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A b s t r a c t . The dilation property allows to define an intriguing family of statistical 
distributions parameterized by the coefficients of respective dilation equation and the di-
lation scale. The family includes, except some commonly used probability laws, also a 
wide range of naturally arising singular distributions, which usually are difficult for sta-
tistical analysis. But here due to dilation scheme some progress in developing statistical 
tools can be expected. The paper describes basic properties of dilation distributions, in-
cluding an extension of the Kershner-Wintner theorem on infinite Bernoulli convolutions, 
and indicates possible directions for future studies, including preliminary observations on 
statistical inference. 

1. Introduction 
Statistical modelling is almost exclusively built on families of distribu-

tions possessing closed formulas for densities (in the absolutely continuous 
case) or for probability mass functions (in the discrete case) or for distribu-
tion functions or at least for characteristic functions or some other trans-
forms. Therefore never or almost never continuous singular (with respect to 
the Lebesgue measure) distributions are encountered in such settings. They 
are believed mainly to work as strange examples falling away from what 
could be useful in applications. The same is true even for distributions which 
are absolutely continuous but which do not have a closed formula property. 
The aim of this paper is to break out that scheme and to justify that such 
break is natural and useful. It is recalled here that families of distributions 
without closed formulas naturally arise, for instance, in some ruin problems 
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or in models involving random jumps. Such families, connected with dila-
tion equations, are mathematically treatable. Also statistical inference can 
be developed for them. This paper developes, in probabilistic language, the-
ory of dilation distributions involving: probability models leading to dilation 
distributions, basic distributional properties, simulations and visualizations, 
basics of estimation and hypothesis testing. The ambition of the paper is to 
give a base for an additional chapter in standard monographs on families of 
distributions useful in scientific work. 

A revival of interest in dilation equations in recent years is due to an 
expansion of the wavelet theory. The wavelets are constructed on a base 
function which is a solution of the dilation equation (dile) of the form 

f ( x ) = Y,<>kf{2x-k), 
k 

where (ak) are some real (or complex) coefficients. Usually it is assumed 
that \f dx = 1, implying J2ka>° ~ 2 and #{k : ak ^ 0} < oo implying a 
compact support—see Strang (1989) for an excellent concise introduction. 
Then a unique solution exists (as a distribution), and its Fourier transform 
can be easily represented in a form of an infinite product—see Heil and 
Colella (1994) and Colella and Heil (1994). For a thorough study of more 
general two-scale difference equations see Daubechies and Lagarias (1991, 
1992). 

Consider some examples. 
The simplest dile has the form: 

f ( x ) = 2/(2x), 

i.e. the only non-zero ak is ao = 2 and the solution is the delta function. In 
probabilistic terms we can rewrite the above equation as: 

fJ-x = fiX/2, 
where fix denotes a probability distribution of a random variable (rv) X. 
Consequently the solution is: P(X = 0) = 1. 

Take another example of a dile: 

f ( x ) = f ( 2 x - l ) + f(2x + l), 

with a_ i = oi = 1 and the solution f ( x ) — 0.5/[_1)1](x), which is a proba-
bility density function of a uniform ?7([—1,1]) rv X. The respective equation 
for its distribution takes the form 

(1) MX = 0.5^(X+I)/2 + 0.5/i (x-i)/2-
Hence the following mixture characterization of the uniform {/([—1,1]) dis-
tribution follows immediately: 
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THEOREM 1. If for a distribution of a rv X the mixture representation (1) 
holds then X has the uniform distribution on [—1,1]. 

P r o o f . From (1) it follows that a characteristic function (chf) <f> of X sat-
isfies 

<f>{t) = cos(t/2)<f>(t/2), 

for any real t. Iterating the above equation we have for any n 
n 

¿(i) = <Ki/2")ncos(i /2 f c) 
k=1 

which is well known to converge to sin(f)/f, a chf of the U([— 1,1]) distribu-
tion. • 

Let us consider now a three terms dile of the form 

f(x) = 0.5/(2x - 1) + / (2x) + 0.5/(2x + 1), 

i.e. a_i = Oi = 0.5 and ao = 1. Then f(x) = (1 — |x|)/[_iii](x), which 
is again a pdf of a rv X with a triangular distribution, and a respective 
equation for its distribution takes the shape 

Vx = 0.25^(x+i)/2 + 0.5/ix/2 + 0.25/i(x-i)/2-

Observe that X = (Xx + X<i)l2, where X\ and X2 are two independent 
copies of rv's for which the equation (1) is fulfilled. 

