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Abstract . We present almost sure central limit theorems for weakly dependent ran-
dom variables. The presented theorems generalize the results obtained by Peligrad and 
Shao (1995). 

1. Introduction 
Let {Xn, n > 1} be a sequence of independent and identically distributed 

random variables with continuous symmetric distribution function and let 
Sn = X! + ... + Xn, n > 1. Then, for every n > 1, P(Sn > 0) = 1/2, but 

n 

l i m i n f n - i y I (Si > 0) = 0 a.s. 
71—• OO i = 1 

and 
n 

l imsupn - 1 > 0) = 1 a.s., 
n—*oo . i = l 

where I denotes the indicator function. However, by the result of Erdos and 
Hunt (1953), we have 

n 
(1.1) lim (logn)"1 y -IiSi > 0) = 1/2 a.s. 

n—»oo ' % 
t=l 

Thus, it is not true that the random walk {Sn, n > 1} spends half of the 
time on the positive and half of the time on the negative axis in the sense 
that the asymptotic density, in Cesaro mean, 



376 B. R o d z i k , Z. R y c h l i k 

H{A) = lim n " 1 I (Si > 0) 
n—»00 —' 

¿=1 
of the set A — { i : Si > 0} equals a.s. 1/2. But, by (1.1), the logarithmic 
density 

(1.2) pL(A) = lim ( l o g n ) - 1 V \l(Si > 0) 
n—»00 < 1 i=1 

of the set A = {i : Si > 0 } exists a.s. and equals 1/2. 
Recently many authors have investigated time averages with respect to 

a logarithmic scale rather than space averages and prove a.s. convergence 
for the resulting random measures. The obtained results are extensions of 
classical weak limit theorems in a generalized formulation involving loga-
rithmic averages and logarithmic density. As a starting point of these inves-
tigations Brosamler (1988) and Schatte (1988) independently proved that if 
{Xn, n > 1} is a sequence of independent and identically distributed ran-
dom variables with EX 1 = 0, EXf = 1 and E\Xi|2+* < 00 for some 6 > 0 
(5 = 1 in Schatte's paper), then 

n ^̂  

(1.3) lim ( l o g n ) - 1 -I(Si < x\/i) = $ ( x ) a.s. for any x, 
n—»00 ^—' i i=l 

where $ denotes the standard normal distribution function. Lacey and 
Philipp (1990) showed that (1.3) remains valid assuming only EX 1 = 0 and 
EXl = 1. Conversely, Berkes and Dehling (1994) proved that if { X n , n > 1} 
is a sequence of independent and identically distributed random variables 
such that (1.3) holds, then EX 1 = 0 and EX\ = 1. The limiting relation 
(1.3) is called the pointwise or almost sure central limit theorem. Thus in 
the special case an = 0, bn = \/n, n > 1, the almost sure central limit 
theorem (1.3) is equivalent to the classical central limit theorem 

(1.4) Sn/bn - an => N(0,1) as n 00, 

where N(0,1) is the standard normal distribution on 1R and the conver-
gence is weak converegence of the measures on ]R. For general sequences 
{an, n > 1} and {bn, n > 1} the situation is different and more interesting, 
cf. Berkes (1995 and 1998), Berkes and Dehling (1994). 

In this paper we present almost sure central limit theorems for weakly 
dependent random variables. A general result of this kind is presented in 
Theorem 1. This result extends Theorem 1 of Peligrad and Shao (1995) 
to sequences without assuming finite variances. The next result, Theorem 
3, gives the almost sure central limit theorem for associated sequences of 
random variables. Theorem 3 generalize Theorem 2 of Peligrad and Shao 
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(1995) and related results of Matula (1996). The main results presented in 
this paper also extend, to the case of weakly dependent random variables, 
the related almost sure central limit theorems for independent nonidentically 
distributed random variables given by Atlagh (1993), Rodzik and Rychlik 
(1994, 1996). In the proofs we shall also follow the ideas of Lacey and Phillip 
(1990), Peligrad and Shao (1995), Rodzik and Rychlik (1994, 1996). 

2. Resu l t s 
Denote by BL = B L ( R , || • ||BL) the class of functions / : R - » R with 

\\f\\BL = ll/lli + ll/lloo < 00, where 
H/IU = sup{| / (z) - f(y)\/\x - y \ : x , y E R, x # y} 

and 
l l / l l o o = s u p { | / ( s ) | : x e R } . 

