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Abstract. The dilation property allows to define an intriguing family of statistical
distributions parameterized by the coefficients of respective dilation equation and the di-
lation scale. The family includes, except some commonly used probability laws, also a
wide range of naturally arising singular distributions, which usually are difficult for sta-
tistical analysis. But here due to dilation scheme some progress in developing statistical
tools can be expected. The paper describes basic properties of dilation distributions, in-
cluding an extension of the Kershner-Wintner theorem on infinite Bernoulli convolutions,
and indicates possible directions for future studies, including preliminary observations on
statistical inference.

1. Introduction

Statistical modelling is almost exclusively built on families of distribu-
tions possessing closed formulas for densities (in the absolutely continuous
case) or for probability mass functions (in the discrete case) or for distribu-
tion functions or at least for characteristic functions or some other trans-
forms. Therefore never or almost never continuous singular (with respect to
the Lebesgue measure) distributions are encountered in such settings. They
are believed mainly to work as strange examples falling away from what
could be useful in applications. The same is true even for distributions which
are absolutely continuous but which do not have a closed formula property.
The aim of this paper is to break out that scheme and to justify that such
break is natural and useful. It is recalled here that families of distributions
without closed formulas naturally arise, for instance, in some ruin problems
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or in models involving random jumps. Such families, connected with dila-
tion equations, are mathematically treatable. Also statistical inference can
be developed for them. This paper developes, in probabilistic language, the-
ory of dilation distributions involving: probability models leading to dilation
distributions, basic distributional properties, simulations and visualizations,
basics of estimation and hypothesis testing. The ambition of the paper is to
give a base for an additional chapter in standard monographs on families of
distributions useful in scientific work.

A revival of interest in dilation equations in recent years is due to an
expansion of the wavelet theory. The wavelets are constructed on a base
function which is a solution of the dilation equation (dile) of the form

fl@)y=)_acf(2z - k),
k

where (ax) are some real (or complex) coeflicients. Usually it is assumed
that { fdz = 1, implying Y, ax = 2 and #{k : ax # 0} < oo implying a
compact support—see Strang (1989) for an excellent concise introduction.
Then a unique solution exists (as a distribution), and its Fourier transform
can be easily represented in a form of an infinite product—see Heil and
Colella (1994) and Colella and Heil (1994). For a thorough study of more
general two-scale difference equations see Daubechies and Lagarias (1991,
1992).

Consider some examples.

The simplest dile has the form:

f(z) = 2f(2x),
i.e. the only non-zero ay is ap = 2 and the solution is the delta function. In
probabilistic terms we can rewrite the above equation as:

Bx = BXx/2,
where px denotes a probability distribution of a random variable (rv) X.
Consequently the solution is: P(X = 0) = 1.
Take another example of a dile:
fl@)y=fQz-1)+ 72z +1),

with a_; = a; = 1 and the solution f(z) = 0.5Ij_; 1j(z), which is a proba-
bility density function of a uniform U([—1,1]) rv X. The respective equation
for its distribution takes the form
(1) px = 0.5ux 41y/2 +0-5p(x -1)/2-

Hence the following mixture characterization of the uniform U([-1, 1]) dis-
tribution follows immediately:



Sketches on dilation probability distributions 387

THEOREM 1. If for a distribution of a rv X the mizture representation (1)
holds then X has the uniform distribution on [—1,1].

