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Abstract.The density of a d-dimensional polynomial-Gaussian distribution (PGDgy)
is the product of a non-negative polynomial and a Gaussian density. The density of a
(PGDy) has many properties similar to a d-dimensional Gaussian distribution (GDy),
but one-dimensional marginal distributions of (PGDy) are (PGD;). Analogously one-
dimensional densities of a polynomial-Gaussian process (PGP) are (PGD;). We investi-
gate the differences and similarities between the Gaussian and non-Gaussian cases.

1. Introduction

Let X; = (X1,...,Xy) denote a d-dimensional random variable with a
non-degenerate distribution. We suppose that X; has a polynomial-Gaussian
distribution (PGD;), i.e. the density of X; is the product of a non-negative
polynomial and a Gaussian density; see Evans and Swartz (1994).

Thus the density of X; has the following form

11,'2
(L) (@) = —=rpu(e)exp (—ga—) ,

where a > 0 and pgj(z) is a non-negative polynomial of degree 2I.

We will construct a d-dimensional polynomial-Gaussian distribution
(PGDy) in such a way that various properties of Gaussian vectors are pre-
served.

Let the density of X; be the product of a non-negative polynomial in z;
and a d-dimensional Gaussian density

(12) f0x) = T2 (a) exp {3 (Axas xa) | = puen) F(xa),

2m)2
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where K = [krs]f, .1 is a symmetric, positive definite d x d matrix, A = K71,
poi(z1) is a non-negative polynomial in 23, x4 = (z1, . ..,24) € R%, and f(xd)
denotes a d-dimensional Gaussian density.

In Section 2 we find the characteristic function of X; and the moments
of the first and second order of X;. We show that all the one-dimensional

marginal distributions of (PGDy) are (PGD;). We show that there exist
linear transformations

Y1 = Xy,
Ys = Xo 4+ a12X;,

Yi=Xg+a1aX1+ ...+ a4-14Xa-1,

such that Y7,Y>,...,Y; are independent. We show that for (PGD,) vectors
the random variables X1, Xs,..., Xy are independent iff they are uncorre-
lated.

Section 3 is devoted to the properties of sums of independent (PGDy)
vectors.

In Section 4 we give a characterization of (PGDy) .

In Section 5 we give some necessary and sufficient conditions for charac-
teristic functions.

In Section 6 we construct a stochastic process such that the one-dimen-
sional distributions of this process are (PGD;).

There are various generalizations of Gaussian distributions and Gaus-
sian processes, see for example Johnson and Kotz’ monograph (1972). The
general idea of these generalizations is to introduce new forms, but, on the
other hand, to preserve as far as possible the properties which hold in the
Gaussian case such as the properties of linear transformations, the properties
of marginal distributions, conditional distributions, the equivalence between
the independence of random variables and the vanishing of the correlation
coeflicients.

The distribution given by (1.2) belongs to the class named ” conditionally
Gaussian”, considered for example by Liptser and Shiryaev (1978). Some
properties of (PGD;) were considered by Pluciriska (1999).

The characteristic function corresponding to (1.2) is given by (2.5) and
is the product of a polynomial and an exponential function. Characteris-
tic functions of such a form were considered by Lukacs (1970), who gave
a sufficient condition for the product of a polynomial and an exponential
function to be a characteristic function. In Section 5 we give a necessary
and sufficient condition.
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2. Properties of (PGD,) vectors

We will consider some special form of the polynomial pg(z). It is known
that every polynomial can be represented as a linear combination of Hermite
polynomials. Thus we will put

(2.1) pa(z1) = ZEla%lH’" (%) -3 k2 = (\/’?)

r=0 r=0 R{y

Formula (2.1) indicates some assumptions we make on the coefficients of
the polynomial pg;. Of course the coeflicients ¢, are such that py; > 0 and
§ga f(xq)dxq = 1. Throughout the paper we will consider the density (1.2),
where the polynomial py; is given by (2.1). More exactly the density of X4
will be

Y () o}

Let us denote the cofactor of k, in the matrix (™ = [krs]r s=1 bY IC( " and
let

det K™
= K(n) = } : = M
a’T‘n ’C( r'n, ) P"n arnX'n 0 det ’C(n 1)7 S d

nn

We are going to show that there exist independent linear forms of X,
Xo,..., Xg.