T H E O R E M 1. Let { X n , n > 1 } be a sequence of random variables. Let 
{ a n , n > 1 } be a sequence of positive numbers such that 

( 2 . 1 ) Bl - > o o and B l _ j B l 1 as n oo, 

where B\ = ai + . . . + a n , n > 1 . If S n = X i + . . . + X n , n > 1 , 

(2.2) S n / B n =» N{0,1) as n oo 

and for every f € B L there exists e = e ( f ) > 0 such that 
n 

(2.3) \ S . i ( Y J ^ k / B 2 k ) f { S k / B k ) ) = 0 ( ( l o g £ n ) 2 - £ ) , as n ^ oo, 
fc=l 

then 
n 

(2.4) Um ( l o g ^ ) " 1 ^ 2 { a k / B 2 k ) I ( S k < x B k ) - $(x) a.s. for any x . 
k=l 

Let us observe that if for x G R we denote by 6(x) the probability 
measure on R which assigns its total mass to x, then (2.4) can be restated 
in this way. Let the random variables X n , n > 1, be defined on a probability 
space (ii, A, P). Then there is a P-null set N C 0, such that for all w e Nc 

n 

( l o g B l ) ' 1 Y,{*k/Bl)8{S k{w)/B k) iV(0, l ) , a s n - » oo. 
fc=i 

A sequence { X n , n > 1} of random variables is called associated if for 
any n > 2 and any coordinatewise increasing functions / , g : R" —• R we 
have 

(2.5) C o v ( / ( X ! , . . . , Xn),g(Xlt...,Xn)) > 0, 

whenever the left hand side of (2.5) exists. 
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In many respect, associated sequences of random variables behave like 
sequences of independent random variables, cf. Esary, Proschan, Walkup 
(1967), Dabrowski and Dehling (1988) and the references therein. 

Let, for every n>\, 1 < m, < n — 1, 

(2.6) un(m)= sup Cov(Xj,Xk) 

and 
(2.7) u(m) = sup Y" Cov(Xj,Xk). 

k> l —' - j:|j-fe|>m 

The function u(m) introduced Cox and Grimmett (1984). Of course, for 
every n > 1 and 1 < m < n — 1, we have un(m) < u{m). On the other hand, 
if {Xn, n > 1} is associated, then 

un(m) < un+i(m) for every 1 < m < n 

and, for every n > 1, 

un(m) >un(m + 1) for every 1 < m < n — 2. 

THEOREM 2. Let f be a bounded function that has a bounded Radon-Nikodym 
derivative h(x). Let {Xn, n > 1} be a sequence of associated zero mean ran-
dom variables with finite second moments. IfV% = ES^ —> oo, Vn/Vn+l - 1 

as n —> oo, then 
n 

(2.8) Var (5> f c /y f e
2 ) / (S f c /V f c ) ) 

fc=l 

< c{ml + IHDOog^2) + INIL E^W J2(ak/v£)}, 
¿=1 k=i 

where = Vfc
2 — k > 2, a\ = EX% and C is an absolute constant. 

THEOREM 3. Let { X n , n > 1 } be a sequence of associated zero mean random 
variables with finite second moments. If V^ = ES2 —> oo, V£/V£+i —• 1 as 
n —> oo, 

(2.9) Sn/Vn N(0,1) as n oo 

and, for some e > 0, 

(2 .10) X > N ( I ) ) = 0((logVZ)2-% 
1 = 1 fc=i 



Almost sure central limit theorems 379 

where ak = Vk - V£_lf fc > 2, ai = EXf, then 
n 

(2.11) lim (log VZ)~X Y{ak/Vi)I{Sk < xVk) = $(x) a.s. for any x. 
n—>oo ' fc=l Let us observe that 

2 n n ( i ) D a f c / F f c
4 ) < ^ ( u n W / V ^ i a . / V t ) . 

i=l k=i ¿=1 fc=l 
Furthermore, we have (cf. (3.5) in the proof of Theorem 1) 

lim QogVZ)-1Y i(ak /V2) = l. 
n—>oo ' fc=l 

Thus if 

(2.12) limsup^(u„(fc)/V fe
2) < oo, 

then (2.10) holds with e = 1. 

