

Kazimierz Musiał

THE COMPLETENESS IN SPACES
OF BOUNDED PETTIS INTEGRABLE FUNCTIONS
AND IN SPACES OF BOUNDED FUNCTIONS
SATISFYING THE LAW OF LARGE NUMBERS

*Dedicated to Prof. Kazimierz Urbanik
on the occasion of his 70th birthday*

Abstract. It has been proven already by Pettis [5] that the space $P(\mu, X)$ of Pettis integrable functions may be non-complete when endowed with the semivariation norm of the integrals. Then Thomas [9] proved that the space is almost always non-complete. In view of the Open Mapping Theorem in such a case no complete equivalent norm can be defined on $P(\mu, X)$. The question is now whether there are interesting linear subsets of $P(\mu, X)$ where a complete norm does exist. In this paper we consider two such subspaces: the space $P_\infty(\mu, X)$ of scalarly bounded Pettis integrable functions and the space $LLN_\infty(\mu, X)$ of scalarly bounded functions satisfying the strong law of large numbers. We prove that in several cases these spaces are complete.

Introduction

Throughout the paper (Ω, Σ, μ) stands for a complete probability space, ρ is a fixed lifting on $L_\infty(\mu)$, X is a Banach space and $B(X)$ is the closed unit ball in X . Given X we set

$$\tilde{B} := \{x^{**} \in B(X^{**}) :$$

x^{**} is a weak*-cluster point of a countable subset of $B(X)$.

λ is the Lebesgue measure on the unit interval $[0, 1]$ and \mathcal{L} denotes the corresponding σ -algebra of Lebesgue measurable sets.

We say that *Axiom L* (cf. [1]) is satisfied if $[0, 1]$ cannot be covered by less than the continuum closed sets of the Lebesgue measure zero. It is known (cf. [1]) that Axiom L is a consequence of Martin's Axiom.

1991 Mathematics Subject Classification: Primary:46G10; Secondary:28B05, 28A51

Key words and phrases: Pettis integral, law of large numbers, lifting.

A function $f : \Omega \rightarrow X$ is said to be Pettis integrable with respect to μ if it is weakly measurable and for each $E \in \Sigma$ there exists $\nu_f(E) \in X$ satisfying for each functional $x^* \in X^*$ the equality $x^* \nu_f(E) = \int_E x^* f \, d\mu$. It is known (cf. [3]) that the measure $\nu_f : \Sigma \rightarrow X$ is of σ -finite variation. Identifying weakly equivalent Pettis integrable functions we get a linear space which we denote by $P(\mu, X)$. It is well known that the space can be normed by setting

$$\|f\|_{P_1} := \sup_{\|x^*\| \leq 1} \int_{\Omega} |x^* f| \, d\mu.$$

We denote by $P_\infty(\mu, X)$ the linear space

$$\{f \in P(\mu, X) : \|f\|_{P_\infty} := \sup_{\|x^*\| \leq 1} \|x^* f\|_\infty < \infty\},$$

where $\|x^* f\|_\infty$ is the $L_\infty(\mu)$ -norm of $x^* f$. One can easily check that $\|\cdot\|_{P_\infty}$ is a norm. Then, let $P_\infty^c(\mu, X) := \{f \in P_\infty(\mu, X) : \nu_f(\Sigma) \text{ is norm relatively compact}\}$.

If $f : \Omega \rightarrow X^*$ is a weak*-measurable and weak*-bounded function (i.e. there exists $M > 0$ such that for each $x \in X$ the inequality $|xf| \leq M\|x\|$ holds μ -a.e.), and $\rho : L_\infty(\mu) \rightarrow \mathcal{L}_\infty(\mu)$ is a lifting, then $\rho_0(f) : \Omega \rightarrow X^*$ is the unique function (see [2]) satisfying for each $x \in X$ the equality

$$\langle x, \rho_0(f) \rangle = \rho(\langle x, f \rangle).$$

It is a consequence of Theorem III.3.3 from [2], that

$$\|\rho_0(f)\| := \sup\{|\rho(\langle x, f \rangle)| : \|x\| \leq 1\}$$

is a measurable function.