PROPOSITION 1. Let the density of X4 be given by (2.2). Then the random
variables

Y1 =X,

Yo =X =X X,

(2.3) 2 2 + p2 2 +a124,

Yi=Xqg+ps=Xg+ayuXi+...+a4-14Xa1

are independent and every Y, (r > 2) has a Gaussian distribution with pa-
rameters EY, = 0, EY,2 = o2. Moreover the conditional distribution of
X, |X1,...,Xr_1 where r > 2 is Gaussian with parameters

E(X:| X1, ., Xe_1) = —ir,
Var (X, |X1,...,Xr_1) = 02.

Proof. It follows from the properties of Gaussian distributions that the
function (2.2) can be written in the following form
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(24)  f(xq)
_Veid el o Etm)  (@atp)
(2%)% 211 20?2 202 o 202 )
The function (2.4) is the product of d functions: the first depends only on
y1, the second on ys,..., the last one depends only on y4, where
n =,
Y2 = T2 + pa,
Yd = Tq + pq-
Thus the random variables Y7,Ys,...,Y; are independent and every Y,

(r > 2) has a Gaussian distribution. The last statement of proposition 1
follows immediately from (2.4). »

PROPOSITION 2. Let the density of X4 be given by (2.2). Then the charac-
teristic function of X4 has the following form

(2.5) ¢ (£a) = Eexp[i (€4, Xq)] =

21 1 d
= Zcr(in)r exp _'é Z krs&rés| =

r=0 r,s=1

2l 1
= e (i) exp |~ (K64, 0)| = Fan)B(60),

r=0
where ) = &1 + 228 + ... + B¢y = LGk + ..+ &kra) . Yau(n) is a
polynomial of degree 2! and @(&;) denotes the characteristic function of a
Gaussian distribution.

Proof. It is evident that the characteristic function ¢ (§;) is a product of
a polynomial and an exponential function. We must only show that the
parameters of the characteristic function have the form stated in (2.5). If
the density is given by (2.2), then for d=1, the characteristic function (see
Pluciriska 2001) has the form

2l 1
(25 p() =3 cr (i) exp [-3hugd]

r=0
We shall use the properties of characteristic functions for linear transforma-
tions. In order to calculate

¢ (€4) = E[exp (i (X4, €))] = | expli (xa,€)] f(xa)dxa
Rd
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we solve (2.3) with respect to Xi,Xa,...,X4. This system is a Cramer
system and thus there exists a unique solution

T
(2.3) X, =) bpY;, r=1,...,4,

j=1
where b;r can be found by the Cramer formulas; evidently b,y = 1 (r =
1,...,d). It follows from (2.4) that Y3,Y2,...,Y; are independent, Y7 has

(PGD;) and Y; (r > 1) have Gaussian distributions. Therefore the charac-
teristic function ¢ can be written in the form

2 d
(2.6) w(&a) = E{ exp [l (§1Y1 +&Y bpYi+... +E&), bdej)]}
j=1 Jj=1
= E {exp [iY1 (b11&1 + bi2&a + ... + b1a€a)]}
x E {exp[iYs (ba2f2 + ... + b2aa)l} - . - - - E {exp [1Yabsala]} -

The first factor on the right-hand side in (2.6) is the characteristic function
of (PGD;), and each remaining factor is the characteristic function of a
Gaussian distribution.

Now we are going to find the coefficients b;, (r > 1). By the Cramer
formula

1 00... 0 1
a;2 1 0 ... 0 Y
Xr= a13 a23 1 ... 0 Y3 .

Q1r Q2r Q3¢ ... Qr—1r Y.

Thus
a2 1 o ... 0

(2 7) b1 _(_1),._1 ai3 a3 1 ... 0
. r=

air Q2r G3r - -. Qr-1r
By induction we now prove that

klr

2. e
(2.8) by "

, r=1,...,d.