In general if a dile 

/ (x) = ] T a f c / ( 2x-k) 
k 

with at > 0 for any k is given, then a respective probabilistic dilation 
equation (prodile) has the form 

MX = 2 ^2akV(X+k)/2-
k 

DEFINITION 1. Let fix be a probability distribution of a rv X. Then the 
equation 

ttX = y]ck l i (X + k)/r, 
k 

where Ck are positive constants such that J^k = 1 and r > 1, is called 
a probabilistic dilation equation (prodile). A probability distribution fix 
fulfilling such a prodile is called a dilation distribution with a scale r. 
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2. Prodiles in probability 
Infinite symmetric Bernoulli convolutions. Let Xi, X2, . . . be indepen-

dent identically distributed (iid) rv's with P(X 1 = ±1) = 0.5 and let 
00 

¿=1 
where r > 1. It was shown by Kershner and Wintner (1936) that for r > 2 
the distribution of Y is singular. For r = 2 the distribution is uniform 
{/([—1,1]). But, except some special cases, see for instance Erdos (1939, 
1940), nothing is known in general for r € (1,2). More recent contributions 
for Bernoulli convolutions can be found in Garsia (1962), Brown and Moran 
(1973), Lau (1993) and in the Lukacs (1970) monograph. Observe that 

' t j f E (eitY) = J ] cos(t/r1) = cos( t /r) J ] cos 
¿=1 i=1 

= 0.5 (e-*/ p + eil'r) E (eitY'r) 

= 0.5E ( e ^ - 1 ) / ' ) + 0.5E ( e ^ ™ ) / ' ) . 

Consequently /xy is a dilation distribution generated by the prodile 

/¿y = 0.5/X(y_i)/r + 0.5/i(y+i)/r. 
The brave gambler problem (see, for instance, Billinglsey (1979)). Let X{ 

denotes an outcome of the game in i-th step, ¿ = 1,2,. . . , i.e. X\, X2, • • • are 
iid rv's with P(X 1 = l)=p=l-q = l - P(X 1 = -1 ) . The gambler in 
each step bets as much as is reasonable to win the whole amount equal 1 as 
quickly as possible. Hence his asset at any time n is described by 

Sn = <Sn-i + WnXn, 
where So = x E. [0,1] and 

Sn-1 0 < Sn_i < 0.5 
Wn ' 1 - Sn-1 0.5 < < 1. 

Consequently the probability of winning for starting amount x G (0,1), 
denoted by Q(x), fulfills 

D( ) - ! pQ(2 x) 0 < x < 0.5 
{X) \p + qQ{2x-l) 0 . 5 < x < l . 

Since Q(x) = 0 for x < 0 and Q(x) — 1 for x > 1, complement in a natural 
way the definition, then it follows easily that Q can be considered as a 
distribution function (df) of a prodile rv X with 

MX = PVx/ 2 + 9M(X+l)/2-
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An extension of this scheme involves a game with N + 1 possible outcomes: 
0,1, . . . , AT of respective probabilities co,ci,... , c/v, where N is the total 
capital for the whole game. If the outcome is i then a gambler betting 
x € (0, N) wins N — x if 2x — i > N, or x — i (which can be a loss also) 
if 0 < 2x — i < N, or — x if 2x — i < 0. Then it follows easily that for 
x € [k/2, (k + l)/2] 

Q(x) = 

' c0Q(2x) + . . . + ckQ{2x - k ) k = 0 , . . . , N - 1, 
< Co + . . . + CK-N + cK-N+1Q(2x -K + N - 1 ) + . . . + CNQ(2X - N ) 

k = N , . . . , 2N - 1. 

(observe that with N = 1 the earlier scheme is covered). Consequently Q is 
a df of a rv X with a distribution fulfilling 

N 

k=0 

Random jumps. Starting at Xo = 1/2 a particle in each step (1°) stays 
where it is with probability q = 1 — p, or jumps on the distance 1 to the 
right with probability p and then (2°) goes back to the left on half of its 
distance from 0 (thus it can not leave the interval (0,1)). Consequently its 
position after n > 1 steps is described by 

A n - j ' 

where YI,Y2, . . . are iid rv's with P(Yi = 0) = q = 1 - P{YX = 1). Hence 
XN - i X, and for the chf <F> of X one gets 

E ( e i t x ) = cP(t) = <f>(t/2)(q + pe«'2) = E{qeitX'2 + p e ^ x + i ^ 2 ) . 

