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Abstract.The density of a d-dimensional polynomial-Gaussian distribution (PGDj) 
is the product of a non-negative polynomial and a Gaussian density. The density of a 
(PGDd) has many properties similar to a d-dimensional Gaussian distribution (GDj), 
but one-dimensional marginal distributions of (PGDj) are (PGDi). Analogously one-
dimensional densities of a polynomial-Gaussian process (PGP) are (PGD\ ) . We investi-
gate the differences and similarities between the Gaussian and non-Gaussian cases. 

1. Introduction 
Let Xd = (Xi , . . . , Xd) denote a d-dimensional random variable with a 

non-degenerate distribution. We suppose that X\ has a polynomial-Gaussian 
distribution (PGD\), i.e. the density of X\ is the product of a non-negative 
polynomial and a Gaussian density; see Evans and Swartz (1994). 

Thus the density of X\ has the following form 

where a > 0 and P2i{x) is a non-negative polynomial of degree 21. 
We will construct a d-dimensional polynomial-Gaussian distribution 

(PGDd) in such a way that various properties of Gaussian vectors are pre-
served. 

Let the density of X^ be the product of a non-negative polynomial in x\ 
and a d-dimensional Gaussian density 

(1.1) 

(1-2) f(xd) = 
VdetA 
(2t t )5 
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where K, = [fcrs]^s=1 is a symmetric, positive definite dxd matrix, A = K 
P2l{x\) is a non-negative polynomial in x\, x^ = (x i , . . . , x<f) € Rd, and /(x^) 
denotes a d-dimensional Gaussian density. 

In Section 2 we find the characteristic function of X^ and the moments 
of the first and second order of X^. We show that all the one-dimensional 
marginal distributions of (PGDd) are (PGD\). We show that there exist 
linear transformations 

Y i = X i , 
Y2 — X2 + 012X1, 

Yd, — Xd + aidXi + ... + a,d-i,d.Xd-ii 

such that Yi,Y2,...,Yd are independent. We show that for (PGDd) vectors 
the random variables X i , X 2 , . . . ,Xd are independent iff they are uncorre-
cted. 

Section 3 is devoted to the properties of sums of independent (PGDd) 
vectors. 

In Section 4 we give a characterization of (PGDd) . 
In Section 5 we give some necessary and sufficient conditions for charac-

teristic functions. 
In Section 6 we construct a stochastic process such that the one-dimen-

sional distributions of this process are (PGDi). 
There are various generalizations of Gaussian distributions and Gaus-

sian processes, see for example Johnson and Kotz' monograph (1972). The 
general idea of these generalizations is to introduce new forms, but, on the 
other hand, to preserve as far as possible the properties which hold in the 
Gaussian case such as the properties of linear transformations, the properties 
of marginal distributions, conditional distributions, the equivalence between 
the independence of random variables and the vanishing of the correlation 
coefficients. 

The distribution given by (1.2) belongs to the class named "conditionally 
Gaussian", considered for example by Liptser and Shiryaev (1978). Some 
properties of (PGD1) were considered by Plucinska (1999). 

The characteristic function corresponding to (1.2) is given by (2.5) and 
is the product of a polynomial and an exponential function. Characteris-
tic functions of such a form were considered by Lukacs (1970), who gave 
a sufficient condition for the product of a polynomial and an exponential 
function to be a characteristic function. In Section 5 we give a necessary 
and sufficient condition. 
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2. Properties of (PGDd) vectors 
We will consider some special form of the polynomial P2i{x). It is known 

that every polynomial can be represented as a linear combination of Hermite 
polynomials. Thus we will put 

<"> » < * ) - ! ¡ ¿ i » -

Formula (2.1) indicates some assumptions we make on the coefficients of 
the polynomial P21• Of course the coefficients cr are such that P21 > 0 and 
\Rd /(xd)dxd = 1. Throughout the paper we will consider the density (1.2), 
where the polynomial P21 is given by (2.1). More exactly the density of X^ 
will be 

(2.2) /(xd) = j r Xht exp { - I (Axd ,xd)} . 
(2tt)2 fr'ok^ W h i J I 2 J 

Let us denote the cofactor of krs in the matrix = [fcrs]"s=1 by and 
let 

- _ L r ( n ) y 2 detK.M 
a r n ~ r (n) J l ™ ' Mn - arnAr, On - £(n-l) ' 71 - "" 

We are going to show that there exist independent linear forms of X\, 
X2,... ,Xd. 