Proof. From (1) it follows that a characteristic function (chf) ¢ of X sat-
isfies

¢(t) = cos(t/2)¢(t/2),
for any real t. Iterating the above equation we have for any n

n

$(t) = ¢(t/2™) ]| cos(t/2")

k=1

which is well known to converge to sin(t)/t, a chf of the U([—1, 1]) distribu-
tion. m

Let us consider now a three terms dile of the form
flx) =0.5f(2z — 1) + f(2z) + 0.5f(2z + 1),

ie.a_; = a1 = 0.5 and ap = 1. Then f(z) = (1 - |z|)][-1,(z), which
is again a pdf of a rv X with a triangular distribution, and a respective
equation for its distribution takes the shape

px =0.25u(x41)/2 +0.50x/2 +0.250(x _1)/2-

Observe that X < (X1 + X2)/2, where X; and X, are two independent
copies of rv’s for which the equation (1) is fulfilled.
In general if a dile

fl@)=> arf(2x—k)
k

with ax > 0 for any k is given, then a respective probabilistic dilation
equation (prodile) has the form

1
bx = 3 ;aku(x+k)/2-

DEFINITION 1. Let px be a probability distribution of a rv X. Then the
equation

Bx = chﬂ'(x+k)/r>
k

where cj are positive constants such that 3, cx = 1 and r > 1, is called
a probabilistic dilation equation (prodile). A probability distribution ux
fulfilling such a prodile is called a dilation distribution with a scale r.
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2. Prodiles in probability
Infinite symmetric Bernoulli convolutions. Let X1, X5,... be indepen-
dent identically distributed (iid) rv’s with P(X; = £1) = 0.5 and let

o0
Y =) rX;,
i=1

where r > 1. It was shown by Kershner and Wintner (1936) that for r > 2
the distribution of Y is singular. For r = 2 the distribution is uniform
U([-1,1]). But, except some special cases, see for instance Erdos (1939,
1940), nothing is known in general for r € (1, 2). More recent contributions
for Bernoulli convolutions can be found in Garsia (1962), Brown and Moran
(1973), Lau (1993) and in the Lukacs (1970) monograph. Observe that

B (%) = [Tost/r) =cstyr [ oo (£

i=1
=05 (e + /") E (eum)

= 0.5E (e“(y-”/’) +05E (e"“”l)/’) .

Consequently uy is a dilation distribution generated by the prodile

py = 0.5py —1)/r + 0.-50(y +1)/r-

The brave gambler problem (see, for instance, Billinglsey (1979)). Let X;
denotes an outcome of the game in i-th step, 2 =1,2,..., i.e. X;,X>,... are
iid rv’s with P(X;1 = 1) =p=1—-¢=1- P(X; = —1). The gambler in
each step bets as much as is reasonable to win the whole amount equal 1 as
quickly as possible. Hence his asset at any time n is described by

Sn = Sn_l + Wan,
where Sp =z € [0,1] and
W = Sn-1 0<5,-1<05
"TTY11-5.,21 05<S8,.1<1.

Consequently the probability of winning for starting amount z € (0,1),
denoted by Q(z), fulfills

_ JpQ(2x) 0<z2<05
Q@) = {p+qQ(2z— 1) 05<z<1.

Since Q(z) =0 for z < 0 and Q(z) = 1 for z > 1, complement in a natural
way the definition, then it follows easily that @ can be considered as a
distribution function (df) of a prodile rv X with

HX = PHx/2 T (X +1)/2-
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An extension of this scheme involves a game with N + 1 possible outcomes:
0,1,..., N of respective probabilities cg,cq,...,cn, where N is the total
capital for the whole game. If the outcome is ¢ then a gambler betting
z € (0,N) wins N —z if 2c —¢ > N, or = — ¢ (which can be a loss also)
if 0 <2x—1 < N,or —z if 2z — i < 0. Then it follows easily that for
z€lk/2,(k+1)/2]

Q(z) =
cQ(2z)+ ...+ ckQ(2z — k) k=0,...,N -1,
co+...+ck—-N+ck-N+1Q2z —k+ N -1)+ ...+ ecnQ(2z — N)
k=N,...,2N —1.