Consequently 
(¿x = QVX/2 +PV(X+l)/2-

Assume now that, starting at XQ = 0, in each step the following possibilities 
of the movement of the particle are given: 0 with probability 1/3, ±1 with 
probabilities (1 — 2a)/6, and ±2 with probabilities (1 + 2a)/6 and then the 
particle jumps in the direction of the origin reducing its distance to the 
origin to 1/3 of the distance after the first phase. Then its position after n 
steps is described by 

_ XN-I + YN 
X n ~ 3 , 

where Y u Y2,... are iid rv's with P(Yi = 0) = 1/3, P{Y1 = ±1) = ( l - 2 a ) / 6 
and P(YI = ±2) = (1 + 2a)/6, where a € [-1/2,1/2] is a given number. 
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Consequently XN X with a prodile distribution concentrated on (—1,1) 
fulfilling 

1 + 2a 1 - 2a 
(2) MX = g M(X-2)/3 H ^ — M ( X - l ) / 3 

1 1 - 2a 1 + 2a 
+ gMX/3 H g M(X+l)/3 h g M(X+2)/3-

It is known that then nx is absolutely continuous and its density is a gen-
eralized de Rham function. 

An extension of the above scheme involves a sequence Yi,Î2,. •. of iid 
rvs with P(YI = K) = CK, K = —N1} -NI + 1 , . . . , JV2, where NI and N2 are 
positive integers, describing the movement of the particle in the first phase 
of subsequent steps, while the second phase is its jump in the direction of 
the origin on 1/R < 1 of the distance after the first phase. Then its evolution 
is described by the sequence XQ = 0, 

XN-X + YN XN = , n = 1 ,2 , . . . , 
R 

converging in distribution to a rv X with a prodile distribution fulfilling 
N2 

VX = CKFL(X + K)/R-
K=-N1 

3. Basic properties of prodile distributions 
Consider a rv X with a prodile distribution fulfilling 

FJ'X = CK^{X + K)/R-
K=—N\ 

Then for the rv Y = X + NI/{R - 1) it follows that for any Borel set A 

/ N l \ N / N l \ 
F"Y \ A + ^ T I ) = CL-NLHY+L)/R + — J . 

Consequently any prodile can be reduced to the basic one of the form 
N 

VX = y ^ C K H ( X + K ) / R , 
K=0 

with Co > 0 and c/v > 0. Denote by DIL{R\Co,..., cjv) any such a prodile 
distribution. 
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Smoothness properties 

THEOREM 2. If X is a DIL(r\Co,..., cjy) rv with a df Fx then 

sup{x : Fx(x) = 0} = 0, inf{x : Fx(x) = 1} = N/{r - 1), 

and Fx is continuous. 

P r o o f . Take any ei > 0. Then the prodile implies 

(3) P ( x > ^ + = £ CN-kP + k + rex) . 

Observe that the assumption 

( N \ ( N 
p \ x > — + N + rel)<P(X>— + e1 

is contradictory to (3). Consequently 

where ti = N + rei. Repeating the above argument n times we get 

P (X > ^ + = P ( x > J L + e, 

where 

e n + i = N + ren = N(l + r + ... + r n _ 1 ) + Nrnei -» oo. 

Hence P{X > N/(r - 1)) = 0. 
Similar approach can be applied to the left end of the support with 

N 

P(X <-e) = J2 ckP(X < -re - k). 
k=0 

Since P{X < -e) > P{X < -re-k) for any k = 0,1, . . . , then P{X < -e) > 
P{X < —re - N ) is a contradiction. Hence P(X < -e) = P(X < -re - N) 
for any e > 0, which implies that P(X < 0) = 0. 

Consequently supp(X) c [0, N/(r - 1)]. 
Consider now K = inf{x : P(X > x) = 0}. Assume that K < N/(r — 1), 

i.e. K = N/(r - 1) - e for some e > 0. Then P{X > K) = 0 and the prodile 
implies that P(X > rK-k) = 0 for any k = 0 ,1 , . . . , TV. Take k = N, which 
yields P(X > N/(r — 1) — re) = 0, which contradicts the assumption since 
N/(r - 1 )-re<K. 