PROPOSITION 1. Let the density ofXd be given by (2.2). Then the random 
variables 

> 1 = ^1, 

= X2 + M2 = X2 + ai2-X"i, 

^Xi = Xd + fid = Xd + aidXi + . . . + ad_ijdXd-1 

are independent and every Yr (r > 2) has a Gaussian distribution with pa-
rameters EYt = 0, EY? = a^. Moreover the conditional distribution of 
Xr ..., -Xr_i where r > 2 is Gaussian with parameters 

E (X r \Xlt..., XT-\) = —fir, 
Var (Xr \Xi,..., Xr_i) = 

Proof . It follows from the properties of Gaussian distributions that the 
function (2.2) can be written in the following form 
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(2.4) 
_ VdetA 

" M 

ìet A / x\ (x2 + n2)2 

— S F -

fad + Md)2 

2a* 

The function (2.4) is the product of d functions: the first depends only on 
yi, the second on 2/2• •, the last one depends only on yd, where 

2/1 = ®i> 
3/2 = X2 + /i2, 

î/d = ^d + /¿d-
Thus the random variables Yi,Y"2> • •->5^ are independent and every Yr 
(r > 2) has a Gaussian distribution. The last statement of proposition 1 
follows immediately from (2.4). • 

PROPOSITION 2. Let the density o f X d be given by (2.2). Then the charac-
teristic function of X.d has the following form 

(2.5) ¥>(&) = £ exp [ i f o . X , , ) ^ 
21 

= Yl (Ì7?)r eXP 
r=0 

21 

1 d 

= S ^ (Î7?)r eXP 
r = 0 

r,s=l 

"2 (*"£d>£d) 

Wiere 7? = & + + • •. = ¿T Ki^ii + • • • + tdhd] • «21 (»?) w o 
polynomial of degree 21 and tp(£d) denotes the characteristic function of a 
Gaussian distribution. 

Proo f . It is evident that the characteristic function <p (£d) is a product of 
a polynomial and an exponential function. We must only show that the 
parameters of the characteristic function have the form stated in (2.5). If 
the density is given by (2.2), then for d = l , the characteristic function (see 
Plucinska 2001) has the form 

21 
(2.5') ¥>(&) = X A ( ^ i ) r e x P 

r=0 

We shall use the properties of characteristic functions for linear transforma-
tions. In order to calculate 

<p (£d) = E [ e x p (i ( X d , £ d ) ) ] = \ e x p [i (xd, £d)] f(xd)dxd 

Rd 
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we solve (2.3) with respect to X\,X2,... , X d . This system is a Cramer 
system and thus there exists a unique solution 

(2.3') XT — bjrYj > r — 1,... ,d, 

j = i 

where bjr can be found by the Cramer formulas; evidently brr = 1 (r = 
1,... ,d). It follows from (2.4) that Yi, Y2,...,Yd are independent, Yi has 
(PGD\) and Yr ( r > 1) have Gaussian distributions. Therefore the charac-
teristic function <p can be written in the form 

2 d 

( 2 . 6 ) <p{£d) = E{ e x p [t (CiYi + 6 £ b*Yi + • • • + & E h i * Y i ) ] } 

3=1 j=i 

= E { e x p [¿Yi {bn( 1 + 6 1 2 6 + • • • + bidU)]} 

x E {exp \iY2 (6226 + • • • + &M&)]} ••••E {exp \iYdbdd£d]} . 

The first factor on the right-hand side in (2.6) is the characteristic function 
of ( P G D \ ) , and each remaining factor is the characteristic function of a 
Gaussian distribution. 

Now we are going to find the coefficients b\r (r > 1). By the Cramer 
formula 

1 0 0 . . . 0 YX 

012 L 0 .. . 0 Y2 

XJ* — Ol3 023 1 • • . 0 Ì 3 

a i r r O3r • • • Or—l,r ^r 

Thus 
A 12 1 0 .. . 0 

(2.7) blr = ( - l ) r _ 1 0.13 «23 1 .. . 0 

air 0>2r 03r • • Or-1 

By induction we now prove that 

(2.8) , fcir 

bir = -,—, r = 
«11 

d. 

