation the asymptotics is clear: there exists
a nonnegative function n € L*(0, 0o) satisfying lim¢_,o 7(t) = 0, and such
that
Hetﬁ * Uy — S UO(.'II) dr - pﬂ(t)”;, < t—(l—l/P)/an(t),
R
where p,(t) is the kernel of the operator £ in (6).

The results summarized below extend the above first order asymptotics
results to a more general class of nonlocal diffusion operators £ and also give
information about the second order asymptotics. They will be formulated
under various sets of assumptions on either the semigroup e ~*¢ or the symbol
a of £ which will include the following conditions satisfied for all ¢ > 0,
l1<p<oandsome 0 < a, a <2

(9) |le“£[[1,p < min(e ¢ MIVR/Z ppn(1-1/p) @y
(10) ”Ve_t[:”l,p < min(clt—n(l—l/p)/2—1/2,c2t—n(1-1/p)/a)—1/a)’

o al8) a(§) . a(§)
11 0 < liminf —= <limsup —= < 00, 0 < inf —=,
- £ Tere = MR Tege e

_ 2

(12) lim sup M < oo for some gg > 0.

j¢l—o0 €1
Here and later on, [|.||x, stands for the usual Sobolev space W*P-norm.

The conditions (11)-(12), together with a smoothness assumption on a for
€ # 0, imply decay rates (9)—(10). All these assumptions are verified by, e.g.,
multifractal diffusion operators (6) with ag > 0.

THEOREM 1. Assume that f € CY(R,R?%) and L is of the form (2) and
satisfies (12). Given ug € L*(R?) N L®(RY), there erists a unique solution
u € C([0,00); L} (R?) N L®(R?)) of the problem

(13) ur+ Lu+ V- flu)=0, u(z,0) = ug(z).

This solution is reqular, u € C((0, 00); W22(R?)) N C((0, 00); L2(RY)), sat-
isfies the conservation of integral property {u(z,t)dz = §up(z)dz, and the
contraction property

(14) lu®llp < lluollps

for each p € [1,00] and all t > 0. Moreover, the mazimum and minimum
principles hold: ess infuy < u(z,t) < esssupug, a.e. z,t, as well as the



406 P. Biler, G. Karch, W. A.Woyczynski

comparison principle for ug < vy € L}(R%):
(15)  u(z,t) <v(z,t) ae z,t, and ||u(t) —v(t)]l < lluo — voll-
The estimates of solutions of the nonlinear equation (13), which turn

out to be the same as for the linear semigroup, can be proved under quite
general assumptions on the decay of the semigroup, much weaker than (9).

THEOREM 2. (i) If the semigroup e~** verifies the estimate |le % ||1,00 <
m(t) for some decreasing C' function m, then positive solutions of the
Cauchy problem (13) satisfy the bound

(16) lu()llz < m(&)?luoll:-

Moreover, if m(t) = ct™¢ (as it is whenever (9) holds), then the same esti-
mate is valid for solutions of arbitrary sign.

(ii) If lle 42,00 < M(t), then |u(t)|loo < M(t)||uoll2, for uo of arbitrary
sign.

(iii) Under assumption (9) on e™** the bound

lu(®)llp < Cpmin(t~™1-1/P/2, ¢=nl=1/p ey |y, )y

holds for all 1 < p < oo. Moreover, if ug € L'(R?) N L®(R?), then
(17) lu(®llp < C(1 +8)7m0 Mo
with a constant C which depends on |lug|l1 and ||uollp.

Two consecutive terms of asymptotics of solutions of (13) are described
in the next two theorems.

THEOREM 3. Assume that u is a solution of the Cauchy problem (13) with
ug € LY(RY) N L®(RY) and et~ satisfies (9)-(10) with some 0 < o < 2.
Furthermore, suppose that f € C1, limsup,_,o |f(s)|/|s|” < oo for some

(18) r > max((a — 1)/n+1,1)).
Then, for every 1 < p < 00, the relation

(19) Jim "0/ (1) — e g, = 0
holds.

THEOREM 4. Let the symbol a of L satisfy the assumptions (11), the semi-
group satisfy (9)-(10), and f € C?, f/(0) =0. If n =1 and a > 1, suppose
moreover that f € C3, f(0) = 0. Then for each 1 < p < 00, the solution of
(13) satisfies the limit relation

(200 Jim ORI u(t) — g 4 F - (Ve o)y = 0

with F = {§° {ga f(u(y, 7)) dydr.
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3. Critical nonlinearity exponents

By contrast with the results of the previous section, let us note that the
first order asymptotics of solutions to the Cauchy problem for the Burgers
equation (8) is described by the relation

t(1~1/p)/2“u(t) ~Un(®)|lp — 0, as t — oo,

where

z/Vt B
UM(m,t)=t”1/2exp(—m2/4t)(K(M)+% [ exp(-¢2/4)dt) '
0

is the, so-called, source solution such that u(z,0) = Mé. It is easy to
verify that this solution is self-similar, i.e., Uy (z,t) = t~120 (=12, 1).
Thus, the long time behavior of solutions to the classical Burgers equation
is genuinely nonlinear, i.e., it is not determined by the asymptotics of the
linear heat equation.