In view of (2.7),

b = k12
12 = —Q12 = —.
k11
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Suppose that (2.8) holds for 7 < n. We are going to prove that
Funn
ki
By (2.7) and the induction assumption we have
bint1 = (=1)"{ann1(=1)" " b1 — @n-1,0+1(=1)" 2101
+..+ (=) laypa}

bint1 =

k
= ( 1)271 1{an n+1 kln +...+a; n+1}
-1 +1) +1
= m[kln’dznm -+ kll’Canﬂa
+k1,n+1’C7(ﬁ++1T1)z+1 - kl,n+llchn++1?r)z+1
_kinn
ki

Formula (2.8) follows from (2.5’), (2.6) and (2.7). =

PROPOSITION 3. FEvery é-dimensional (6 < d) marginal distribution of
(PGDy) is (PGDg). The characteristic function of the one-dimensional
marginal distribution for every s < d has the form

2l r
29) o) =Bew(6X) =3 (Fi6) exp [-3he2].

r=0
Proof. Proposition 3 follows immediately from proposition 2. In particular
case we get (2.9) by putting: &1 = ... =&_1=&+1=£§3=01in (2.5). u
PROPOSITION 4. The moments of the first and second order of X4 are given
by

k
(2.10) m, = EX, = ¢1——,

kn

kisk kisk
(2.11) grs = EX; X5 = krs + 2¢2 1]:2 L= krs + (qu1 — k1) 13 lr-
11

Moreover,
(2.11,) krs = Grs — 2Ca Q132QIT =dgrs — (‘hl - ku)qugE-

an 11
Proof. After some simple calculations we find that the derivatives of the
function ¢ given by (2 5) for £; = O have the following forms

kl’r
(212) ag’r (517 7£d) |§1_..._§d—0 ZCIE,

(2.13)

klrkls)

(p (51, Y é-d) |£1—...—€d—0_‘ Z (k'rs + 262 k2
11

0?
9¢-0¢,
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Formula (2.10) is thus proved. Moreover by (2.13) for r=s=1 we have ¢q;; =
ki1 + 2¢2. Thus (2.11) follows from (2.13). And conversely solving equation
(2.11) we get (2.11). m

Now we are going to show that the coefficients a,s of the linear forms

given by (2.3) can be expressed by the moments of Xg4. Let Q(®) = [rs]7 s=1,

n < d be the matrix of the second order moments of X4. Let QQSL) be the
cofactor of g, in the matrix Q™ n < d.

PROPOSITION 5. Let the density of X4 be given by (2.2). Then

2c
(2.14) det Q) = ( 2) det K9
k11
and moreover the coefficients ars of the linear forms given by (2.3) are
1
) -
(2.15) Qrs IC(S),C S = Q(s Q
Proof. The matrix Q has the following form:
[ k11 + 2¢o k12 + 262%% - kg + 202’—,211-‘1‘
k k kigk
Q(d) _ ki + 202# koo + 2625%? oo kog + 262—1,-?%11—2 _

2
kld + 262 kzd + 262—1"515‘ill - kqa + 262%‘:

-kn kg + 202%; coo kg + 262%
2 kiz koo + 2o - - kyg + 2cRighiz
(]_ + ﬂ) k ki)
kll o o PR “ e
kigki2 k?
kiq kog + 262—#??1— e kga+ 26;3;%‘1i

The elements of the r-th column form a vector which can be written as the
sum of two vectors

k1r kirk12 kidkir

(k1r+262k s kar + 2co kfl sy krd + 2c3 k%l )
kir
=(k1'rv--~ krd)+262k2 (kn,...,kld).
11

The second term is proportional to the vector in the first column. Thus
formula (2.14) is proved.

The cofactors of Q@ can be computed analogously to Q(®), Thus
QY = (1 + 2) K,
k1
Therefore (15) is proved. =
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PROPOSITION 6. Let the density of Xy be (2.2). The random variables
X1,Xs,...,Xq are independent iff they are uncorrelated.
Proof. We need only show that if X3, X5,..., X are uncorrelated then
they are independent. It is evident that
k k

= 2\ M _ R —c?
(2.16) cov (X1 X,) = kir + (2C2 cl) b b (kn + 2¢9 cl) .
The r.v. X; is non-degenerate when
(2.17) VarX, = k11 + 2¢9 ~ C% > 0.

We suppose that cov (X1X,) = 0 for » # 1. Then by (2.16) and (2.17) we
get
(2.18) kir =0 forr # 1.