Take now L = sup{x : P(X < x) = 0} and assume that L > 0. Then 
for e e (0, (r — 1 )L) it follows that P(X < L + e) > 0 and consequently for 
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6 = (L + e) /r the prodile implies 

P(X <6)> coP(X < L + e) > 0 , 

which is a contradiction since 0 < 6 < L. 
To prove that F x is of the continuous type assume in contrary that 

B i 0 e [0, N/(r - 1)] such that P(X = x 0 ) = a 0 > 0. Without loosing 
generality we can assume that ao = sup{a : a = P(X = x), x G R } . Since 

N 
ao = = rx0 - k) 

fc=o 
then it follows that ao = P{X — rxo — k) V k = 0 , . . . , N such that cjt > 0, 
i.e. at least for k = 0 and k = N. Hence rx o < N/ (r — 1) and rx o — N > 0, 
implying 

N N 
— < X0 < r r(r — 1) 

Consequently r < 2. Consider now the point rxq- Applying again the prodile 
we get that P(X — r2xo) = ao, similarly starting with the point txq — N we 
get P(X = r(rxo — N) — N) = ao- Taking both the conditions into account 
one gets 

N(r + 1) N 
r2 r 2 ( r — 1)' 

which implies r < 2 1 / 2 . Proceeding in the same way after subsequent m 
steps with all points in each step inside [0, N/(r — 1)] one gets 

Nir™-1 + . . . + r + 1 ) N 
< xq < 

rm(r - 1) 

which implies that 1 < r < 2 1 / , m , being contradictory for sufficiently large 
m. m 

It appears that depending on the quantity N/(r — 1) the df's of the 
dilation distributions, being continuous functions can be of two basic kinds: 
strictly increasing (on the support) or constant at some intervals (and then 
singular). These two observations are described more thoroughly in the next 
two results. 

T h e o r e m 3. Let X be a DIL(r\co,..., cjv) rv with a df Fx and Ck > 0 

Vfc e { 0 , . . . ,N}. If N >r — 1 then Fx is strictly increasing in [0, N/(r — 1)] 
= supp(X). 

P r o o f . Let us take any a,b 6 [0,N/(r — 1)] such that a < b. Assume that 
P(a < X < b) = 0. Then for any n, let us define a sequence k\, fo,..., kn 
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of numbers from {0,1, . . . , N} such that 
n i-

Z—/ ri — 
¿=i 

and for any j = 1 , . . . , n we have kj = N or kj < N and then 

^ ^ ^ rj>% rpt rjtJ 

Hence 

/ J <pl y3 
¿=1 ¿ = 1 

k-

i=1 

We claim now that 0 < 6 < N/[(r - 1 )rn]. If kn < N then it follows 
immediately that 6n < r~n < N / ( r n ( r - 1)). If kn = N then define jo = 

minj j : ki = NVl € { j , j + 1, . . . ,n}}. Hence 

V " — — N — 6 V" — 1 
t rjo rj0 + 1 rn n r® rJo-1 yi yjo fjo+i ' ' ^ r® rJ'o 

i=l 1=1 
and thus 

6n < ^ [rn~io+1 - (rn~jo + • • • + 1 )N] 

= — \ r n - j o + 1 ( r - 1) - rn~jo+1 + ll < — . rn(r — 1) ^ ' J r » ( r - l ) 

Now for <5i = b—a, and sufficiently large n we have ¿1 > 2 — . 
For such an n denote now e = N/(r — 1) — rn6n, which is a positive number. 

Observe that P(a < X < b) — 0 implies, via subsequent application of 
the prodile, that 

n—1 n—1 
P ( r n a - r j l j < X < r n b - J 2 r j h ) = 

j=0 j=0 

Putting in the above formula lj = kn-j one gets 
n—1 n—1 . . 

rna - V r j L = - e, rnb - V rHj > + e. 
• * r ~ 1 r - i r — 1 j=o j=o 

Hence 

' ( ¿ i - s ^ ) -



394 J. Wesolowski 

which is contradictory to in f {x : P(X > x) = 0} = N/(r — 1). Consequently 
P(a < X < b) > 0 for any 0 < a < b < N/(r - 1) and the df Fx is strictly 
increasing in [0, N/(r — 1)]. • 

The next result is a straight-forward extension of the Kershner and Wint-
ner (1936) theorem on singular infinite Bernoulli convolutions recalled in 
Section 2. 

