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Abstract. We present almost sure central limit theorems for weakly dependent ran-
dom variables. The presented theorems generalize the results obtained by Peligrad and

Shao (1995).

1. Introduction

Let {X,,, n > 1} be a sequence of independent and identically distributed
random variables with continuous symmetric distribution function and let
Spn=X1+...+ X, n > 1 Then, for every n > 1, P(S, > 0) = 1/2, but

iminf =1 S 0) =
IITEIIilt)Icl)fn ;I(S,>0)-—Oa.s.

and

n
limsupn~! ZI(S,- >0)=1as,
n=reo i=1
where I denotes the indicator function. However, by the result of Erdés and

Hunt (1953), we have

“1
1 -1 - : =
(1.1) nli’f’;o(bg") .E_l iI(SI >0)=1/2 as.
Thus, it is not true that the random walk {S,, n > 1} spends half of the

time on the positive and half of the time on the negative axis in the sense
that the asymptotic density, in Cesaro mean,
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n
- Tim n-l
p(4) = lim n ;I(Si > 0)
of the set A = {i : S; > 0} equals a.s. 1/2. But, by (1.1), the logarithmic
density
~ 1
- K -1
(1.2) pr(A) = lim (logn) ; =1(S: > 0)
of the set A= {i: S; > 0} exists a.s. and equals 1/2.
Recently many authors have investigated time averages with respect to
a logarithmic scale rather than space averages and prove a.s. convergence
for the resulting random measures. The obtained results are extensions of
classical weak limit theorems in a generalized formulation involving loga-
rithmic averages and logarithmic density. As a starting point of these inves-
tigations Brosamler (1988) and Schatte (1988) independently proved that if
{Xn, n > 1} is a sequence of independent and identically distributed ran-
dom variables with EX; = 0, EX? = 1 and E|X;|**% < oo for some § > 0
(6 =1 in Schatte’s paper), then

(1.3) lim (logn)~! Z %I(Si < zVi) = ®(z) a.s. for any z,
i=1

where ® denotes the standard normal distribution function. Lacey and
Philipp (1990) showed that (1.3) remains valid assuming only EX; = 0 and
EX2 = 1. Conversely, Berkes and Dehling (1994) proved that if {X,,, n > 1}
is a sequence of independent and identically distributed random variables
such that (1.3) holds, then EX; = 0 and EX? = 1. The limiting relation
(1.3) is called the pointwise or almost sure central limit theorem. Thus in
the special case a, = 0, b, = /n, n > 1, the almost sure central limit
theorem (1.3) is equivalent to the classical central limit theorem

(1.4) Sn/bn —an = N(0,1) as n — oo,

where N(0,1) is the standard normal distribution on R and the conver-
gence => is weak converegence of the measures on R. For general sequences
{an, n > 1} and {b,, n > 1} the situation is different and more interesting,
cf. Berkes (1995 and 1998), Berkes and Dehling (1994).

In this paper we present almost sure central limit theorems for weakly
dependent random variables. A general result of this kind is presented in
Theorem 1. This result extends Theorem 1 of Peligrad and Shao (1995)
to sequences without assuming finite variances. The next result, Theorem
3, gives the almost sure central limit theorem for associated sequences of
random variables. Theorem 3 generalize Theorem 2 of Peligrad and Shao
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(1995) and related results of Matuta (1996). The main results presented in
this paper also extend, to the case of weakly dependent random variables,
the related almost sure central limit theorems for independent nonidentically
distributed random variables given by Atlagh (1993), Rodzik and Rychlik
(1994, 1996). In the proofs we shall also follow the ideas of Lacey and Phillip
(1990), Peligrad and Shao (1995), Rodzik and Rychlik (1994, 1996).

2. Results
Denote by BL = BL(R, || - |sr) the class of functions f: R — R with

Ifllsz = Ifllz + I fllo < 00, Where
Il = sup{|f(z) - fW)l/lz—9yl: 2,y R, z#y}
and
[flleo = sup{|f(z)|: = €R}.

THEOREM 1. Let {X,, n > 1} be a sequence of random wvariables. Let
{an, n > 1} be a sequence of positive numbers such that

(2.1) B? 00 and BI_ /B —>1asn— o,
where B2 =a;+ ...+ a,, n> 1 IfS, =X1+...+ X, n > 1,
(2.2) Sn/Bn = N(0,1) as n — o0

and for every f € BL there exists € = €(f) > 0 such that

(23)  Var (D (ex/BRf(Sk/Bx)) = O((log Br)*), asn— oo,
k=1

then

(2.4)  lim (log B2)™1 Z(ak/B;‘:)I(Sk < zBg) = ®(z) a.s. for any z.
k=1
Let us observe that if for x € R we denote by §(z) the probability
measure on R which assigns its total mass to z, then (2.4) can be restated

in this way. Let the random variables X, n > 1, be defined on a probability
space (2, A, P). Then there is a P-null set N C Q such that for all w € N¢

(log B2)™ > “(ax/BE)6(Sk(w)/Bk) = N(0,1), as n — oo.
k=1
A sequence {X,, n > 1} of random variables is called associated if for
any n > 2 and any coordinatewise increasing functions f, g : R* — R we
have
(2.5) Cov(f(Xi1,...,Xn),9(X1,...,Xn)) >0,

whenever the left hand side of (2.5) exists.