It is easy to compute that

cov (X Xr) = ksr + (2c2 - c%) klrzkls.
k11
The condition cov (X;X,) = 0 and (2.18) imply that
(2.19) ksr =0 for r # s.
By (2.19) we have
(2.20) ars =0 for r #s.

Condition (2.20) implies that X3, X,..., Xy are independent. =

3. Properties of sums

We consider the characteristic function of the form (2.5).

Let 21, 29,...,29 be all the complex zeros of the polynomial ¥o;(2). We
set Zy= (21, 22, ..., 291) . The characteristic function (2.5) is determined by
the matrix X and the parameters ¢y, ..., cg. It is evident that the knowledge
of the parameters cj,...,cy is equivalent to the knowledge of the set of
Zeros zj,...,z9 and to the knowledge of EX] (r < 2l). Sometimes it is
more convenient to use the parameters c¢i,. .., ¢y, sometimes 21, ..., 29 and
sometimes EX] (r < 2[). We use the abbreviated denotation

PGDy (2L, K, 2Zy)
in order to show the dependence on parameters.

PROPOSITION 7. Let Xg") = (X%"), . ,Xén)), n = 1,2, be two independent

vectors and suppose X("), n = 1,2, has the distribution PGDy(2l,, Kp, Za1,),
where K,, = [ky;) ;‘,,s=1 and the set of zeros is Zy, = (zgn), .. ,zg’n)) Let
moreover

(3.1) KV =k forr<d, n=1,2



Polynomial-Gaussian vectors 367

Then Xfil) + Xfiz) has the distribution
(3.2) PGDy (2l1 + 219, K1 + Ka, Z2l1 U 2212) .

Proof. The product of the characteristic functions of X((is) has the form

33)  w1(&a) w2 (&)
2l 2l5 1 1
- H ( (1)) I <1 - (2)) - €Xp [—5 (K184,€4) = 5 (’C2£d>£d)] ,

s=1

where 7 = "¢, & and the set of zeros of (3.3) can be written in the form
1 2 2
2o, U 2y, = (zg ), .. ,zgll),zg ), . zgh))

Moreover, taking into account the well known properties of the sums of
the matrices, we see that (3.3) corresponds to the distribution (3.2). m

REMARK 8. Assumption (3.1) has a special interpretation. Let us observe
that assumption (3.1) implies a;p = —1. That means that the random vari-
ables X1, X2 — X1 are independent. We can also find the two-dimensional
marginal distribution of (X1,X,). Next, taking into account assumption
(8.1), we see that X1, X, ~ X1 are independent.

REMARK 9. If X‘(in) (n=1,2) are Gaussian vectors then assumption (3.1) is
needless.

4. The characterization of (PGDy)

Now we are going to give a characterization of (PGD, ) by the indepen-
dence of linear forms in a triangular system.

We shall use the following lemma (see Pluciriska 2001):

LEMMA 10. The characteristic function ¢ of PGD(2l,K,2Zy) has only
PGD; factors. Moreover if ¢ = @1p2 thenl = I3 + 1y, K=K; + K,
Zor = Zop U 2Zyy,.

PROPOSITION 11. Let Q = [qm]g’sz1 be the positive definite matriz of the
second order moments of the vector Xg,let ki1 be a given number such that
k11 € (0,q11) and let kgq be given by (2.11'). Moreover let
41) X1 ~ PGDy(21, k11, Z2),
' X4~ PGD1(2L, kaa, BL Zy).

Suppose that there exist coefficients a,s such that Yi,...,Yy given by (2.3)
are independent and EY, =0 forr =2,...,d.

Then Xg has the distribution PGDy (21,K, 21), where K = [kes]?,_,
and k., are given by (2.11').
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Proof. The system (2.3) is a Cramer system. We solve it with respect to
X1,...,Xg4. The solution is given by (2.3’). For r=d we have

(4.2) Xa=Yg+bigV1+ ... +by_14Ya-1.
According to (2.8), byg = Eg)lfxd = %E = 1. By the decomposition
1

lemma 10 every component of the sum (4.2) must have PGD;. The zeros
of the characteristic function of the left side of (4.2) must be the same as
the zeros of the right side. The set of zeros of the characteristic function of
X, is Zq;, and the set of zeros of the characteristic function of Xy is 9—3221.
Thus the sets of zeros of the left and right sides are really the same. Thus
every Y,, r > 2, has normal distribution. Therefore

¢(€4) = Eexp(i€y, Xq)
= Eexp[i§1Y1b11 + i€a(b22Ya + b12Y1) + ... +8€a(b1aY1 + . . . + bga¥3)]
= Eexp[iY1(b11é1 + ... + b1ga)|F exp[iYa(boola + . .. + b2géy)] - . ..
-E exp(i€4baqYa],

where Y71 has (PGD,),while Y;, r > 2, has a Gaussian distribution. Thus
we get the characteristic function of the form (2.5).

