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Abstract. It has been proven already by Pettis [5] that the space P(p, X) of Pettis 
integrable functions may be non-complete when endowed with the semivariation norm 
of the integrals. Then Thomas [9] proved that the space is almost always non-complete. 
In view of the Open Mapping Theorem in such a case no complete equivalent norm 
can be defined on P(ß,X). The question is now whether there are interesting linear 
subsets of P(/i, X) where a complete norm does exist. In this paper we consider two 
such subspaces: the space Poo (M> A") of scalarly bounded Pettis integrable functions and 
the space LLNoo(ß, X) of scalarly bounded functions satisfying the strong law of large 
numbers. We prove that in several cases these spaces are complete. 

Introduction 
Throughout the paper (fi, £ , ¡jl) stands for a complete probability space, 

p is a fixed lifting on Loo(^), X is a Banach space and B(X) is the closed 
unit ball in X. Given X we set 

B := {x** E B(X**) : 
x** is a weak*-cluster point of a countable subset of B(X)}. 

A is the Lebesgue measure on the unit interval [0,1] and £ denotes the 
corresponding cr-algebra of Lebesgue measurable sets. 

We say that Axiom L (cf. [1]) is satisfied if [0,1] cannot be covered by less 
then the continuum closed sets of the Lebesgue measure zero. It is known (cf. 
[1]) that Axiom L is a consequence of Martin's Axiom. 
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A function / : i ) —> X is said to be Pettis integrable with respect to // if it 
is weakly measurable and for each E 6 S there exists f f ( E ) € X satisfying 
for each functional x* € X* the equality x*Vf{E) = \E x* f d f i . It is known 
(cf. [3]) that the measure Vf : E —» X is of a—finite variation. Identifying 
weakly equivalent Pettis integrable functions we get a linear space which we 
denote by P(n, X). It is well known that the space can be normed by setting 

||/||Fl:= sup j | x * f \ d p . 
I|X*||<1 n 

We denote by P00(/^, X ) the linear space 

{/ € P([i,X) : II/HPOO : = sup 11x711«, < 00} , 
||X*||<1 

where ||x7||oo is the ¿oc ,(^)-norm of x* f . One can easily check that || • ¡¡p^ 
is a norm. Then, let P^ifi, X) := {/ G P00(p,X) : ^/(S) is norm relatively 
compact}. 

If / : i ) —• X* is a weak*-measurable and weak*-bounded function (i.e. 
there exists M > 0 such that for each x 6 X the inequality \xf\ < M||x|| 
holds /x-a.e.), and p : L^p) —> jCoo(m) is a lifting, then p o ( f ) : 0, —» X* is 
the unique function (see [2]) satisfying for each x € X the equality 

(x,po(/)> =p((xj)). 

It is a consequence of Theorem III.3.3 from [2], that 

|M/)|| :=sup{|p( (x ,/ ) )| :|N|<l} 

is a measurable function. 
Following [8] we are going to introduce now the space LLN(p,X) of 

X—valued functions satisfying the law of large numbers. It is defined in the 
following way: 

LLN(n,X) = j / : n^X : 

3a/ € X lim 
1 n 1 

a/ - - 2 /(<*) = 0 f o r M°°-a.e. fa) 6 \ 
n i=l ' 

where is the countable direct product of /i on - the countable product 
of n . 

The space LLN(p,X) will be considered with the Glivenko-Cantelli 
seminorm, defined in [8] for an arbitrary function / : i i —> X by the formula 

II/IIGC = lim sup j gndfj,°° , 
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where 

gn{u)= sup - V |x* (/(wj)) | . 
I M I < l n i < n 

According to [8], the GC-seminorm and the Pettis seminorm are equiva-
lent on LLN(fi,X). In particular functions in LLN(p,,X) that are weakly 
equivalent are not distinguishable by the GC-norm. This permits us to iden-
tify weakly equivalent elements of LLN(fi, X) and investigate the quotient 
space. 