378 B. Rodzik, Z. Rychlik

In many respect, associated sequences of random variables behave like
sequences of independent random variables, cf. Esary, Proschan, Walkup
(1967), Dabrowski and Dehling (1988) and the references therein.

Let, foreveryn>1,1<m<n-1,
(2.6) up(m) = sup Z Cov(X;, X&)

1SkSmy <icnilj—k|zm
and
(2.7) u(m) = sup Z Cov(X;, Xk).
E>1 ..
=T gli—ki2m

The function u(m) introduced Cox and Grimmett (1984). Of course, for
every n > 1and 1 < m < n—1, we have u,(m) < u(m). On the other hand,
if {X,, n > 1} is associated, then

Un(m) S uppi1(m) foreveryl<m<mn
and, for every n > 1,
Un(m) > up(m+1) foreveryl<m<n-—2.

THEOREM 2. Let f be a bounded function that has a bounded Radon-Nikodym
derivative h(z). Let {X,, n > 1} be a sequence of associated zero mean ran-
dom variables with finite second moments. If V.2 = ES2 — oo, V2/V2 | — 1
as n — oo, then

n

(28)  Var (D (ar/V2)F(Sk/Vi))

k=1
n—1 n~-1

< C{(If1% + IRIZ ) (tog V2) + k)2 3 un() D (an/Vid)},
i=1 k=1

where ap = V2 — V2|, k> 2, a1 = EX? and C is an absolute constant.

THEOREM 3. Let {X,,, n > 1} be a sequence of associated zero mean random
variables with finite second moments. If V2 = ES2 — oo, V2/V2 1 — 1 as
n — 00,

(2.9) Sn/Van = N(0,1) asn — o0

and, for some € > 0,

n-—1 n—1

(2.10) Y un(®) D (ak/Vi) = O((log V;7)*~°),
i=1

k=1
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where ay = V,f — V,f_l, k>2,a; = EX2, then

(2.11)  lim (log V;?)~?! Z(ak/V,f)I(Sk < zVi) = ®(z) a.s. for any x.

k=1
Let us observe that
n—1 n—-1
Zun ) (ar/Vid) < Z un(i)/V2) Y (ax/ V).
k=1 k=1

Furthermore, we have (cf. (3.5) in the proof of Theorem 1)

lim (log V;2)™' > (ax/V) =1
k=1
Thus if

(2.12) lim sup Z(un )/ V) <

n—oo

then (2.10) holds with € = 1.

3. Proofs
Proof of Theorem 1. We first note that (2.4) is equivalent to the following

statement:
For each f € BL

(3.1)  lim (log B2)™" ) (ax/Bi)f(Sk/Bx)
k=1

= \/—;—? _Soo f(z) exp(~z%/2)dz a.s.
This fact follows from Theorem 7.1 of Billingsley (1968), Theorem 11.3.3
(b=c) of Dudley (1989) and Section 2 of Lacey and Philipp (1990).

Let f € BL be a bounded Lipschitz function on R. Let us put f+ =
max(0, f) and f~ = max(—f,0). Clearly f* and f~ are nonnegative
bounded Lipschitz functions on R. By (2.2) and Theorem 2.1 of Billings-
ley (1968)

(32) lim Ef*(Sa/Ba) = Ef*(N(0, 1)),

where, here and in what follows,

Ef(N(0,1)) = 2m)"Y/% | f(z)exp(—=?/2)dz.

— 00

On the other hand, by (2.1), we have
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n n B}/B}
(3.3) d (ax/BH<1+) | a7l
k=1 k=2B2_ /B2
1
=1+ S 2 ldz =1—Ina; +In B2
a1/B2
and for every ¢ > 0 there exists ng so that for every n > ng

n

(3.4) > (ax/BR) =1+ (Bi_,/Bi)(ax/B}_,)

n B}/B
>1+) (Bi./BY) | <'de
k=2 B2_ /B2

o

>3 (a/B2) + (1 - £)(n B - ln B2,).
k=1

Thus, by (3.3) and (3.4), we get

(3.5) lim (log B})™ > (ax/BR) =1.
k=1

By Toeplitz Lemma 7.1.2 of Ash (1972) and statements (3.2) and (3.5),
proved above, we have

(3.6) lim (log B2)™ > (ax/B})Ef*(Sk/Bk) = Ef*(N(0,1)).
k=1
Define an increasing sequence of integers { N, k > 1} by
exp(k?/¢) < B?\,,c < exp((k + 1)2/¢),

where € = ¢(f7) is as in (2.3). Thus, by Chebyshev’s inequality and (2.3),
for every 6 > 0 we get
> §)

N
P((log B,)"| > (as/ B (/B ~ Bf(5:/B)

Ny

< 67%(10g B, )% Var (3 (as/ B *(Si/ By))

i=1
= O((log B,)™°) = O(k™%) as k — oo.