THEOREM 4. Let X be a DIL(r-,co, • •. ,cn) rv such that Ck > 0 VFC = 0, 
1 with a df Fx • If N < r — 1 then the set of points of increase of Fx 

is nowhere dense in [0 ,N/(r — 1)]. More, Fx is singular and is constant on 

each of the intervals 

Eki N ^-v ki 1 
y i y T l f t p ] \ ' / J y.% y71 

.¿=1 ^ ¿=1 

where k\,..., kn are any numbers from {0 ,1 , . . . , N} with a restriction that 

kn < N, and n is any positive integer. The Lebesgue measure of the union 

of intervals on which Fx is non-increasing equals to N/(r — 1). 

P r o o f . If N < r - 1 then 

I / R' / y l tpTl 

\ 2=1 ^ ' 1 = 1 

l=o ^ i=2 ^ ' i=2 ' 

Observe first that for I < ki the elements of the above sum are 0 since then 
the left end of the interval is above 1. On the other hand observe that since 
kn < N then 

V — 1 < N N j / J —1 j%n—1 — / J yi—1 ^ y 

¿=2 i=2 

Consequently for I > k\ the right hand side of the interval is below zero. 
Hence the only nonzero member of the above sum is for I = ki, which yields 

p(£H + -N<X<±k + ±.) 
V J - » J , n t y . y l y t l J 

^ ¿=1 ^ ' ¿=1 ' 

p f s r k i + 1 I N I 1 ^ 
~ C t i r I L ri "T" rn-l(r _ ]\ ^ ^ ^ Z ^ ri + r n - l l ' 

^ ¿=1 ^ ' i=1 ' 

And by the induction argument the probabilities are zero, since for n = 1 

\n N 1 c i" r — 1 
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one gets at the right hand side 

N 
< X < 1 = 0. 

Hence the df F x is nonincreasing on each of these intervals. 

Now observe that for a given n we have (N + l)n~1N intervals and each 
of them has the length ( r — 1 — N)/((r - l ) r " ) , n = 1,2, — Consequently 
the total measure of the union of these intervals is given by 

( iV -f l)n~1N(r - 1 - N) _ N(r — 1 — N) y , / j V + l \ n 

2-/ ( r _ l)rn ~ (N + l ) ( r - l ) ^ 1 r ) 
n=1 v ' \ / \ / n=i \ / 

N(r - 1 - n) N + 1 1 

(N -f l ) ( r — 1) r l ~ ( N + l ) / r 

N 

To prove that F x is singular with respect to the Lebesgue measure let 
us take an arbitrary point of increase XQ of F x • We claim that since XQ can 
not lay inside the intervals considered above then it has a representation 

°o , 

EKi 

i=1 

for some sequence of numbers k\,k2, • •. belonging to { 0 , 1 , . . . , N}. To prove 
this claim observe first that xq has the representation 

00 h 

Ere i 

t=l 

where kj's are defined by: 

r i — ^ ^ > r i r j ' 
¿=i ¿=1 

j = 1,2,..., with no additional restrictions on k^s. We will show now that 
if 3 j such that kj > N then xo lies in one of the intervals defined above. 
Define jo = m i n { j : kj > N}. Assume that j0 > 1 and kj0-1 < N. Then, by 
the definition of the sequence (ki ) it follows that xq < 1 ki/r l + l/r J ' 0 - 1 

and also x0 > X ^ 1 h/r1 + N/^0'1^ - 1)), since by r - 1 > N it follows 
that 

oo 

Y ^ ki/ri ^ (iV" + l ) / r J O > N/(rj°-\r - 1 ) ) . 
i=jo 
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Consequently x0 G ( X ^ 1 h/r1+ N/(r^1(r -1)), X ^ " 1 h/r' + 1/r^- i ) , 
which contradicts the assumption that xq is a point of increase. 