(observe that with N = 1 the earlier scheme is covered). Consequently Q is
a df of a rv X with a distribution fulfilling

N

px = chu(x+k)/2-
k=0
Random jumps. Starting at Xy = 1/2 a particle in each step (1°) stays
where it is with probability ¢ = 1 — p, or jumps on the distance 1 to the
right with probability p and then (2°) goes back to the left on half of its
distance from O (thus it can not leave the interval (0,1)). Consequently its
position after n > 1 steps is described by

Xna1+Y,

where Y7,Ys, ... are iid rv’s with P(Y; = 0) = ¢ =1— P(Y1 = 1). Hence
Xn LN X, and for the chf ¢ of X one gets

E(e"X) = ¢(t) = ¢(t/2)(g + pe'*/?) = E(ge"*/? + pe™X+1/2),
Consequently

X = qpx/2 + PH(X+1)/2-
Assume now that, starting at Xy = 0, in each step the following possibilities
of the movement of the particle are given: 0 with probability 1/3, +1 with
probabilities (1 — 2¢)/6, and +2 with probabilities (1 + 2a)/6 and then the
particle jumps in the direction of the origin reducing its distance to the
origin to 1/3 of the distance after the first phase. Then its position after n
steps is described by

Xn — Xn—13+ Yn,
where Y1,Y2,... areiid rv’s with P(Y; = 0) =1/3, P(Y1 = £1) = (1-2a)/6

and P(Y1 = %2) = (1 + 2¢)/6, where a € [-1/2,1/2] is a given number.
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Consequently X, 4 X with a prodile distribution concentrated on (—1,1)
fulfilling

14 2a 1-2a
(2) wpx= 6 H(x-2)/8 T ——H(X-1)/3

1 1-2a 1+ 2a
+§MX/3 + 6 H(x+1)/3 + 5 H(x+2)/3:

It is known that then pyx is absolutely continuous and its density is a gen-
eralized de Rham function.

An extension of the above scheme involves a sequence Y7,Ys,... of iid
rvs with P(Y; = k) = cx, k= —Ni,—N; +1,...,N;, where N7 and N, are
positive integers, describing the movement of the particle in the first phase
of subsequent steps, while the second phase is its jump in the direction of
the origin on 1/r < 1 of the distance after the first phase. Then its evolution
is described by the sequence Xg = 0,

Xn1+Y,
Xy=221%0n oy
r
converging in distribution to a rv X with a prodile distribution fulfilling
N3

BX =Y ChE(X+k)/r
k=—N;

3. Basic properties of prodile distributions
Consider a rv X with a prodile distribution fulfilling

N3

bx = Z Ce(X+k)/r-
k=—N;

Then for the rv Y = X + N;/(r — 1) it follows that for any Borel set A

N1+N;
Ny Ny
w (A+ r—1> = 2, aommrn (A+ r—1>‘

Consequently any prodile can be reduced to the basic one of the form

N
Hx = chu(x+k)/r,
k=0

with ¢g > 0 and ¢y > 0. Denote by DIL(r;cy,...,cn) any such a prodile
distribution.
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Smoothness properties
THEOREM 2. If X is a DIL(r;co,...,cn) ™o with a df Fx then
sup{z: Fx(z)=0}=0, inf{z: Fx(z)=1}=N/(r-1),
and F'x is continuous.
Proof. Take any €; > 0. Then the prodile implies

N N N
(3) P<X>—+61) =Y cniP (X>-—+k+r61>.
r—1 i r—1

Observe that the assumption

N N
P<X>—1+N+T€1)<P<X>m+€1>.

r —

is contradictory to (3). Consequently
N N
PlX> —+e6)=PlX>——+4+¢€],
r—1 r—1
where e = N + re;. Repeating the above argument n times we get

N N
1+6n+1>=P(X>T_1+61),

T —

P <X >
where

€ns1 =N+ren =N1+r+...4+7""1) + Nr'e — 0.

Hence P(X > N/(r — 1)) =0.
Similar approach can be applied to the left end of the support with
N
P(X < —¢) = chP(X < —re—k).

k=0
Since P(X < —€) > P(X < —re—k)forany k =0,1,..., then P(X < —¢) >
P(X < —re— N) is a contradiction. Hence P(X < —¢) = P(X < —re— N)
for any € > 0, which implies that P(X < 0) =0.