Identifying weakly equivalent functions—we denote by LLN00(fj,,X) the 
linear space 

{feLLN(n,X):\\f\\Pao:= sup ||x*/l|oo < oo> . 
M < i 

1. Completeness of Poc(n,X) 

In many cases Pao(fj,,X) = L00(fi,X) (in the sense of isomorphic isom-
etry). It is so in the case of measure compact spaces (so in particular for 
separable or weakly compactly generated X) and for X possessing RNP. 
In general however the above equality is false. In spite of this the space 
P o c ^ j X ) is often complete. 

P r o p o s i t i o n 1. If X has the WRNP, then Poo(m> X) is complete. 

P r o o f . Let {fn)neN C Poo{v,X) be a Cauchy sequence. It is clear that for 
each the sequence (ufn (E))nejy is Cauchy in X and so it is convergent 
to an X—valued measure v. A simple calculation shows that there is M > 0 
such that ||i/(.E)|| 5= Mfi(E) for each E € 2 . According to the assumptions 
there is a scalarly bounded Pettis integrable density / of v with respect to 
/x. Since (/n)neN is Cauchy in Podp, X) it is also Cauchy in P(/i, X). It 
follows that for each x* £ X* 

lim \ \x'fn-x*f\dn = 0. 
n—too J 

n 

Consequently, for each x* G X* the sequence (x*fn) is convergent in measure 
to x*f. Since at the same time the sequence ( x * f n } is Cauchy in ¿^(/i), 
it is convergent to x*f in Loc(/j,). Together with the Cauchy condition in 
Pooiji, X ) , this yields the convergence 

nlim ||/„-/||poo=0.-

The WRNP however is not necessary for the completeness of Po c(^, X). 
Assuming Axiom L we can get some results without the assumption of the 
WRNP. We are going to begin with the following two simple facts. 
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LEMMA 2. If f e P(ß,X*) then for each x** € B(X**) there exists x*Q* 6 B 
such that x**f = XQ*/ /X— a.e. 

P r o o f . Take x** with ||x**|| = 1 and let (xa)aeA be a net of functional from 
the unit ball of X weak*—converging to x**. Since / € P(ß, X*) the operator 
T : X** —> L\{ß) given by T(x**) = x**f is weak*—weakly continuous (cf 
[3]) and so xaf —• x**f weakly in L\(p). By a theorem of Mazur, one can 
find yn 6 conv{xa : a E A} such that l imy n / = x** f p, — a.e.. Now, if XQ* 
is an arbitrary weak*—cluster point of {yn : n E N}, then it satisfies the 
required equality. • 

LEMMA 3 . If f E Poo(p,X*), then 

SUP||*»||<lll®*7Hoo = SUP||X||<LLL^/L]OO • 
P r o o f . Let a := s u p ^ y ^ ||a;/||oo and b := s u p ^ . . ^ ||x**/|]oo • According 
to Lemma 2 for each x** E B(X**) there exists x E B satisfying the equality 
x**f = xf ß—a.e.. Consequently, 

b = sup{ | |x / | | oo : x E B} . 

Given x E B with ||x|| = 1, let {xa)a^A be a countable net from the unit ball 
of X that is weak*— convergent to x. By the assumption \xaf\ < a p—a.e. 
for each a . Since the net consists of countably many different elements, we 
have also \xf\ < a p—a.e. Thus | |x / | |oo < o for each x and so b < a. This 
completes the proof. • 

THEOREM 4. (Axiom L) If p is perfect then Poo(p,X*) is complete. 