As it turns out that genuinely nonlinear behavior of the Burgers equa-
tion is due to the precisely matched balancing influence of the regularizing
Laplacian diffusion operator and the gradient-steepening quadratic inertial
nonlinearity.

The next result finds such a matching critical nonlinearity exponent for
the nonlocal multifractal Burgers equation so that the solutions of (13) with
a multifractal operator £ (see (6)) behave asymptotically like self-similar
source solutions U of (4) with singular initial data M 8. Note that here ug

is not necessarily positive, while positivity of U is a subtle consequence of
(4) and M > 0.

THEOREM 5. Let u be a solution of the Cauchy problem (13) with the operator
L= (~A)*? 4+ K for some 1 < a < 2, and another Lévy operator K whose
symbol k fulfills limg_o k(£)/|€]* = O (in particular, £ can be a multifractal
operator of the form (6) with ag > 0, 1 < a; < 2, a = min{oy, ...,ax}), and
up € LY(R?), {ga uo(z)dz = M > 0. Assume that f satisfies the condition

. f(s)
(21) ;]_._I';% Slsl(a—_l)/n € R.

Then, for each 1 < p < 00,

(22) Jim "V u(e) ~ U0, = 0,
where U = Ups is the unique solution of the problem (4) with r =

max((a — 1)/n + 1,1)) and the initial data M&y. Moreover, U is of self-
similar form U(z,t) = t U (zt™2/*,1), (g U(z,1)dz = M, and U > 0.



408 P. Biler, G. Karch, W. A.Woyczyriski

4. Interacting particle approximations

The results of this section can be viewed as extension of our work from
[16] where we established the existence of McKean'’s nonlinear diffusions, and
related interacting particle approximation schemes (propagation of chaos in
a wide sense) for the fractal Burgers equation and of [10], where we studied
global and exploding solutions for equations of the form

(23) u + (—A) %y — V- (uB(u)) = 0.
Here u: 2 x (0,T) C R?* x Rt — R, (-A)*/2 is a fractional power of the
minus Laplacian in R, 0< a<2 and

B(u)(z) = | b(z,y)u(y) dy
Rd
is a linear R%-valued integral operator with the kernel b : R* x R* — R%. The
dimension is restricted to the physically interesting cases d = 1,2, or 3. The
proofs of the statements provided below appear in [5].

Equations (23) describe various physical phenomena involving diffusion
and interaction of pairs of particles when suitable assumptions are made
on the possibly singular integral operator B. Since our main interest is in
u as a description of the density of particles in R%, we will only consider
nonnegative solutions to (23). For instance, if b(z,y) = c(z — y)|z — y|~¢
then the equation (23) models the diffusion of charge carriers (¢ < 0) in
electrolytes, semiconductors or plasmas interacting via Coulomb forces. If
¢ > 0, it describes gravitational interaction of particles in a cloud, or galaxies
in a nebula, or the Biot—Savart kernel b(z,y) = (27)(z2 — y2, 11 — z1)|z —
y|™2 in R?, the equation (23) with a = 2 is equivalent to the vorticity
formulation of the Navier-Stokes equations. Its solutions are global in time.
Also, formally, the singular kernel b(z,y) = c¢§(z — y) leads to the classical
Burgers equation (8).

We restrict ourselves to the most important in the applications case of
convolution operators B in (23), so that from now on b(z,y) = b(z — y).
Moreover, we assume that b satisfies potential estimates like either

(24) [b(z)] < Clz|P~?
(25) |Db(z)| < Clz|"~?

for some 0 < 8 < d, 0 < 4 < d, which is motivated by the above men-
tioned physical examples. Formally, the case of the Burgers equation (8)
corresponds to the limit case 8 = 0 but, of course, the operator B(u) = cu,
0 # ¢ € R%, is not an integral one. In fact, assumptions (24), (25) can be
weakened as, e.g., in {10], but we prefer to keep the potential character and
smoothing properties of B clear.
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We begin with the construction of a nonlinear Markov process for which
the equation (23) serves as the Fokker—-Planck-Kolmogorov equation. The
assumption a € (1,2) permits us to freely use the expectations of the a-
stable processes involved in the construction.

Let u > 0 be a (local in time) solution of (23). Without loss of generality
we can assume that u is bounded, i.e.