Consequently supp(X) C [0, N/(r — 1)].

Consider now K = inf{z : P(X > z) = 0}. Assume that K < N/(r—1),
ie. K = N/(r —1) — e for some ¢ > 0. Then P(X > K) = 0 and the prodile
implies that P(X >rK —k)=0forany k =0,1,...,N. Take k = N, which
yields P(X > N/(r — 1) — re) = 0, which contradicts the assumption since
N/(r-1)-re< K.

Take now L = sup{z : P(X < z) = 0} and assume that L > 0. Then
for € € (0, (r — 1)L) it follows that P(X < L + ¢€) > 0 and consequently for
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8 = (L + €)/r the prodile implies
P(X <8)>cP(X <L+e¢€) >0,

which is a contradiction since 0 < § < L.

To prove that Fx is of the continuous type assume in contrary that
3 zo € [0, N/(r — 1)] such that P(X = zy) = ap > 0. Without loosing
generality we can assume that ap = sup{a: a = P(X =), z € R}. Since

N
Qg = ZCkP(X =TTy — k)
k=0

then it follows that ap = P(X =rzg— k) Vk=0,..., N such that ¢ > 0,
i.e. at least for k =0 and k = N. Hence rzo < N/(r — 1) and rzg — N > 0,
implying

N N

T S %o < rir—1)
Consequently r < 2. Consider now the point rzy. Applying again the prodile
we get that P(X = r2z¢) = ay, similarly starting with the point rzo— N we
get P(X =r(rzo — N)— N) = ap. Taking both the conditions into account
one gets

N(r+1) N
N < -
rz =TS r2(r —1)’
which implies r < 21/2. Proceeding in the same way after subsequent m
steps with all points in each step inside [0, N/(r — 1)] one gets
N(iE™14 . +r+1) N

< < —_—
rm = %0 = rm(r — 1)

which implies that 1 < r < 21/™_ being contradictory for sufficiently large
m. m

It appears that depending on the quantity N/(r — 1) the df’s of the
dilation distributions, being continuous functions can be of two basic kinds:
strictly increasing (on the support) or constant at some intervals (and then
singular). These two observations are described more thoroughly in the next
two results.

THEOREM 3. Let X be a DIL(r;co,...,cn) mv with a df Fx and ¢ > 0
Vke{0,...,N}. If N > r—1 then Fx is strictly increasing in [0, N/(r —1)]
= supp(X).

Proof. Let us take any a,b € [0, N/(r — 1)] such that a < b. Assume that
P(a €< X <b) = 0. Then for any n, let us define a sequence ki, k2, ..., kn
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of numbers from {0,1,..., N} such that

n

> i<
i=1

and for any j =1,...,n we have k; = N or k; < N and then

: i=1
Hence

We claim now that 0 < § < N/[(r — 1)r"]. If k, < N then it follows
immediately that 6, < 7= < N/(r™(r — 1)). If k,, = N then define jo, =
min{j: ki =NVIle{j,j+1,...,n}}. Hence
Jo—1 Jo-1
ki N N N k; 1
2 F+-'I‘-T°+’r‘j0+1 +...+r—n+5n < Zl F_*_'rjo_l

and thus

b < — [P0t — (pP700 4+ 1)N]
T
N ) )
— n—jot+l(n _ 1) — pnt—Jo+1 4 1 .
r(r—1) [r (r=1)-r +1 < r(r—1)
Now for §; = b—a, and sufficiently large n we have §; > 2 (zT‘T}\{W — 6n).
For such an n denote now € == N/(r — 1) —r™6,,, which is a positive number.