Consider now the situation in which kj0-1 = N. Then define j' = 

min{j : kj — kj+1 = ... = = N} and assume that j' > 1. Then, 
again by the definition it follows that xq < ^¿J^1 ki/rl + 1 /rJ-'-1. Also 
zo > E i l l 1 k i/ r i + N/ i r i ' - ^ r - 1)), since 

oo oo oo oo 

E ki/r* - Y, N/r* = E by - E N/ r* 
i=j' i=j' i=jo i=jo 

>{N + 1 )/rjo - i\r/(rJO_1(r - 1)) > 0. 

Consequently xQ G ( £¿7/ h/r* + N/(r^~1{r - 1)), EC"1 h/r1 + l /^ ' " 1 ) . 
If j' = 1 or jo = 1 then, repeating the above argument we get that xq > 
N/(r — 1) which is impossible. This proves our claim about sequence of k^s 
defining any point of increase XQ of the df F. Observe that all the points of 
the interval [0, N/(r — 1)] except of the inner points of the intervals defined 
in the first part are points of increase. It follows from the fact that the total 
length of these intervals equals to N/(r — 1). 

Take now two sequences of points converging to xo defined by: 

n h N 1 i 
yî ' ^ /pTl irp /jn' 

i—1 ' 
< X nt 

n = 1 ,2 ,— Observe that Fx(xn) = Fx{x'n) since Fx is constant on 
[:x'n,xn], n = 1,2, — Assume that there exists a derivative F'x{xo) = c > 0. 
Then 

Fx{x0) - Fx(xn) Fx(x0) - Fx(xn) 
lim - lim = c > 0, 

n—KX> Xo — Xn n—>00 AN 

where an = But for the second sequence it follows that 

lim Fx(x0) - Fxjx'J = l i m Fx(xo)-Fx(xn) = £ 1 

where 

x0-x'n n^ooan + ±[l-N/(r-l)] 1 + 
iimn—oo p n 

oo i oo -
lim/?n = lim rn £ = A " 

7i—»oo n—>oo ' r ' r r — 1 
i=n+1 i=1 

Consequently l im^oo /3„ = ¡3 < oo and thus the derivative of Fx at x0 does 
not exist since 

Um Fx(x0) - Fx(x'n) + Hm Fx(x0)-Fx(xn) ^ 

n-*oo Xq — X'„ n-> oo Xq — Xn 
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The above two theorems were proved under the assumptions that all 
Cfc's are positive. If some of cjt's are zero (recall that Co > 0 and CN > 0 
by definition) then denote by k', k" such numbers belonging to {0, . . . , AT}, 
k' < k", for which 

k" - k' = max{k2 - h : ckl > 0 , ck2 > 0 , Cj = 0 V j € { h + 1 , . . . , k2 - 1 } } . 

Then the analogue of Th. 3 holds with the assumption N > r — 1 changed 
to N > (k" — k')(r — 1). Similarly it is conjuctured that an analogue of Th. 
4 holds if N < (k" — k')(r — 1). Partially it has been confirmed recently in 
Gosk (2000). 

Moments and generators. Take now a rv X having a DIL{r\ Co,... ,cn) 

distribution. Then 

r 

where Y is a rv independent of X with the distribution P(Y = k) = cjt, 
k = 0 ,1 , . . . , N. Consequently 

r — 1 — 1 

and any higher moment can be computed recursively from 

E{X ) = ^TTi ' = 2,3, — 

Denote by (fix and 4>y chf's of X and Y, respectively. Then 
n 

4>x{t) = <f>x(t/r)<fiY(t/r) = 0 j c ( i / r n ) J J ^ y i t / r ' ) 
i=l 

for any i 6 R and any n. Taking limits of both sides for n —> oo implies 

<Px(t) = f [ < f > Y ( t / r i ) . 
i= 1 

Consequently, knowing a scale r, the distribution of X is uniquely de-
termined by the distribution of Y, which is called the generator of the 
DIL{r\Co,..., c/v) distribution. 

Convolutions. Consider a rv XI with a DIL(T\CQ \ . . . distribution 
having a generator Yit i = 1 , . . . ,m , and such that Xi, Yi, i — 1 , . . . ,m are 
jointly independent. Then 
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771 Til TTl 
£ ( e x p ( » * ] [ > . ) ) = 1 1 ^ ^ ) ^ M M M / r ) 

j=i ¿=i ¿=1 
m m 

= E ( exp(i(t/r) e x P E " 
i=l ¿=i 

Hence Xx + . . . + Xm has a dilation distribution with the generator Yi + 
... + Ym, i.e. its distribution is DIL(r\¿o,... c^), where N = Ni +... + Nm 

and 
m 

ek= J2 ^ = 0 , 1 , . . . , ^ . 
0<ii<^x,...,0<im<Arm: »i + ...+im=fc j=1 

The above considerations imply the following result: 
THEOREM 5. The family of DIL distributions with a fixed scale r is closed 
with respect to taking finite convolutions. 