(26) sup |u(z,t)| < oo.
z€R? t€[0,T]

Moreover, since we are working with (L! N L*°)-solutions
sup [B(u(t))(z)] < o0
z€R4 te[0,T)
follows from the potential estimate (24), Sobolev embedding theorem and
(26).
Consider a solution X (%) of the stochastic differential equation
(27) dX () = dS(t) — B(u(t))(X(2)) dt,

where u is a given (bounded) solution of (23), X (0) ~ u(z,0) dz in law, and
S(t) is a standard a-stable spherically symmetric process with its values in
R?. Since the coefficient B(u) in (27) is bounded, based on the work [20],
we infer that the stochastic differential equation (27) has a unique solution
X. The measure-valued function

(28) v(dz,t) = P(X(t) € dz)
satisfies the weak forward equation

d
(29) = (u(t),m) = ), Lu),

for all n € S(R?), the Schwartz class of functions on R?, with the initial
condition v(0) = u(z,0) dz and the operator

Ly, =—(—A)? - B(u)-V, u=ulz,t).

THEOREM 6. Let 1 < a < 2 and u be a solution of (23) satisfying (24).
The process X (t) in (27) is the McKean process (nonlinear Markov process)
corresponding to (23), that is, it satisfies the relation

P(X(t) € dz) = u(z, t) dz.
The proof of the above result can be sketched as follows. From the results
of [14] (see [15]), the following two statements are equivalent:

e The martingale problem for the operator £, ;) is well posed, and
e The existence and uniqueness theorem holds for the corresponding
linear weak forward equation (29).
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Here, the martingale problem associated with (27) is well posed. How-
ever, u(dz, t) = u(z, t) dz is also a solution of (29) since

L ult)m) = (~(~2) %+ V- (B(w), ) = (u, Lur).

Since the coefficients of the linear equation (29) are regular (B(u) € L),
the problem w; = L,w, w(0) = 0, has the unique solution w = 0. This can
be easily seen from the energy estimates used in [10]. Now, the uniqueness
for (29) implies that v(dz,t) = u(dz,t), which yields Theorem 6.

Now we can describe our high dimensional interacting particle approxi-
mation for the equation (13). Results in this spirit, when £ is replaced by the
usual Laplacian, have been proved in various situations after the pioneering
work [22]. The following references contain reformulations, extensions and
generalizations of the McKean’s scheme (also often called “propagation of
chaos results”) for various evolution problems of physical origin: [19], [12],
[21], [25], [31], [34], [11]. Besides a purely mathematical interest, they also
give reasonably well working tools for the numerical approximation of so-
lutions, especially when convergence rates can be found. In the case of the
Biot-Savart kernel mentioned at the beginning of this section, they coincide
with the “random vortex method” for the two-dimensional Navier-Stokes
equations (see, e.g., [18]).

Let us consider a standard smoothing kernel

(30) bc(x) = (2me) Y2 exp(~|z|?/(2¢)), €> 0,

and the system of regularized equations (27)

(31) dXP™e(t) = dSE(t) — % > be (XPe(t) - XPe(t)) dt,

J#
where b(z,y) = b(z —y), be = b* 6. Then define random empirical measures
1< ;
32 Y™e(t) = = ) §(XV™M(t)).
(52) 0=52

THEOREM 7. Let the conditions ensuring the local in time ezistence of solu-
tions of (23) on R? x (0,T) be satisfied. Moreover, assume that

[(FB) ()] < C(L+¢]7P)

(which is, of course, compatible with the potential estimate (24)), and that
the initial conditions {X"™¢(0)}i=1,..n satisfy

sup sup nl_l/"‘(l + |/\|“)_1E [{(Y™€(0) — uf(z,0), xa)] < 00
7 \eRd

for some a > 0 and all the characters x)(z) = **. Then:
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(i) For each € > 0 the empirical process is weakly convergent
Y™¢(t) = uf(z,t) dz, in probability, as n — oo.

The limit density u¢ = uf(z,t), € R%, t € (0,T), solves the regularized
equation (13)
(33) u§ + (~A)*2uf = V- (uBe(u)) = 0

with B, = 6. * B defined by the kernel by = 6. * b.
(i) For each € > 0, there exists a constant C¢ such that for any ¢ € S(R?)

E(Y™(t) — ut(t), o) < Cen ™1 [ (14 [AI?)(F)(A)| dA.
Rd
(i) Under the assumptions guaranteeing the global in time ezistence of
solutions of (23), the conclusions (i), (ii) are valid for all t € (0, 00).

A crucial tool in the proof of Theorem 7 were the estimates for a-stable
stochastic Ito integrals from [23]. It is also possible to prove the “propaga-
tion of chaos in a wide sense” for equation (23), by which we mean that
given any sequence of regularizations (33) with ¢ — 0, the family of em-
pirical distributions {Y™*¢(¢)} contains a subsequence weakly convergent to
a solution u(t) of (23).

THEOREM 8. Let the general conditions of Theorem 7 be satisfied. Assume
that u¢(t) are solutions of the regularized equation (33) such that their initial
conditions satisfy |u¢(0)—u(0)|2 — 0 as e — 0 for some u(0) € L2(R?). Then
given any sequence €, — 0 as k — 00, there exists a sequence ny — oo and
a weak solution u(t) of (23) such that for each ¢ € C§°(R?)

E (Y™ (t) - u(t), ¢)| — 0.
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