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Abstract. It has been proven already by Pettis [5] that the space P(u, X) of Pettis
integrable functions may be non-complete when endowed with the semivariation norm
of the integrals. Then Thomas [9] proved that the space is almost always non-complete.
In view of the Open Mapping Theorem in such a case no complete equivalent norm
can be defined on P(u, X). The question is now whether there are interesting linear
subsets of P(u, X) where a complete norm does exist. In this paper we consider two
such subspaces: the space Poo(u, X) of scalarly bounded Pettis integrable functions and
the space LLNso(p, X) of scalarly bounded functions satisfying the strong law of large
numbers. We prove that in several cases these spaces are complete.

Introduction

Throughout the paper (2, X, u) stands for a complete probability space,
p is a fixed lifting on Lo (p), X is a Banach space and B(X) is the closed
unit ball in X. Given X we set

B:= {z** € B(X**):
z** is a weak*-cluster point of a countable subset of B(X)}.
A is the Lebesgue measure on the unit interval [0,1] and £ denotes the
corresponding o-algebra of Lebesgue measurable sets.
We say that Aziom L (cf. [1]) is satisfied if [0, 1] cannot be covered by less

then the continuum closed sets of the Lebesgue measure zero. It is known (cf.
[1]) that Axiom L is a consequence of Martin’s Axiom.
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A function f : @ — X is said to be Pettis integrable with respect to p if it
is weakly measurable and for each E € T there exists v¢(E) € X satisfying
for each functional z* € X* the equality 2*vf(E) = {g2* f dp. It is known
(cf. [3]) that the measure vy : ¥ — X is of o—finite variation. Identifying
weakly equivalent Pettis integrable functions we get a linear space which we
denote by P(u, X). It is well known that the space can be normed by setting

1flle := sup §la*fldu.
flz*lI<1q

We denote by Py (s, X) the linear space
{f € P(p, X) : ||fllPw := sup ||z flloo < o0},
lz*]|<1

where ||z* f||oo is the Lo (pt)-norm of z* f. One can easily check that || - ||p,,
is a norm. Then, let P (4, X) := {f € P, X) : v4(X) is norm relatively
compact}.

If f:Q— X*is a weak*-measurable and weak*-bounded function (i.e.
there exists M > 0 such that for each z € X the inequality |zf| < M|z
holds p-a.e.), and p: Loo(p) — Loo(p) is a lifting, then po(f) : @ — X* is
the unique function (see [2]) satisfying for each z € X the equality

(.’13, pO(f)) = P((m,f» .

It is a consequence of Theorem I11.3.3 from [2], that

loo(HI| : = sup{|p((z, )} ll=l < 1}

is a measurable function.

Following [8] we are going to introduce now the space LLN(u,X) of
X —valued functions satisfying the law of large numbers. It is defined in the
following way:

LLN(/J.,X):{f:Q—»X:

n
day € th_)n(}o as — %;f(wl) =0 for p%-ae (w)e€ Q°°}

where u* is the countable direct product of  on 2° — the countable product
of Q1.

The space LLN(p,X) will be considered with the Glivenko-Cantelli
seminorm, defined in [8] for an arbitrary function f : @ — X by the formula

*
I fllee = limsup| gndu®™,
n
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where

gn(w = 8sup — Z |I wz)
”I'||<1 i<n

According to {8], the GC-seminorm and the Pettis seminorm are equiva-
lent on LLN(p, X). In particular functions in LLN (p, X)) that are weakly
equivalent are not distinguishable by the GC-norm. This permits us to iden-
tify weakly equivalent elements of LLN(p, X) and investigate the quotient
space.

Identifying weakly equivalent functions—we denote by LLNyo(p, X) the
linear space

{f € LLN(p, X) : [|fllpw := sup [[z" flloo < o0},

lz=ll<1

1. Completeness of P, (1, X)

In many cases Poo(pt, X) = Loo(i, X) (in the sense of isomorphic isom-
etry). It is so in the case of measure compact spaces (so in particular for
separable or weakly compactly generated X) and for X possessing RNP.
In general however the above equality is false. In spite of this the space
Poo(p, X) is often complete.

PROPOSITION 1. If X has the WRNP, then Py (u, X) is complete.

Proof. Let (fn)neNn C Poo(p, X) be a Cauchy sequence. It is clear that for
each E € ¥ the sequence (vy, (E))penN is Cauchy in X and so it is convergent
to an X —valued measure v. A simple calculation shows that there is M > 0
such that ||[v(E)|| < Mu(E) for each E € . According to the assumptions
there is a scalarly bounded Pettis integrable density f of v with respect to
p. Since (fn)nen is Cauchy in Py (u, X) it is also Cauchy in P(u, X). It
follows that for each z* € X*

dm {16 =" fldu = 0.

Consequently, for each z* € X* the sequence (z* f,) is convergent in measure
to z*f. Since at the same time the sequence (z*f,) is Cauchy in Ly (p),
it is convergent to z*f in Lo (u). Together with the Cauchy condition in
P (u, X), this yields the convergence

Hm ifa =~ fllpe =0. =

The WRNP however is not necessary for the completeness of Pe (g, X).
Assuming Axiom L we can get some results without the assumption of the
WRNP. We are going to begin with the following two simple facts.
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LEMMA 2. If f € P(u, X*) then for each £** € B(X**) there exists z* € B
such that z** f = z3* f p—a.e.