In view of (2.7), 

bi2 = - G l 2 = 
fcl2 

fell' 
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Suppose that (2.8) holds for r <n. We are going to prove that 

Ol,n+l = —7 • 
«11 

By (2.7) and the induction assumption we have 

bl,n+l = ( - i r K . n + i i - l ) 7 1 " 1 ^ - a n _ i ) n + i ( - l ) " - 2 6 l i n _ i 
+ . . . + ( - l ) n - 1 a 1 ,n+l} 

= ( - l ) 2 i l - 1 { a n , n + l ^ + . . . + ai,n+l} kn 

detiCWfcn [klnlC^+1 + • • • + kntChn+i 
--(n+1) , . , y(n +1) 

en 
I T y(n+1) , ^(n+1) 1 

"Tft'l.n+l/V-n+i^+i «l.n+l/^n+l.n+lJ 

kn Formula (2.8) follows from (2.5'), (2.6) and (2.7). • 
PROPOSITION 3. Every 6-dimensional (6 < d) marginal distribution of 
(PGDd) is (PGDg). The characteristic function of the one-dimensional 
marginal distribution for every s <d has the form 

21 fkis \ r 
(2.9) <p (£s) = E exp (i£sXs) = ( j f c ^ J exp 

Proo f . Proposition 3 follows immediately from proposition 2. In particular 
case we get (2.9) by putting: = . . . = = = £d = 0 in (2.5). • 
PROPOSITION 4. The moments of the first and second order o/X^ are given 
by 

ta 
(2.10) mr = EXr = 

fcn 

(2.11) qTS = EXrXs — krs + 2C2
 LR = krs + (qn - FEN) 1'2lr-

il 
Moreover, 
/011n , 0 QlsQlr , j sQlsQlr (2.11 ) krs = Qrs - 2c2 j = 9rs ~ (911 ~ «11) 2 " 

9ll 9ll 
P roo f . After some simple calculations we find that the derivatives of the 
function tp given by (2.5) for = 0 have the following forms 

d ta 
(2.12) | i l=...=fd=o= 

(2-13) (£i, . . . , & ) ¿2 (krs + 2 C 2 ^ ) • 

- h e2 
2«ssSs 
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Formula (2.10) is thus proved. Moreover by (2.13) for r = s = l we have qn = 
/EN + 2C2. Thus (2.11) follows from (2.13). And conversely solving equation 
(2.11) we get (2.11'). • 

Now we are going to show that the coefficients ars of the linear forms 
given by (2.3) can be expressed by the moments of X^. Let Q ^ = [ç r s]" s=1 , 

(n) 
n < d be the matrix of the second order moments of X^. Let Qrs be the 
cofactor of qTS in the matrix Q^n\n < d. 

P R O P O S I T I O N 5 . Let the density ofXd be given by ( 2 . 2 ) . Then 

(2.14) detQ(d) = ( l + g ) d e t £ ( d ) 

and moreover the coefficients ars of the linear forms given by (2.3) are 
(2.15) a - — JC^ - -LflW 

r ( s ) 
/VSS o ( s ) 

Vss 
P r o o f . The matrix Q has the following form: 

kn + 2c2 k12 + 2c2%£ ••• kld + 2c2J** 
ku + 2c2^ k22 + 2c2^- ...k2d + 2 c 2 ^ 

kld + 2c2^k2d + 2 c 2 ^ - - - kdd + 2c2^ 

kn k12 + 2c2f^ ••• kld + 2c2^ 

i 2cz\ k12 k22 + 2c2fe ...k2d + 2 c 2 ^ 

kn 

kldk2d + 2 c 2 ^ ••• kdd + 2c2S* 

The elements of the r-th column form a vector which can be written as the 
sum of two vectors 

(U . r> k\r - k\Tk\2 kidkir (klT + 2c2-—, k2r + 2 c 2 — p — , . . . , krd + 2c2—r2—) 
«¡11 rC ii K ii 1̂1 11 

k\T = (kir,..., kTd) + 2c2-£- (kn, • • •, hd). Ku 

The second term is proportional to the vector in the first column. Thus 
formula (2.14) is proved. 

The cofactors of Q(d) can be computed analogously to Thus 

Therefore (15) is proved. • 
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PROPOSITION 6. Let the density of X<j be (2.2). The random variables 
X\, X2, • • •, Xd are independent i f f they are uncorrelated. 

P r o o f . We need only show that if X i , X 2 , . . . , X d are uncorrelated then 
they are independent. It is evident that 

(2.16) COV (XiXr) = kir + (2C2 - c?) ^ = ^ (kn + 2C2 - 4) . 