P r o o f . Let (/n)^=i be a Cauchy sequence in Poc(/u,,X*). Applying Lemma 
3 we see that for each m , n £ N 

SUp \\x**fn - X**/m||oo = SUp \\xfn - xfmWoo • 
||x"||<l ||x||<l 

Now, 

(1) s up || xfn ~ x f m ||oo — SUp \\xpo(fn) — Xpo(fm)\\<x 

INI<i IMI<i 
= sup s u p | x p 0 ( / n ) ( w ) - Xpo(fm)(u)\ 

I M I < 1 w 

= SUp \\p0(fn)(u) - Po(fm)(v)\\ • 
U) 

Consequently, the sequence (po(/n)) is uniformly convergent to a func-
tion h : Q —> X* such that h — po(h). Since for each x** £ B the functions 
Po{fn) are measurable, according to [7], Theorem 6-2-1 (where the Axiom L 
is used), the functions Po(/n) are in P^^p, X*} and so h is weakly measur-
able. Then, it is a consequence of the Lebesgue Convergence Theorem (see 
[3]) that h E Poo(ß,X*). 
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Thus, using (1), with h rather then f m , we get 

lim | | / n - h \ \ P o o = lim sup \ \ x f n - z / i | | o o 
n l|x||<l 

= lim sup ||p0(/„)(w) - p0(/i)MII = 0 . 
n u 

This proves the completeness of PQO(M>^*) • • 

Notice that according to a result of Stegall [1], if p. is perfect then 

The above proof makes it obvious that in fact the following more general 
result holds true: 

THEOREM 5. L e t p a n d X be a r b i t r a r y . I f f o r e a c h c o u n t a b l e f a m i l y T C 
P o o ( n , X * ) t h e r e e x i s t s a l i f t i n g p s u c h t h a t po ( / ) i s f i — P e t t i s - i n t e g r a b l e f o r 
e a c h f 6 T , t h e n POO(M> X * ) a n d P o o i t 1 ^ * ) a r e c o m p l e t e . 

The question of whether a lifting of / € Poo{^,X*) is Pettis integrable 
was implicitely posed in [7]. Rybakov [6] undertook an attempt to solve the 
problem, but his approach turned out to be wrong (see Math. Reviews 98h 
#20007). 

COROLLARY 6. I f X i s s e p a r a b l e , t h e n f o r e a c h p t h e s p a c e s P£,(p, X * ) a n d 
Poo (p, X * ) a r e c o m p l e t e . 

2. Completeness of L L N ^ f i , X ) 
It has been proven in [4] that if X is infinite dimensional and p, is not 

purely atomic, then L L N ( f i , X ) is non-complete. In the case of L L N 0 0 ( n , X * ) 
the completeness problem is solved affirmatively. 

THEOREM 7. T h e s p a c e L L N ^ y ^ X * ) i s c o m p l e t e . 

P r o o f . Let p be a consistent lifting on L 0 0 ( n ) and let ( f n ) % L i be a Cauchy 
sequence in L L N 0 0 ( n , X * ) . As in the proof of Theorem 4 we get the equality 

SUp ||X**fn - Z**/m| |oo = Sup \ \p0( fn)(uj) - Po ( /m)M| | • 
||x**||<l w 

It follows that the sequence ( p o ( f n ) ) is uniformly Cauchy in the norm topol-
ogy of X * . Let h : Q — > X * be the pointwise limit of the sequence ( p o ( f n ) ) • 
The uniform convergence yields the equality h = p o { h ) . Moreover, since 
each f n is properly measurable and p is consistent, the function p o ( f n ) 
is also properly measurable. Clearly it is also pointwise bounded by the 
function ||po(/n)II € L 0 0 ( p , ) . Consequently, it follows from [8], Theorem 
26, that po ( f n ) € L L N 0 0 ( / j , , X * ) . The uniform convergence of the sequence 
(po(/n)) yields h € L L N ( p , X * ) and the convergence of (po(/n)) to h in 
L L N ^ X * ) . 

This proves the completeness of L L N 0 0 ( p , , X * ) . m 
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Considering each X- va lued funct ion as an X**- valued funct ion we get 
the fol lowing result in case of an arbitrary B a n a c h space X \ 

THEOREM 8. The completion of the space LLN00(fi,X) is a subspace of 
LLNoo(fi,X**). If Axiom L is satisfied and ¡JL is perfect then the completion 
of Poo(n,X) is a subspace of P^/J,,X**). 
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