Then the density of (X;,...,Xy) is

(2 + 0129171)2 )
————203 ...

3
f (x4) = pa(z1) exp (-5'0—2*) exp

1

[ (zd +aiqx1+ ...+ ad_lydmd_1)2]

c..o€Xp|— 5 . n
20d

5. Conditions for characteristic functions

In this Section we give a necessary and sufficient condition for a function
which is the product of a polynomial and an exponential function to be a
characteristic function.

Let L} (z) denote Laguerre’s polynomials defined by

ko gy w\ .
@ =y & (’th)x

1=0

PROPOSITION 12. A function of the form

2! 52
0(&) = _cr (i) exp (—;)

r=0
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is a characteristic function iff

l
(5:1) (&) =exp (—%) : [Z (af + %) KL (52)}

k=0
!
+ exp (—6_22) ) |:2 Z (akay + bgby) k! (ig)w_k Ifl::)—lC (52)]
k<w

where ay and by, are real parameters satisfying the condition
l

> (ak +03) K =1.

k=0

LEMMA 13. The relationship between Laguerre’s and Hermit’e polynomials
is given by

(5.2) \/-% [ Hy(z) Hom(z) exp (—% (o — b)2> dz = mit-m L= (—b2),
R

It is easy to derive (5.2) using the formulas given by Prudnikov et al.
(1983).

Proof of Proposition 12. It is well known that a non-negative function has
the form

palz) = (&6+5Iz+...+(3]zl)2+(l;;)+lim+...+l;,m’)2.

Of course this function is a polynomial of degree 21. It is very well known
that every polynomial can be written as a linear combination of Hermite
polynomials. So we can write the above equation in the form

(5.3) po(z) = (aoHo(z) + a1 Hi(z) + ... + asz(:zz))2
+ (boHo(z) + biHi(z) + ... + biHy(x))?.

The function

1 z?
f(z) = Epm(x) €xp (*3)

is a density function when {p f(z)dz = 1. It is well known that there is one-
to-one correspondence between the characteristic function and the density
function. Thus we can start from the density function. Moreover, from the
orthogonality condition for Hermite polynomials:

1

—— {exp (-3‘;—2) Hy(z)H(z)da = {0  LAm,
R

V2m I, Il =m,
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we have
i (ak + b2) =1.
k=0

In order to calculate

0(€) = | f(z) exp(itz)dz
R

we use the equation (5.3). We have

12 {[(aoHo(z) + a1 Hi(z) + ... + aHy(z))?] exp(i{m)exp( i’;_
Vo g
12 {[(boHo(z) + biH1(z) + . .. + bHi(z))?] exp(i€z) exp ( %2)
Var g
2 l
- (4) £ 0o

+2 ZakawHk(:c)Hw(z) +2 Z bkwak(:c)Hw(:z)]
k#l k#w

X exp [—-;— (z— i§)2] dz.

Then using (5.2), after some simple calculations, we get (5.1). =

6. Polynomial-Gaussian processes

We will construct a stochastic process X = (X}, t; > 0) such that the one-
dimensional distributions of X are (PGD;). We shall consider two cases.

6.1. Case A

Let K : (0,00) x (0,00) — R! be a positive definite function and let
t1 > 0 be a given number. For brevity we will write k,; = K (t,,t5). Let
X:, be a random variable with distribution PGDq (2l K (t1,t1),2x) and
= (Xt, ¢t > 0) be a Gaussian process such that EX; = 0, EXt,Xta =
ks — o Brfla for t,,ts > t1. We take t1 <12 < ... <tg, tg=(t1,...,tq). We
suppose that X and Xi, are independent.