The r.v. X\ is non-degenerate when 

(2.17) VarXi = fcn + 2c2 - c\ > 0. 
We suppose that cov (XiXr) = 0 for r ^ 1. Then by (2.16) and (2.17) we 
get 
(2 .18) klT = 0 for r ± 1. 

It is easy to compute that 

cov (XSXT) = ksr + (2c2 - c f ) 

The condition cov (XsXr) = 0 and (2.18) imply that 

(2.19) ksr = 0 forr^s. 
By (2.19) we have 
(2.20) ars = 0 f o r r ^ s . 

Condition (2.20) implies that X \ , X 2 , . . . , X j are independent. • 

3. Properties of sums 
We consider the characteristic function of the form (2.5). 
Let zi, Z2, • • •, Z21 be all the complex zeros of the polynomial K2)- We 

set Z2i= (z\, Z2, • • •, Z21) • The characteristic function (2.5) is determined by 
the matrix K and the parameters c\,..., c2j. It is evident that the knowledge 
of the parameters c i , . . . , C21 is equivalent to the knowledge of the set of 
zeros z\,...,Z2i and to the knowledge of EX{ (r < 21). Sometimes it is 
more convenient to use the parameters c i , . . . , C21, sometimes zi,..., Z21 and 
sometimes EX{ (r < 21). We use the abbreviated denotation 

PGDd (21, K., Z21) 

in order to show the dependence on parameters. 

PROPOSITION 7. Let X ^ n ) = ( X { N ) , . . n = 1 , 2 , be two independent 

vectors and suppose \ n = 1,2, has the distribution PGDd(2ln, Kn, Z2in), 
where Kn — and the set of zeros is Z2in = ..., z ^ ) . Let 
moreover 
(3.1) fc£} = k f f f o r r < d , n = 1,2. 
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Then X^ + X^ has the distribution 
(3.2) PGDd (2h + 2/2, Ki + 1C2, Z2h U Z2h). 

where T] = fViQ Cûf " ^^^ "r,-i+ten in the form 

Moreover, taking into account the well known properties of the sums of 
the matrices, we see that ( 3 . 3 ) corresponds to the distribution ( 3 . 2 ) . • 

REMARK 8. Assumption ( 3 . 1 ) has a special interpretation. Let us observe 
that assumption (3.1) implies a\2 = —1. That means that the random vari-
ables X\,X2 — X\ are independent. We can also find the two-dimensional 
marginal distribution of (Xi,Xr). Next, taking into account assumption 
(3.1), we see that Xi,Xr — X\ are independent. 

REMARK 9. If (n=l,2) are Gaussian vectors then assumption ( 3 . 1 ) is 
needless. 

4. The characterization of (PGDd) 
Now we are going to give a characterization of (PGDd) by the indepen-

dence of linear forms in a triangular system. 
We shall use the following lemma (see Plucinska 2 0 0 1 ) : 

LEMMA 10. The characteristic function <p of PGD(2l,)C, Z2i) has only 
PGD\ factors. Moreover if tp = <pi<p2 then I — + l2, K. = K.\ + K.2, 
Z2i = Z2h U Z2I2 . 

PROPOSITION 11. Let Q = [q rsL S = I be the positive definite matrix of the 
second order moments of the vector Xd,/ei kn be a given number such that 

£ ( 0 , 9 N ) and let kdd be given by ( 2 . 1 1 ' ) . Moreover let 

Suppose that there exist coefficients ars such that Y\,... given by (2.3) 
are independent and EYr = 0 for r = 2 , . . . , d. 

Then X<j has the distribution PGDd (2Z, /C, Z2i), where K, = [krs}^ 
and kTS are given by (2.11'). 

( 4 . 1 ) 
X1^PGDl(2l,kn,Z2l), 
Xd-PGD^kdd^Zu). 
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Proo f . The system (2.3) is a Cramer system. We solve it with respect to 
X\,..., Xd. The solution is given by (2.3'). For r—d we have 

(4.2) Xd = Yd + bldYi + ... + bd-i4Yd-!. 