Hence, by Borel-Cantelli Lemma, we have
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Ni
(37)  Jlim (log BY,)™' Y (ai/BY)f*(Si/B:) — Ef*(S8i/B:)) =0 as.

i=1
Now (3.6) and (3.7) yield

Ni

(38)  lim (log BY,)™" ) J(ai/B})f*(Si/Bi) = Ef* (N(0,1)) ass.
i=1

On the other hand, for N < n < N4, we have

N
(39) (logBY,,,)™' Y (ai/B})f*(S:/Bi)

i=1

< (log B2)™" Y \(a/ BY)* (51/By)
i=1
Nij1
< (log B¥,)™" Y (a:/B?) f*(S:/B)
and =
(3.10) Jim (log B%,)/(log BY,,,) =1

Consequently, by (3.8), (3. 9) and (3.10), we get
(3.11) lim (log B2)™* Z(a,/32 )f1(S;/B;) = Eft(N(0,1)) as.

The same proof works for f so that we also have

(3.12) lim (log B2) IZa,/Bz ~(Si/B;) = Ef~(N(0,1)) a.s

n—oo
=1

Combining (3.11) with (3.12) we can assert that, for every f € BL, (3.1)
holds. Thus the proof of (2.4) is ended.

Proof of Theorem 2. We have
(313)  Var (D (as/VAF(S:/V)

i=1

_ Z(ai/vf)2 Var(f(S:/V3))
i=1

#2303 (s [VEVR) Cov(F(S,/Y), £(Si/V,))

i=1 j=i+1

= I)(n) + 2Ly(n).
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Clearly, 0 < a;/V2 < 1,4 > 1, so that (3.5) yields

n n

(314) Ii(n) <IIFI% S (ai/VA? < IFI2 D (a:/V2) < ClIfII% log V2,

i=1 i=1

where C is an absolute constatnt.

On the other hand, since {X,,, n > 1} is a sequence of associated random
variables, {Sn, » > 1} is a sequence of associated random variables, too.
Therefore the function

H(z,y) = P(S; > zVi, S; > yV]) - P(S; > :L‘Vi)P(SJ > yV,)

is non—-negative for every z,y € R, cf. Esary, Proschan and Walkup (1967).
Thus, by Hoeffding-Lehman’s types arguments, cf. Lehmann (1966), Peli-
grad and Shao (1995), we have

[o o BN o]

Cov(f(Si/Vi); £(Si/Vs)) = | | R(=)h(y)H(z,y)dedy

< ||hlI%, Cov(8:/Vi; S/ V5)-
This implies

n—1 n
(3.15) L(n) <[RIZ% D" )" (aia;/VEVE) Cov(Si/Vi; S;/V;)
i=1 j=i+1
n~1 n
=812 > D (aia; /VEV}) [Cov(Si; S) + Cov(Si; Sj — Si)]
i=1 j=i+1
n—1 n
= 1R0% D (a:/Va) > (a3/VF)
i=1 F=i+1
n—1 n
+IRIZ Y (@i/VE) > (ai/V7) Cov(Si, S; — Si).
i=1 =i+l
Moreover,

n n ij/vj
316) > (ai/VH< Y Vit | 27
j=i+1 j=i+1 1/]_2_1/‘/3
1
=V, b | 27 =2V, - V))/(ViVa).
V2 /v2
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Thus, by (3.5), we have

BID @) Y @/V) <23 (@/VAVa - ViV
i=1 j=i+1

i=1
<2 Z(az/Vz) < Clog V2.
i=1

On the other hand, since {X,,, n > 1} is a sequence of associated random
variables, therefore Cov(X;, X;) > 0 for every 4,j > 1. This proves that for
everyi+1<j5<n

(3.18) Cov(S;,S; = Si) <ZEXk S = Si) Z Z EXiX;
k=1 k=1j=i+1

< Zun(i +1-k)= Zun(k)
i k=1

Hence, by (3.18) and (3.16), we get

(3.19) Z (a:/ V%) Z (a;/V;?) Cov(Si; S = Si)

i=1 j=i+1
i az/v3>2un > (@/V)
i=1 j=it+1
<22(a1/V4 Y (Ve = Vi)V IZun(k <2Zun(k nz ai/V3).

k=1 i=k
Consequently, by (3.13), (3.14), (3.15), (3.17) and (3.19) we get (2.8), as
desired.

Proof of Theorem 3. By Theorem 2 and (2.10) we get (2.3) with some
€ > 0. Of course (2.3) follows from (2.8) and (2.10). Thus Theorem 3 is now
consequence of Theorem 1, so we omit details.
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