Proof. Take z** with ||z**|| = 1 and let (x4 )aca be a net of functionals from
the unit ball of X weak*—converging to z**. Since f € P(u, X*) the operator
T:X* — Li(u) given by T(z**) = z** f is weak*—weakly continuous (cf
[3]) and so zof — x**f weakly in L;(u). By a theorem of Mazur, one can
find y,, € conv{z, : @ € A} such that limy,f = z**f u — a.e.. Now, if 2*
is an arbitrary weak*—cluster point of {y, : n € N}, then it satisfies the
required equality. =

LEMMA 3. If f € Pyo(ut, X*), then

Sup|ze» <1 1% flloo = supyg<1llZflloo -
Proof. Let a := sup| <y [|17flloc and b := supjgesj<i [|2** flloo - According

to Lemma 2 for each z** € B(X™**) there exists & € B satisfying the equality
z**f = Zf p—a.e.. Consequently,

b= sup{||Zf|le : Z € B}.
Given Z € B with ||Z|| = 1, let (Ta)acAa be a countable net from the unit ball
of X that is weak*— convergent to Z. By the assumption |z, f| < a p—a.e.
for each a . Since the net consists of countably many different elements, we

have also |Zf| < a p—a.e. Thus ||Zf||cc < a for each Z and so b < a. This
completes the proof. =

THEOREM 4. (Aziom L) If i is perfect then Py (u, X*) is complete.

Proof. Let (fn)>%; be a Cauchy sequence in P (1, X*). Applying Lemma
3 we see that for each m,n € N
sup. [|2** frn = 2™ fimlloo = sup zfo — 2 fmlloo -
flz*=ll<1 fzli<1
Now,

(1) sup 2 fn — Zfmlloo = sup, Nzpo(fn) — zpo(fm)lloo

= |]i}|151 sup lzpo( fu)(w) — zpo( fm)(w)]

= sup {|po(fn)(w) = po(fm) (@) -

Consequently, the sequence (po(fr)) is uniformly convergent to a func-
tion h : @ — X™* such that h = pg(h). Since for each z** € B the functions
po(fr) are measurable, according to [7], Theorem 6-2-1 (where the Axiom L
is used), the functions pg(f,) are in Py (u, X*) and so h is weakly measur-
able. Then, it is a consequence of the Lebesgue Convergence Theorem (see
[3]) that h € Poo(pt, X*).
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Thus, using (1), with h rather then f,, we get

lim || fp, — h|lp, = lim sup ||zfn — zh|/
n o<

= limsup flpo(fn)(w) = po(h)(w)ll = 0.

This proves the completeness of Py (p, X*). u

Notice that according to a result of Stegall [1], if u is perfect then
Poo(p, X*) = PS5 (1, X™).

The above proof makes it obvious that in fact the following more general
result holds true:

THEOREM 5. Let o and X be arbitrary. If for each countable family F C
Poo(p, X*) there exists a lifting p such that po(f) is p— Pettis-integrable for
each f € F, then Poo(u, X*) and PS (p, X*) are complete.

The question of whether a lifting of f € Py (i, X*) is Pettis integrable
was implicitely posed in {7]. Rybakov [6] undertook an attempt to solve the
problem, but his approach turned out to be wrong (see Math. Reviews 98h
#20007).

COROLLARY 6. If X is separable, then for each p the spaces PS (p, X*) and
Py (1, X*) are complete.

2. Completeness of LLNy(u, X)

It has been proven in [4] that if X is infinite dimensional and u is not
purely atomic, then LLN (u, X') is non-complete. In the case of LLN(p, X*)
the completeness problem is solved affirmatively.

THEOREM 7. The space LLNy (1, X*) is complete.

Proof. Let p be a consistent lifting on L (1) and let ()32, be a Cauchy
sequence in LLNy,(u, X*). As in the proof of Theorem 4 we get the equality

o 12" fr. = 2™ fmlloo = sup [lp0(f) (w) = po(fm) (W)

It follows that the sequence (po(f,)) is uniformly Cauchy in the norm topol-
ogy of X*. Let h :  — X* be the pointwise limit of the sequence (po(fr)).
The uniform convergence yields the equality h = pg(h). Moreover, since
each f, is properly measurable and p is consistent, the function po(fn)
is also properly measurable. Clearly it is also pointwise bounded by the
function ||po(fn)]| € Loo(p). Consequently, it follows from [8], Theorem
26, that po(fn) € LLNyo(u, X*). The uniform convergence of the sequence
(po(frn)) yields h € LLN(u, X*) and the convergence of {po(frn)) to h in
LLNy(, X*).
This proves the completeness of LLNyo (1, X*). m



344 K. Musiatl

Considering each X- valued function as an X**- valued function we get
the following result in case of an arbitrary Banach space X:

THEOREM 8. The completion of the space LLNy(p,X) is a subspace of
LLNoo(u, X**). If Aziom L 1is satisfied and p is perfect then the completion
of Poo(p, X) is a subspace of Po (1, X**).
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