Observe that P(a < X < b) = 0 implies, via subsequent application of
the prodile, that

n—1

n—1
P(rha- Y ril; < X <rmb— Y rily) =0,
Putting in the above formula [; = k,,_; one gets
n—-1 ) N n—1
r"a—gor’lj =—3-6 r"b~j2=:r’lj >—te
Hence
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which is contradictory to inf{z : P(X > z) =0} = N/(r—1). Consequently
Pla< X <b)>0forany 0 <a<b< N/(r—-1) and the df Fx is strictly
increasing in [0, N/(r — 1)]. =

The next result is a straight-forward extension of the Kershner and Wint-
ner (1936) theorem on singular infinite Bernoulli convolutions recalled in
Section 2.

THEOREM 4. Let X be a DIL(r;co,...,cn) v such that ¢x > 0 Vk = 0,
1,...,N, witha df Fx. If N < r—1 then the set of points of increase of Fx
is nowhere dense in [0, N/(r — 1)]. More, Fx is singular and is constant on
each of the intervals

"\ k; N k1 N
l:;r’-l_r"(r—l)’;r’—*_rn _C[’r—-l]’
where k1, ..., kn are any numbers from {0,1,..., N} with a restriction that

kn, < N, and n is any positive integer. The Lebesgue measure of the union
of intervals on which Fx is non-increasing equals to N/(r — 1).

Proof. If N <r —1 then
n n
k; N k; 1
P —_t —— —+—| =
( r’+r”(r—l)<X<;rl+r”>

N n k; N -
ZCIP(ZTi—l + s +k—-l<X< ;

=0 =2

k; 1
i1 + -1 +ky - l)'

Observe first that for [ < k; the elements of the above sum are 0 since then
the left end of the interval is above 1. On the other hand observe that since
k, < N then

n n
k; 1 N N
Zri—1+rn-1 Szri—l <r—1<1’

i=2 i=2
Consequently for [ > k; the right hand side of the interval is below zero.
Hence the only nonzero member of the above sum is for [ = k;, which yields

" ks N "k 1
P e —_— - —
(. r’+r"(r—1)<X<iz=;r’+r">

i=1
n—1 n—1
kiy1 N ki1 1
zcklp(z i +7.n—1(,,._1) <X<Z i +,r.n—1 :
=1

i=1

And by the induction argument the probabilities are zero, since for n = 1
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one gets at the right hand side

P( N <X<1>=0.
r—1

Hence the df Fix is nonincreasing on each of these intervals.

Now observe that for a given n we have (N + 1)~ N intervals and each
of them has the length (r — 1 — N)}/((r — 1)r"), n = 1,2,.... Consequently
the total measure of the union of these intervals is given by

2 (N+1)*!N(r—-1-N Nir—1-N) < /N+1\"
Z( ) ( ) _ N )Z( )

gt (r—1rn (N+1)(r-1) 7~ T
_ N(r—1-n) N+1 1
C(N+D(r-1) r 1-(N+1)/r
N
Tro1

To prove that Fx is singular with respect to the Lebesgue measure let
us take an arbitrary point of increase zg of Fx. We claim that since zg can
not lay inside the intervals considered above then it has a representation
k;

To = —

i)
=1

[ o]

for some sequence of numbers ki, k2, . . . belonging to {0,1,..., N}. To prove
this claim observe first that zo has the representation

j=1,2,..., with no additional restrictions on k;’s. We will show now that
if 37 such that k; > N then z( lies in one of the intervals defined above.
Define jo = min{j : k; > N}. Assume that jo > 1 and kj,_; < N. Then, by
the definition of the sequence (k;) it follows that zg < Zf;l ki/ri41/rio~1
and also zg > $27°71 k;/ri + N/(rfo=1(r — 1)), since by r — 1 > N it follows
that

> ki/rt > (N +1)/r70 > N/(r97 (r ~ 1)).

i=jo
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Consequently zq € (Z]" ki /i N (rio=1(r —1)) Z’“ Y fri 41 /rdo=1),
which contradicts the assumption that zq is a pomt of increase.