EXAMPLE . If 
N 

* !=i v / 

then X = X i + ... + XN, where X1,X2,...,XN are iid Z7([0,1]) rv's. It 
follows easily from the above theorem since X is driven by the generator 
Y with the binomial distribution with the parameters N and 1/2. Observe 
that Y is a convolution of N iid Bernoulli rv's with probability of 1 equal 
to 1/2, and they are dilation generators of the C/([0,1]) distribution. This 
scheme can be immediately extended to the generator Y with the binomial 
b(N,p) distribution for any p G (0,1). 

4. Solving prodiles 
Let a prodile 

N 

VX = Y^Ckfi(X+k)/r, 
k=0 

be given. There are no explicit solutions of such equations available in gen-
eral in a closed form. Of course always an infinite product representation of 
its chf can be written. A useful method of obtaining approximate solutions 
is a cascade algorithm. Here we present its probabilistic version. Start with 
some df Fq. Then compute recursively 

N 
Fn{x) = Y^CkFn-i{rx-k), n= 1 , 2 , . . . , 

k=o 
for any x € [0, N/(r — 1)]. If Xn denotes a rv with a df Fn then we have 
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± X n - \ + Yj £ -Xo ^ y ^ Y 
^ iY* ^ ^ ^ rpl ' 

¿=1 
where Yi are independent copies of a generator of the prodile, independent 
also of the sequence of Xi s. Hence for the chf it follows that 

n 

4>xn(t) = M / n H i f r i i t / r * ) - 4>x{t). 
¿=1 

Consequently the sequence (X n ) converges in distribution to X. Since Fx 
is continuous it follows that the cascade algorithm converges to the solution 
of the prodile. 

Since a solution of the prodile has the representation 

^ 00 V-

j=i 

where (Yj) is a sequence of iid generators, then a Monte Carlo technique 
can be applied also. To this end we define 

m y 
= m = 1 ,2 , . . . . 

j=i T 

Obviously Xm - i X as m —> oo. Hence the df Fm approximates Fx, and 
Fm can be estimated by the empirical df Fn,m based on a sample of n 
independent realizations of Xm: XitTn,... ,Xn^m. On the other hand each 
of XitTn can be produced from independent generators YjtitTn, j = 1 , . . . , m, 

i = 1 , . . . , n. 
Observe that the generalized de Rham densities, i.e. densities of the DIL 

distributions fulfilling the prodile (2) can be also obtained using the set of 
three affine transformations: 

W l ( x , y ) = ( x / 3 , ( 1 / 2 + a)y + 1 / 2 - a ) , 

w2(x, y) = ( ( 2 - x)/3,2ay + 1 / 2 - a ) , 

w3(x,y) = ((x + 2)/3,( l /2 + a)y). 

Then w — (W\,W2,W3) can be applied recursively to some points of 
{(x,l — x) : x € [0,1]}. Finally the resulting curve should be reflected 
symmetrically for negative x's. 

5. Estimation and hypothesis testing for dilation distributions 
Here we include some preliminary remarks which can be treated only as 

a starting point for investigations concerning statistical inference for dilation 
distributions. 
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The DIL(r; Co,..., cjv) distributions form a parameter family. Then the 
question of estimation of the parameters arises. Since even for the absolutely 
continuous DIL laws there is no general explicit formula for the densities 
the maximum likelihood estimation is a problem. Instead some estimators 
based on the empirical df can be developed. 

If F is a df of a DIL(r; CQ, . . . , cjv) distribution then it follows from the 
prodile that 

F{k/r) = coF(k) + ci F(k - 1) + . . . + c f c_iF(l) , k = l,2,...,N. 