According to (2.8), bld = = jj* = 1. By the decomposition 
lemma 10 every component of the sum (4.2) must have PGD\. The zeros 
of the characteristic function of the left side of (4.2) must be the same as 
the zeros of the right side. The set of zeros of the characteristic function of 
X\ is Z21, and the set of zeros of the characteristic function of Xd is VL d 
Thus the sets of zeros of the left and right sides are really the same. Thus 
every Yr, r > 2, has normal distribution. Therefore 

*>(&) = - E e x p ^ . X d ) 
= Eexpli^bu + ¿6(622 *2 + &12V1) + • • • + XdihdYi + • • • + 6 ^ ) ] 
= Eexp[tYi(6nii + ... + bld£d)}E exv\iY2{b22& + • • • + b2dU)} •... 

•E exp[i^dbddYd], 

where Yi has (PGD\),while Yr, r > 2, has a Gaussian distribution. Thus 
we get the characteristic function of the form (2.5). 

Then the density of ( X i , . . . , Xd) is 

(x2 + ai2xi)2 

/ (Xd) = P2i(®i) exp j e x P 2a2
2 

. . . • exp 
(xd + aidxi + • • • + ad-i,dXd~i)2 

2a* 

5. Conditions for characteristic functions 
In this Section we give a necessary and sufficient condition for a function 

which is the product of a polynomial and an exponential function to be a 
characteristic function. 

Let L™ (x) denote Laguerre's polynomials defined by 

PROPOSITION 12. A function of the form, 
21 

= Y l C r e x P 
r=0 
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is a characteristic function iff 

369 

( 5 . 1 ) = 

+ e x p ( - | 

.fe=o 
E {-I + bl) k\Ll ( e ) 

2 É (akaw + bkbw) k\ 0 i t ) w - k Lwk~k (¿2) 
fc< w 

where and bk are real parameters satisfying the condition 

¿ ( a i + 6i)fc! = l . 
fc=0 

LEMMA 13 . The relationship between Laguerre's and Hermit''e polynomials 

is given by 

( 5 . 2 ) - j = J H ^ H m i x ) e x p ( x - 6 ) 2 ) dx = rn\bl-mLl-m(-b2). 

It is easy to derive (5.2) using the formulas given by Prudnikov et al. 
(1983). 

P r o o f of Proposition 12. It is well known that a non-negative function has 
the form 

P2l{x) = (oo + + • • • + aix1^ + (bo + b\x + ... + fyx') . 

Of course this function is a polynomial of degree 21. It is very well known 
that every polynomial can be written as a linear combination of Hermite 
polynomials. So we can write the above equation in the form 

P2i{x) = ( a 0 f f 0 ( x ) + a\Hi(x) + ... + aiHi(x))2 

+ {b0H0{x) + biHi(x) + ... + kHiix))2 . 

( 5 . 3 ) 

The function 

f(x) = ^P2*(z)exp i - y 

is a density function when f(x)dx = 1. It is well known that there is one-
to-one correspondence between the characteristic function and the density 
function. Thus we can start from the density function. Moreover, from the 
orthogonality condition for Hermite polynomials: 

" ^ ! e x p ( ~ t ) H i ( x ) H ™ ( x ) d x = { / I 
0 , I t̂  m, 

I = m, 
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we have 

¿ (al + bl) kl = 1. 
fc=o 

In order to calculate 

¥ > ( 0 = \ f ( x ) exP(%x)dx 
R 

we use the equation (5.3). We have 

¥>(£) = J [(a0H0{x) + a\H\{x) + . . . + aiHi(x)f] e x p ( i £ c ) e x p y ^ 

J [(b0H0(x) + b\H\{x) + . . . + hHiix))2] e x p ( t £ c ) e x p ^ - y 

= e x p ( - f ) H ¿ q ( 4 + 

+ 2^akawHk(x)Hw(x) + 2 ^ bkbwHk(x)Hw(x)j 
kjil kjiw 

x exp dx. 

Then using (5.2), after some simple calculations, we get (5.1). • 

6. Polynomial-Gaussian processes 
We will construct a stochastic process X = (Xt, t\ > 0) such that the one-

dimensional distributions of X are (PGD\). We shall consider two cases. 

6.1. Case A 
Let K : (0, oo) x (0, oo) —> R1 be a positive definite function and let 

t\ > 0 be a given number. For brevity we will write krs = K ( t r , t s ) . Let 
Xtx be a random variable with distribution PGD\ (21, K (¿i, i i ) , i?2/]_ and 
X = ( X t , t > 0) be a Gaussian process such that EXt = 0, EXtrXts = 
krs - for tr,ta > t i . We take h < t2 < . . . < td, td = ( h , . . . , t d ) . We 
suppose that X and Xtx are independent. 