Following [8] we are going to introduce now the space $LLN(\mu, X)$ of X -valued functions satisfying the law of large numbers. It is defined in the following way:

$$LLN(\mu, X) = \left\{ f : \Omega \rightarrow X : \right. \\ \left. \exists a_f \in X \lim_{n \rightarrow \infty} \left\| a_f - \frac{1}{n} \sum_{i=1}^n f(\omega_i) \right\| = 0 \quad \text{for } \mu^\infty\text{-a.e. } (\omega_i) \in \Omega^\infty \right\}$$

where μ^∞ is the countable direct product of μ on Ω^∞ – the countable product of Ω .

The space $LLN(\mu, X)$ will be considered with the Glivenko-Cantelli seminorm, defined in [8] for an arbitrary function $f : \Omega \rightarrow X$ by the formula

$$\|f\|_{GC} = \limsup_n \int^* g_n \, d\mu^\infty,$$

where

$$g_n(\omega) = \sup_{\|x^*\| \leq 1} \frac{1}{n} \sum_{i \leq n} |x^*(f(\omega_i))|.$$

According to [8], the GC-seminorm and the Pettis seminorm are equivalent on $LLN(\mu, X)$. In particular functions in $LLN(\mu, X)$ that are weakly equivalent are not distinguishable by the GC-norm. This permits us to identify weakly equivalent elements of $LLN(\mu, X)$ and investigate the quotient space.

Identifying weakly equivalent functions—we denote by $LLN_\infty(\mu, X)$ the linear space

$$\{f \in LLN(\mu, X) : \|f\|_{P_\infty} := \sup_{\|x^*\| \leq 1} \|x^* f\|_\infty < \infty\}.$$

1. Completeness of $P_\infty(\mu, X)$

In many cases $P_\infty(\mu, X) = L_\infty(\mu, X)$ (in the sense of isomorphic isometry). It is so in the case of measure compact spaces (so in particular for separable or weakly compactly generated X) and for X possessing RNP. In general however the above equality is false. In spite of this the space $P_\infty(\mu, X)$ is often complete.

PROPOSITION 1. *If X has the WRNP, then $P_\infty(\mu, X)$ is complete.*

P r o o f. Let $\langle f_n \rangle_{n \in \mathbb{N}} \subset P_\infty(\mu, X)$ be a Cauchy sequence. It is clear that for each $E \in \Sigma$ the sequence $\langle \nu_{f_n}(E) \rangle_{n \in \mathbb{N}}$ is Cauchy in X and so it is convergent to an X -valued measure ν . A simple calculation shows that there is $M > 0$ such that $\|\nu(E)\| \leq M\mu(E)$ for each $E \in \Sigma$. According to the assumptions there is a scalarly bounded Pettis integrable density f of ν with respect to μ . Since $\langle f_n \rangle_{n \in \mathbb{N}}$ is Cauchy in $P_\infty(\mu, X)$ it is also Cauchy in $P(\mu, X)$. It follows that for each $x^* \in X^*$

$$\lim_{n \rightarrow \infty} \int_{\Omega} |x^* f_n - x^* f| d\mu = 0.$$

Consequently, for each $x^* \in X^*$ the sequence $\langle x^* f_n \rangle$ is convergent in measure to $x^* f$. Since at the same time the sequence $\langle x^* f_n \rangle$ is Cauchy in $L_\infty(\mu)$, it is convergent to $x^* f$ in $L_\infty(\mu)$. Together with the Cauchy condition in $P_\infty(\mu, X)$, this yields the convergence

$$\lim_{n \rightarrow \infty} \|f_n - f\|_{P_\infty} = 0. \blacksquare$$

The WRNP however is not necessary for the completeness of $P_\infty(\mu, X)$. Assuming Axiom L we can get some results without the assumption of the WRNP. We are going to begin with the following two simple facts.