Hence it suffices to solve the above triangular system of linear equations for 
Cfc's (with the determinant equal to [F(l)]Ar). Then, taking empirical df for 
the df, consistent estimators of the parameters Co, c i , . . . , cjv-i are obtained. 
For instance 

Co = 
Fn(l/r) 
Fn(l) ' 

Ci = 
Fn(2/r)Fn(l) - Fn(l/r)Fn(2) 

[^n(l)]2 

and in general 

Cfc = 
( - 1 )kD, n,k 

[Fn( l)]fe 

where Dntk is the determinant of the matrix 

k = 0,1,...,N- 1, 

Fn(l/r) 
Fn(2/r) 
F„(3/r) 

^n( l ) 
Fn(2) 
Fn( 3) 

0 
Fn( 1) 
Fn{ 2) 

0 
0 

^n( l ) 

0 
0 
0 
0 

^n( l ) Fn({k-l)/r) Fn(k- 1) Fn(k- 2) Fn{k- 3) 
Fn(k/r) Fn(k) Fn(k-1) Fn(k — 2) ... F„(2)J 

Then cw = l — CQ — . . . — Also the moment method can be used since 
the formula 

N 

rkE(Xk) = E{X + Y)k = ]T E[(X + l)k}ch k = 1 ,2 , . . . 
1=0 

implies another system of linear equations for c^'s. 
If r is not known then first one can estimate it using maxi<i<n Xi as an 

estimate of the upper limit of the support of X. Consequently the estimate 
of r can be taken as 

N 

r = ^ + 1 . maxi<i<n Aj 
Examples. For the random jumps DIL(2-,q,p) distribution with the first 
method one gets q\ — Fn( 1/2) = 1 — f>\ and with the second P2 = Xn = 
(Xi + ... + Xn)/n = l-q2. 
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For the generalized de Rham DIL with the one unknown parameter a 
the formula 

_ 3F{x) - F(3x) - 0.5[F(3a: - 2) + F(3x + 2) + F(3x - 1) + F(3x + 1)] 
" ~ F(3x - 2) + F(3x + 2) - F ( 3 x - 1) - F(3x + 1) 
valid for any x ensuring non-zero denominator can be used to construct an 
estimate. Obviously the quality depends on a suitable choice of x. On the 
other hand, since E(X) — E(Y) — 0, then for applying the moment method 
the second moment has to be considered. Since 9 E ( X 2 ) = E(X2) + E(Y2), 

then some elementary algebra leads to the estimate 

- 4 V* v2 5 

t=l 

Consider again a class of DIL(2;q,p) distributions. Given iid observa-
tions X i , . . . , X2n the problem is to test the hypothesis that they come 
from the DIL(2\q,p) distribution with a given q. Since no closed formulas 
for the df's are available no standard test can be used here. Then a possi-
ble approach is to simulate n independent generators Y\,..., Yn and define 
Zi = (Xn+i + Yi)/2, i = 1,2, ...,n. Then under the null hypothesis the 
distributions of Z's and X's are the same, hence on the basis of the double 
sample X \ , . . . , Xn and Z\,..., Zn, which are independent, some rank tests 
can be used to test the equidistribution. If the parameters q and p are un-
known one has to estimate them first. Obviously similar approach can be 
applied for testing that observations come from any dilation distribution. 

6. Dilation distributions driven by arbitrary generators 
A possible natural extension of the dilation distribution family is by 

considering arbitrary generators. Then a rv X with the generalized DIL 
distribution has to be represented in a form 

v d X + Y 
A — , 

r 
for some real number r and a rv Y if only the above formula makes sense, 
for instance if the chf (fry of Y has form <j>y{t) = 'fii'rt)/<j>(t), for some chf <f>. 
Then the respective probability dilation equation has the general form 

MX = \ V(x+y)/rVY{dy), 
R 

or 
F x ( x ) = J Fx(rx - y) dFY(y), x € R. 

R 
Consequently such a generalized dilation distributions family is param-

eterized by a scale r and a dilation generator distribution /j,y • 
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This family is, obviously, much wider than the previous one and includes 
many important classes of distributions, as normal, stable or a more general 
family of self-decomposable laws. Observe that the dilation generator of 
the normal J\f(m, a2) distribution is again normal N((r — 1 )m, (r2 — 1 )cr2). 
Similarly for the symmetric a stable distribution SaS(j3) with the chf 4>{t) — 
exp(-/?|i|Q), the dilation generator is SaS((ra - 1)0). 
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