We define a stochastic process X in the following way: 

£ = i > t i ) = + t > t i ) . 
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PROPOSITION 14. For every d > 1 the distribution of (Xtl,..., Xtd) is given 
by (2 .2 ) . 

P r o o f . First observe that 

= EXtrXt. = kr3 + (EXl - ku) = Ks + ^ ( f t i - *ii) • 

Thus we get formula (2.11). Moreover, by formula (2.5), the characteristic 
function is 

<P (£d> td) = exp [f (^Xtl + . . . + ZdXtd)] 

= exp | i + + . . . + ^ d ] Xtl + hXti + ... + idXtd } 

= + - + x t d f d > t d ) 

r,s=l 11 r,s=1 J 

= $2j(»7)exp j - i > 

where: ?? = £1 + + • • • + Thus <p is given by (2.5). • 

6.2. Case B 
Now we shall consider a special case of the above. Namely let W = 

(Wt, t > 0) be a Wiener process independent of Xtl. Let X = (Wt-ti + Xtl, 
t > t\). It follows from the previous considerutions that the process X has 
the following properties: 

1) X is conditionally Gaussian, i.e. the conditional distribution of Xtd \ 
X ^ , . . . , Xtd_1 is Gaussian for ii < ¿2 < • • • < ¿d • Conditionally Gaussian 
processes axe considered for example by Liptser and Shiryaev (1978). 

2) The coefficients aTS have the following form 

Qrs = 0 for r = 1 , . . . , s — 2; s > 3; 
a>s-2,s-i = 1-

Thus X is a process with independent increments. 
3) X is a martingale. 
4) The moments of X have the form: 

= «2i(i?)ex P< —r 
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E(Xt) = ci; 

E{xf)=2c2 + t-

E {XtT,Xta) = 2c2 + tr for tr < ts. 

5) The characteristic function of (Xtl,... ,Xtd) is 
21 

I 
r=0 

<Pd (td> *d) = Cr»r (fl + • • • + e x P ~2 

where 

JC = 
" i l • • il ' 

. • •
 td. 

6) The characteristic function of Xts is 

<P ( 6 , ts) = ^ C r (itj exp • 

7. Example 
Consider case B of Section 6. Take 1=2. Then 

This polynomial is non-negative iff t > 4cJ 2, 4c2 — cf > 0. Thus we have 1C2 CJ 
4c2 

4C^_e3 < ti < <2 < • • • < id- For ci = C2 = 0 we take t\ > 0. The character-
istic function has the form 
(7.2) <p{Zi,...,U,h,...,td) 

= [1 + *ci(& + . . . + U) + ¿2c2(£i + • • • + £d)2] 

x exp | - J E ^ - | • 
{ i=i i<j ) 

By formula (7.2) it is easy to observe that the consistency conditions are 
satisfied. 

The polynomial (7.1) has quite a general form. But evidently not every 
second degree polynomial can be represented in the form (7.1). For example 
we cannot take the Maxwell distribution, i.e. we cannot put 

x2 

P2(x,t) = —. 
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The consistency conditions are not satisfied, since 

( i 2 - ¿ i ) J h 

X? ( x 2 - X l ) 

2t\ 2 ( i 2 - i i ) 

1 

dx i 

i l 2 
Î2 - + T~x2 

i2 

The two-dimensional Fourier transformation has the form 

¥ > ( £ i , 6 , i i , i 2 ) = £ e x p ( i ^ i X t ! + i £ 2 X t 2 ) 

1 x 2 

= o 11* r S - r e x p + fa**) 

e x p r ^ 

XT 
x e x p < ——— + 

( x 2 - X i ) 2 

dx\dx2 
2i i 2 ( i 2 - i i ) 

= [ l - i l ( a + 6 ) 2 ] e x p [ - i ( ^ 2 i i + i l h ~ 2 6 6 i i ) 

It is also evident that the consistency conditions are not satisfied: 
</>2(0,62,ii,i2) depends on ii. 

Another explanation that we cannot take the Maxwell distribution is the 
following. Let us represent Xt2 as a sum of two independent components: 

Xt2 = {Xt2 — X t l ) + X t l . 

It is known that the characteristic function of the Maxwell distribution is 
indecomposable. Thus we get a contradiction. 
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