LEMMA 2. If $f \in P(\mu, X^*)$ then for each $x^{**} \in B(X^{**})$ there exists $x_0^{**} \in \tilde{B}$ such that $x^{**}f = x_0^{**}f$ μ -a.e.

Proof. Take x^{**} with $\|x^{**}\| = 1$ and let $\langle x_\alpha \rangle_{\alpha \in A}$ be a net of functionals from the unit ball of X weak*-converging to x^{**} . Since $f \in P(\mu, X^*)$ the operator $T : X^{**} \rightarrow L_1(\mu)$ given by $T(x^{**}) = x^{**}f$ is weak*-weakly continuous (cf [3]) and so $x_\alpha f \rightarrow x^{**}f$ weakly in $L_1(\mu)$. By a theorem of Mazur, one can find $y_n \in \text{conv}\{x_\alpha : \alpha \in A\}$ such that $\lim y_n f = x^{**}f$ μ -a.e.. Now, if x_0^{**} is an arbitrary weak*-cluster point of $\{y_n : n \in \mathbb{N}\}$, then it satisfies the required equality. ■

LEMMA 3. If $f \in P_\infty(\mu, X^*)$, then

$$\sup_{\|x^{**}\| \leq 1} \|x^{**}f\|_\infty = \sup_{\|x\| \leq 1} \|xf\|_\infty.$$

Proof. Let $a := \sup_{\|x\| \leq 1} \|xf\|_\infty$ and $b := \sup_{\|x^{**}\| \leq 1} \|x^{**}f\|_\infty$. According to Lemma 2 for each $x^{**} \in B(X^{**})$ there exists $\tilde{x} \in \tilde{B}$ satisfying the equality $x^{**}f = \tilde{x}f$ μ -a.e.. Consequently,

$$b = \sup\{\|\tilde{x}f\|_\infty : \tilde{x} \in \tilde{B}\}.$$

Given $\tilde{x} \in \tilde{B}$ with $\|\tilde{x}\| = 1$, let $\langle x_\alpha \rangle_{\alpha \in A}$ be a countable net from the unit ball of X that is weak*-convergent to \tilde{x} . By the assumption $|x_\alpha f| \leq a$ μ -a.e. for each α . Since the net consists of countably many different elements, we have also $|\tilde{x}f| \leq a$ μ -a.e. Thus $\|\tilde{x}f\|_\infty \leq a$ for each \tilde{x} and so $b \leq a$. This completes the proof. ■

THEOREM 4. (Axiom L) If μ is perfect then $P_\infty(\mu, X^*)$ is complete.

Proof. Let $(f_n)_{n=1}^\infty$ be a Cauchy sequence in $P_\infty(\mu, X^*)$. Applying Lemma 3 we see that for each $m, n \in \mathbb{N}$

$$\sup_{\|x^{**}\| \leq 1} \|x^{**}f_n - x^{**}f_m\|_\infty = \sup_{\|x\| \leq 1} \|xf_n - xf_m\|_\infty.$$

Now,

$$\begin{aligned} (1) \quad \sup_{\|x\| \leq 1} \|xf_n - xf_m\|_\infty &= \sup_{\|x\| \leq 1} \|x\rho_0(f_n) - x\rho_0(f_m)\|_\infty \\ &= \sup_{\|x\| \leq 1} \sup_\omega |x\rho_0(f_n)(\omega) - x\rho_0(f_m)(\omega)| \\ &= \sup_\omega \|\rho_0(f_n)(\omega) - \rho_0(f_m)(\omega)\|. \end{aligned}$$

Consequently, the sequence $(\rho_0(f_n))$ is uniformly convergent to a function $h : \Omega \rightarrow X^*$ such that $h = \rho_0(h)$. Since for each $x^{**} \in \tilde{B}$ the functions $\rho_0(f_n)$ are measurable, according to [7], Theorem 6-2-1 (where the Axiom L is used), the functions $\rho_0(f_n)$ are in $P_\infty(\mu, X^*)$ and so h is weakly measurable. Then, it is a consequence of the Lebesgue Convergence Theorem (see [3]) that $h \in P_\infty(\mu, X^*)$.