Consider now the situation in which kj,—1 = N. Then define j/ =
min{j : k; = kj41 = ... = kjo—1 = N} and assume that j/ > 1. Then,
again by the definition it follows that zo < Zf:ll ki/rt 4+ 1/ri' =1, Also
zo > Ej’_—l ki/7¢ + N/(r7'=1(r — 1)), since

Zk/r —ZN/T —Zk/r —ZN/T

i=jo i=Jo

> (N +1)/r%° — N/(r?~r ~ 1)) > 0.

Consequently zo € (301 ki/ri + N/(r9'=Y(r = 1)), S5 by fri 4+ 1/r7' 1),

Ifj’ =1lorjo=1 then repeating the above argument we get that zg >
N/(r — 1) which is impossible. This proves our claim about sequence of k;’s
defining any point of increase zqg of the df F'. Observe that all the points of
the interval [0, N/(r — 1)] except of the inner points of the intervals defined
in the first part are points of increase. It follows from the fact that the total
length of these intervals equals to N/(r — 1).

Take now two sequences of points converging to o defined by:

n
ks N 1
J’":Z_? Ty, =Tpn+ —— — — < Zn,

o rm(r—1) r»
n = 1,2,.... Observe that Fx(z,) = Fx(z) since Fx is constant on
[zh,zn), n =1,2,.... Assume that there exists a derivative Fi (zp) = ¢ > 0.
Then
fim X000 = Fx(en) _ oy, Fxloo) = Fx(@n) _ g
n—oo o — xn n--00 Qi
where oy, = 3.2 | kir~*. But for the second sequence it follows that
i Fx(@0) = Fx(en) _ FX(fCO) Fx(za) _ 1
e moom,  neeant AL-N/r-1)] 14 SN
where
limﬂn=limr"2-k—§N i= N.
n—oo noo Tt = i r—1

Consequently lim,, o, 8, = 8 < oo and thus the derivative of Fx at zo does
not exist since

lim Fx(z0) — Fx(z,) 4 lim Fx(wo)—Fx(zn). .

n—0o0 To — T, n—oo ZTo — Zn
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The above two theorems were proved under the assumptions that all
cx’s are positive. If some of ci’s are zero (recall that ¢p > 0 and ¢y > 0
by definition) then denote by k', k" such numbers belonging to {0,..., N},
k' < k", for which

k' k' =maz{ky—ky: ck, >0, ¢k, >0, ¢; =0Vj€e{ki+1,...,k2—1}}.

Then the analogue of Th. 3 holds with the assumption N > r — 1 changed
to N > (k" — k’)(r — 1). Similarly it is conjuctured that an analogue of Th.
4 holds if N < (k" — k")(r — 1). Partially it has been confirmed recently in
Gosk (2000).

Moments and generators. Take now a rv X having a DIL(r;co,...,CN)
distribution. Then
X+Y
x4 25
r

where Y is a rv independent of X with the distribution P(Y = k) = c,
k=0,1,...,N. Consequently

E(X)= 1 Var(X) = %(—l{—)—,

and any higher moment can be computed recursively from

rm—1

Denote by ¢x and ¢y chf’s of X and Y, respectively. Then

, m=2,3,....

¢x(t) = dx (t/r)dy (t/r) = x (t/r™) [] ¢v (t/r")
i=1
for any ¢t € R and any n. Taking limits of both sides for n — oo implies
ox(t) = ] ov (¢/r%).
i=1

Consequently, knowing a scale r, the distribution of X is uniquely de-
termined by the distribution of Y, which is called the generator of the
DIL(r;co,...,cn) distribution.

Convolutions. Consider a rv X; with a DIL(r; cé'), . ,cg\i,z) distribution
having a generator Y;, i =1,...,m, and such that X;, Y;,7=1,...,m are
jointly independent. Then
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B(exp (3 %.)) = [T o0 = [T o (/o
i=1 i=1 i=

m

E(exp (t/r) Z ) (exp(z t/r) ZY )

Hence X; + ... + X,, has a dilation dlstrlbutlon with the generator Y +
.+ Y, ie. its distribution is DIL(r;é,...¢x), where N = N1 +...+ Ny,

and
Cr = Z ch), =0,1,...,N.