3. Proofs 
P r o o f of Theorem 1. We first note that (2.4) is equivalent to the following 
statement: 

For each f € BL 

(3.1) lim ( logS 2 ) - 1 j2 (a k /B 2
k ) f (S k /B k ) n—»oo —' fc=l 

1 ~ 
=—= \ f(x) exp(—x /2)dx a.s. 

V27T j * — /-v1 
This fact follows from Theorem 7.1 of Billingsley (1968), Theorem 11.3.3 
(b=>c) of Dudley (1989) and Section 2 of Lacey and Philipp (1990). 

Let / € BL be a bounded Lipschitz function on E. Let us put f + = 
max(0,/) and f~ = max(—/, 0). Clearly f + and f~ are nonnegative 
bounded Lipschitz functions on R. By (2.2) and Theorem 2.1 of Billings-
ley (1968) 
(3.2) lim Ef+(Sn/Bn) = Ef+(N(0,1)), n—» oo 
where, here and in what follows, 

oo Ef{N{0,1)) = (27T)-1/2 j f(x)exp(-x2/2)dx. 
—oo 

On the other hand, by (2.1), we have 
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n n B2 / B2 

(3.3) ¿ ( a f c / B 2 ) < l + £ " \ n x - 'dx 

k=1 k=2Bl_JBl 

1 

= 1 + \ x~xdx = 1 - I n a i + \nBl 

and for every e > 0 there exists no so that for every n > no 
(3.4) j 2 ( a k / B l ) = 1 + j ^ i B U / B D i a . / B U ) 

Jt=l fc=2 
n 

> 1 + Y , ( B l - i / B 2 k ) \ x - ' d x 

fc=2 ^ . ./B» 
no 

> Y ^ ( a k / B l ) + ( l - e ) ( l n B l - l n B l o ) . 

k=1 

Thus, by (3.3) and (3.4), we get 

(3.5) l i m ( l o g B 2 ) - ^ ( a f c / B 2 ) = l . 
n—»oo >» 

fc=l 

By Toeplitz Lemma 7.1.2 of Ash (1972) and statements (3.2) and (3.5), 
proved above, we have 

n 

( 3 . 6 ) V ^ L o g B Z ) - 1 Y , ( * k / B l ) E f + ( S k / B k ) = E f + ( N ( 0 , l ) ) . 

n - > 0 ° k=1 

Define an increasing sequence of integers {iVfc, k > 1} by 

e x p { k 2 ' e ) < < exp((fc + l p ) , 

where e = e (/ + ) is as in (2.3). Thus, by Chebyshev's inequality and (2.3), 
for every 8 > 0 we get 

/ I N " N 
P ^ l o g J & J " 1 ¿ 2 ( a i / B f ) [ f + { S i / B i ) - E f + i S i / B i ) ] > 6) 

i - 1 

Nk 

< 6~2(logB%k)-2 V a r ( ^ { o i / B ? ) f + ( S t / B i ) ) 

i=1 

= 0 ( ( l o g B j f k ) ~ £ ) = 0(k~2) as k -* oo. 

Hence, by Borel-Cantelli Lemma, we have 
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Nk 

(3.7) l im ( l o g S ^ ) " 1 J2(ai/Bl)lf+(Si/Bi) - Ef+(Si/Bi)] = 0 a.s. 
K—»OO 1 * 1 = 1 

Now (3.6) and (3.7) yield 

Nk 

(3.8) l im ( l o g B ^ ) " 1 ^{«i/Wf+iSi/Bi) = Ef+(N(0,1)) a.s. 
K—+00 

i=1 

On the other hand, for Nk < n < Nk+i, we have 
Nk 

(3.9) (log -Bjv fc+1)-1 ^^ (a , i/B f ) f + (S i/B i ) 
i=1 

1=1 
Nk+1 

< ( l o g ^ J - 1 £ (ai/Bfif+iSi/Bi) 

i=i 
and 

(3.10) Urn ( l o g 5 ^ ) / ( l o g ^ f c + i ) = 1. 