We define a stochastic process X in the following way:

K(tl,t)
k

X=(Xy, t>t)= (Xt+ X, tztl).



Polynomial-Gaussian vectors 371

PROPOSITION 14. For every d > 1 the distribution of (Xy,,...,Xy,) is given
by (2.2).

Proof. First observe that
kl’r kls
kf

Kk
(EXE1 — k11) = kys + oyt

grs = EXt,.Xt, = krs + A
11

(@11 — k11) -

Thus we get formula (2.11). Moreover, by formula (2.5), the characteristic
function is

0 (€, ta) =expi (@1 Xs, + ... +&Xs,)]

) k k -
—exp i+ e+ + P2 X + 6%+ 6K,

=y, (€1+’”+:_1f£d)‘p(i )(Ed,td)

-

= ¥yi(n) exp {—% > khkhfrfs 3 Z &&E ( )}

r,s=1 rs 1

= \1'21(77) €xp {—_ Z £’r€s rs} 3

r,s=1
where: n =& + —ﬁ-ﬁéz +. ku 24&4. Thus ¢ is given by (2.5). w

6.2. Case B

Now we shall consider a special case of the above. Namely let W =
(Wi, t > 0) be a Wiener process independent of X;,. Let X = (W_y, + Xy,,
t > t1). It follows from the previous considerutions that the process ¥ has
the following properties:

1) X is conditionally Gaussian, i.e. the conditional distribution of X, |
Xtys:- s Xty_, is Gaussian for {3 < {2 < ... < %4 . Conditionally Gaussian
processes are considered for example by Liptser and Shiryaev (1978).

2) The coefficients a,s have the following form
ars =0 forr=1,...,8-2; s > 3;
as-24-1 = 1.
Thus X is a process with independent increments.

3) X is a martingale.
4) The moments of X have the form:
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E(X¢) = c1;
E (th) =2cy +t;
E (X, Xy,) =2c; +t, fort, <t,.
5) The characteristic function of (X,,...,X,) is

21
0a(€ata) = o crd” (614 + &) exp |3 (K]
r=0

where

t1 -ty

6) The characteristic function of X, is

21
P (€orte) = e (16 exp (5634, )

r=0
7. Example
Consider case B of Section 6. Take 1=2. Then
2
(7.1) pz(xt)_1+ﬂ+—("’7—1).

2
This polynomial is non-negative iff ¢ > Zc%c—z?’ 4cy — c? > 0. Thus we have
1

-——2—7 <t <ty <...<ty For ¢ =cg =0 we take t; > 0. The character-

4c2—cy
istic functlon has the form

(7.2) (&, & t1,-. ., tq)
=[14ici(é+... + &) +i%ea(& + ... + &)

X exp { Zfzt Z&fjti} -
i=1 1<j
By formula (7.2) it is easy to observe that the consistency conditions are
satisfied.
The polynomial (7.1) has quite a general form. But evidently not every
second degree polynomial can be represented in the form (7.1). For example
we cannot take the Maxwell distribution, i.e. we cannot put

2
z
p2 (z,t) = e
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The consistency conditions are not satisfied, since

1 .'1:% .’IJ% (2:2 - $1)2
e [Hexp{ oL 4 2T L gy
27/t (tg — tli S t P { 2ty 2(t2—t1) 1

1 [t 11 + h z2] exp Z%
= ———= (et + - 7.
V2rta/ta ty 2 2ty
The two-dimensional Fourler transformation has the form

@ (&1, €2, 11, t2) = Eexp (i61.Xy, + €2 Xy,)
1 z? . .
= — exp (€121 + 1€229)
271'\/ (tz - tl) t1 }§2 tl

2 . 2
X exp { il + M} dz1dzs

T2t 2(tg— 1)

_ [1 —t1 (61 + {2)2] exp I:_% ({%tl + £§tz - 2£1£2t1)] .

It is also evident that the consistency conditions are not satisfied:
©2(0, &2, t1,t2) depends on ¢;.

Another explanation that we cannot take the Maxwell distribution is the
following. Let us represent X, as a sum of two independent components:

Xt, = (th - th) + Xy,

It is known that the characteristic function of the Maxwell distribution is
indecomposable. Thus we get a contradiction.
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