0<i1<N1,..,0<i <Nt ta+... +im=k j=1
The above considerations imply the following result:

THEOREM 5. The family of DIL distributions with a fixed scale r is closed
with respect to taking finite convolutions.

ExaMpLE. If

— (N 9N
X = ; <k> H(X+k)/2>
then X 2 X1+ ...+ Xn, where X1, Xo,..., Xy are iid U([0,1]) rv’s. It
follows easily from the above theorem since X is driven by the generator
Y with the binomial distribution with the parameters N and 1/2. Observe
that Y is a convolution of N iid Bernoulli rv’s with probability of 1 equal
to 1/2, and they are dilation generators of the U([0,1]) distribution. This
scheme can be immediately extended to the generator Y with the binomial
b(N, p) distribution for any p € (0,1).

4. Solving prodiles

Let a prodile
N

bux = ch#(x+k)/r,
k=0
be given. There are no explicit solutions of such equations available in gen-
eral in a closed form. Of course always an infinite product representation of
its chf can be written. A useful method of obtaining approximate solutions
is a cascade algorithm. Here we present its probabilistic version. Start with
some df Fy. Then compute recursively

N
z) = chFn_l(m -k}, n=12,...,

for any z € [0, N/(r —1)]. If X,, denotes a rv with a df F;, then we have
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n
4 Xn-1+1h g_)&_l_zyi

Xn g

T T
i=1

where Y; are independent copies of a generator of the prodile, independent
also of the sequence of X;’s. Hence for the chf it follows that

n
bx.(t) = ¢x, (t/r™) [ [ dwi (t/7) — 6x(2).
i=1
Consequently the sequence (X,) converges in distribution to X. Since Fx
is continuous it follows that the cascade algorithm converges to the solution
of the prodile.
Since a solution of the prodile has the representation

i Y;
X:;r_j”

where (Y}) is a sequence of iid generators, then a Monte Carlo technique
can be applied also. To this end we define

Y
Xm_zl’r_], m—1,2,....
J:

Obviously X,, 2 X as m — oo. Hence the df F,, approximates Fx, and
F,, can be estimated by the empirical df F,, ,, based on a sample of n
independent realizations of Xp,: X1 m,..., X5 m. On the other hand each
of X; m can be produced from independent generators Y;; », 7 =1,...,m,
i=1,...,n.

Observe that the generalized de Rham densities, i.e. densities of the DIL
distributions fulfilling the prodile (2) can be also obtained using the set of
three affine transformations:

wi(z,y) = (2/3,(1/2+ )y +1/2 — ),
wa(z,y) = ((2—1)/3,2ay + 1/2 — ),
ws(z,y) = ((z +2)/3,(1/2+ a)y).
Then w = (w1, w2, w3) can be applied recursively to some points of

{(z,1 —z) : z € [0,1]}. Finally the resulting curve should be reflected
symmetrically for negative z’s.

5. Estimation and hypothesis testing for dilation distributions

Here we include some preliminary remarks which can be treated only as
a starting point for investigations concerning statistical inference for dilation
distributions.
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The DIL(r;cy,...,cn) distributions form a parameter family. Then the
question of estimation of the parameters arises. Since even for the absolutely
continuous DIL laws there is no general explicit formula for the densities
the maximum likelihood estimation is a problem. Instead some estimators
based on the empirical df can be developed.

If Fis adf ofa DIL(r;cg,...,cn) distribution then it follows from the
prodile that

F(k/r) = coF(k) + ey F(k — 1) + ...+ ekt F(1), k=1,2,...,N.