Consequently, by (3.8), (3.9) and (3.10), we get 
n 

(3.11) l im ( l o g . 6 ^ ) - 1 Tiai/B^f+iSi/Bi) = Ef+(N(0,1)) a.s. 
71—» OO ' 

t = l 
The same proof works for f~, so that we also have 

n 
(3.12) l im ( l o g B l r ' T i a i / B ^ r i S i / B i ) = Ef~(N(0,1)) a.s. 

n—»oo L—* 
¿=1 

Combining (3.11) with (3.12) we can assert that, for every / 6 BL, (3.1) 
holds. Thus the proof of (2.4) is ended. 

P r o o f of Theorem 2. We have 
n 

(3.13) V a r ( ^ ( a i / F i 2 ) / ( 5 i / F i ) ) 
i— 1 

n 

= 22(°i/V?)aVar(f(Si/Vi)) 
i=1 

n—1 n 

+ 2 E E M V f V f i C o v W S i / V i l t t S j / V j ) ) 
i= 1 J=i+1 

= /1 (n) + 2/2(n). 
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Clearly, 0 < o¿/V? < 1, i > 1, so that (3.5) yields 

(3.14) h(n) < 11/11 L¿>A?)2 < ll/llLX>/^2) < C\\f\\l 
i=i ¿=i 

where C is an absolute constatnt. 

On the other hand, since {Xn, n > 1} is a sequence of associated random 
variables, n > 1} is a sequence of associated random variables, too. 
Therefore the function 

H(x,y) = P(Si > xVu Sj > yVj) - P{S{ > xV¿)P{Sj > yVj) 

is non-negative for every x,y G R, cf. Esary, Proschan and Walkup (1967). 
Thus, by Hoeffding-Lehman's types arguments, cf. Lehmann (1966), Peli-
grad and Shao (1995), we have 

oo oo 
C o v ( f ( S i / V i y , f ( S j / V j ) ) = \ J h(x)h(y)H(x,y)dxdy 

— oo —oo 

ZMlCoviSi/ViiSj/Vi). 

This implies 
n—1 

(3.15) I2(n) < \\h\\lYl ^(aiai/VfV^CoviSt/V^Sj/Vj) 
i=1 j=i+1 
n—1 n 

, £ (Wj/VfV?) [Cov(5¿; S{) + Cov(5 i ; Sj - Si)] 
i=1 j=i+1 

¿ (aj/Vf) 
t=l j = i +1 

+ INlLX>iA?) E {ai/VfrCcviSuSj-Si). 
i=1 . 7 = 1 + 1 

Moreover, 

v?/v2 

(3.16) E < E ^ V x~3/2dx 
j=i+1 j=i+1 

1 
= V~1 J x~3'2dx = 2{Vn-Vi)/{ViVn). 

V2/V2 
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Thus, by (3.5), we have 
n—1 n n 

(3.17) ^ ( a i / V - ) ^ (aj/V?) < 2 j > i A ? ) ( K - Vi)/Vn 

1 = 1 j=i + l i=l 

<2Yj{ai/V?)<C\ogVl 
¿=i 

On the other hand, since {Xn, n > 1} is a sequence of associated random 
variables, therefore Cov(-X"i, X , ) > 0 for every i,j > 1. This proves that for 
every i + 1 < j < n 

i i n 

(3.18) Cov(^, Sj - Si)<Y] EXk{Sn -Si) = J 2 E EXkXi 
k=1 k=lj=i+l 

i i 
< J2Un(i + 1 - k ) - » n ( f c ) . 

i=l fc=l 
Hence, by (3.18) and (3.16), we get 

n—1 n 
(3.19) J ^ / l f ) ^ (aj/V?) Co v(S i 5 Sj - Si) 

¿=i j=i+1 

i=l fc=l j=i+1 

< 2j^(ai/V*)(Vn - Vi)V-x ¿ t t n ( f c ) < 2 n^un(k)J2(ai/V*). 
¿=1 fe=1 fc=l i=k 

Consequently, by (3.13), (3.14), (3.15), (3.17) and (3.19) we get (2.8), as 
desired. 

P r o o f of Theorem 3. By Theorem 2 and (2.10) we get (2.3) with some 
e > 0. Of course (2.3) follows from (2.8) and (2.10). Thus Theorem 3 is now 
consequence of Theorem 1, so we omit details. 
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