Hence it suffices to solve the above triangular system of linear equations for
ck’s (with the determinant equal to [F(1)]V). Then, taking empirical df for
the df, consistent estimators of the parameters cg, ¢y, ..., cny_1 are obtained.
For instance

Fn(l/r) A Fn(z/T)Fn(l) "Fn(l/T)Fn(Z)

Co = — , €= = 5 )
Fo(1) [Fn(1)]
and in general
k
é g_ll.._Dﬂ 0,1,...,N -1,
[Fn(1)]*
where Dn,k is the determinant of the matrix
T Fa(1/r) Fa(1) 0 0 0 7
B2/r)  ER@) RO 0 0
Fn(3/ r) Fn(3) Fn(2) Fa(1) 0
0
F ((k ~ 1)/1~) F, (k -1) E, (k 2) F, (k 3) .. F.Q1)
L E,(k/r) Fn(k) E, (k-1) E, (k-2) .. Fn(2)
Then éy =1—¢6y—...—én_1. Also the moment method can be used since

the formula

r*E(X*) = E(X +Y)* ZE (X +D*e, k=1,2,.
1=0
implies another system of linear equations for c’s.
If 7 is not known then first one can estimate it using max;<;<n X; as an
estimate of the upper limit of the support of X. Consequently the estimate

of r can be taken as

7= N +1

maXi<icn Xi
EXAMPLES. For the random jumps DIL(2;q,p) distribution with the first
method one gets §; = F,(1/2) = 1 — , and with the second p; = X, =

(X1+...+Xn)/n=1- 4.
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For the generalized de Rham DIL with the one unknown parameter o

the formula
_3F(z) - F(3z) ~0.5[F(3z — 2) + F(3z +2) + F(3z — 1) + F(3z + 1)]

“= F(32—2)+ F(3z+2)— F(3z — 1) — F(3z + 1) ’
valid for any z ensuring non-zero denominator can be used to construct an
estimate. Obviously the quality depends on a suitable choice of z. On the
other hand, since E(X) = E(Y) = 0, then for applying the moment method
the second moment has to be considered. Since 9E(X?) = E(X?) + E(Y?),
then some elementary algebra leads to the estimate

4 5

Consider again a class of DIL(2;q,p) distributions. Given iid observa-
tions Xi,..., X2, the problem is to test the hypothesis that they come
from the DIL(2;q,p) distribution with a given ¢. Since no closed formulas
for the df’s are available no standard test can be used here. Then a possi-
ble approach is to simulate n independent generators Yi,...,Y, and define
Z; = (Xn+i+ Y:)/2, 1 = 1,2,...,n. Then under the null hypothesis the
distributions of Z’s and X’s are the same, hence on the basis of the double
sample X4,...,X, and Z1,..., Z,, which are independent, some rank tests
can be used to test the equidistribution. If the parameters ¢ and p are un-
known one has to estimate them first. Obviously similar approach can be
applied for testing that observations come from any dilation distribution.

6. Dilation distributions driven by arbitrary generators

A possible natural extension of the dilation distribution family is by
considering arbitrary generators. Then a rv X with the generalized DIL
distribution has to be represented in a form

x 4 X+ Y,
T
for some real number r and a rv Y if only the above formula makes sense,
for instance if the chf ¢y of Y has form ¢y (t) = ¢(rt)/d(t), for some chf ¢.

Then the respective probability dilation equation has the general form

px = | nxsy)/r py (dy),
R
or
Fx(z) = S Fx(rz —y) dFy(y), z€R.
R
Consequently such a generalized dilation distributions family is param-
eterized by a scale r and a dilation generator distribution py.
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This family is, obviously, much wider than the previous one and includes
many important classes of distributions, as normal, stable or a more general
family of self-decomposable laws. Observe that the dilation generator of
the normal M (m, 0?) distribution is again normal N'((r — 1)m, (r? — 1)o2).
Similarly for the symmetric a stable distribution Sa.S(8) with the chf ¢(t) =
exp(—0|t|*), the dilation generator is SaS((r® — 1)8).
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