Thus, using (1), with h rather than f_m , we get

$$\begin{aligned}\lim_n \|f_n - h\|_{P_\infty} &= \lim_n \sup_{\|x\| \leq 1} \|xf_n - xh\|_\infty \\ &= \lim_n \sup_\omega \|\rho_0(f_n)(\omega) - \rho_0(h)(\omega)\| = 0.\end{aligned}$$

This proves the completeness of $P_\infty(\mu, X^*)$. ■

Notice that according to a result of Stegall [1], if μ is perfect then $P_\infty(\mu, X^*) = P_\infty^c(\mu, X^*)$.

The above proof makes it obvious that in fact the following more general result holds true:

THEOREM 5. *Let μ and X be arbitrary. If for each countable family $\mathcal{F} \subset P_\infty(\mu, X^*)$ there exists a lifting ρ such that $\rho_0(f)$ is μ -Pettis-integrable for each $f \in \mathcal{F}$, then $P_\infty(\mu, X^*)$ and $P_\infty^c(\mu, X^*)$ are complete.*

The question of whether a lifting of $f \in P_\infty(\mu, X^*)$ is Pettis integrable was implicitly posed in [7]. Rybakov [6] undertook an attempt to solve the problem, but his approach turned out to be wrong (see Math. Reviews 98h #20007).

COROLLARY 6. *If X is separable, then for each μ the spaces $P_\infty^c(\mu, X^*)$ and $P_\infty(\mu, X^*)$ are complete.*

2. Completeness of $LLN_\infty(\mu, X)$

It has been proven in [4] that if X is infinite dimensional and μ is not purely atomic, then $LLN(\mu, X)$ is non-complete. In the case of $LLN_\infty(\mu, X^*)$ the completeness problem is solved affirmatively.

THEOREM 7. *The space $LLN_\infty(\mu, X^*)$ is complete.*

P r o o f. Let ρ be a consistent lifting on $L_\infty(\mu)$ and let $(f_n)_{n=1}^\infty$ be a Cauchy sequence in $LLN_\infty(\mu, X^*)$. As in the proof of Theorem 4 we get the equality

$$\sup_{\|x^{**}\| \leq 1} \|x^{**}f_n - x^{**}f_m\|_\infty = \sup_\omega \|\rho_0(f_n)(\omega) - \rho_0(f_m)(\omega)\|.$$

It follows that the sequence $\langle \rho_0(f_n) \rangle$ is uniformly Cauchy in the norm topology of X^* . Let $h : \Omega \rightarrow X^*$ be the pointwise limit of the sequence $\langle \rho_0(f_n) \rangle$. The uniform convergence yields the equality $h = \rho_0(h)$. Moreover, since each f_n is properly measurable and ρ is consistent, the function $\rho_0(f_n)$ is also properly measurable. Clearly it is also pointwise bounded by the function $\|\rho_0(f_n)\| \in L_\infty(\mu)$. Consequently, it follows from [8], Theorem 26, that $\rho_0(f_n) \in LLN_\infty(\mu, X^*)$. The uniform convergence of the sequence $\langle \rho_0(f_n) \rangle$ yields $h \in LLN(\mu, X^*)$ and the convergence of $\langle \rho_0(f_n) \rangle$ to h in $LLN_\infty(\mu, X^*)$.

This proves the completeness of $LLN_\infty(\mu, X^*)$. ■

Considering each X - valued function as an X^{**} - valued function we get the following result in case of an arbitrary Banach space X :

THEOREM 8. *The completion of the space $LLN_{\infty}(\mu, X)$ is a subspace of $LLN_{\infty}(\mu, X^{**})$. If Axiom L is satisfied and μ is perfect then the completion of $P_{\infty}(\mu, X)$ is a subspace of $P_{\infty}(\mu, X^{**})$.*

References

- [1] D. H. Fremlin and M. Talagrand, *A decomposition theorem for additive set functions, with applications to Pettis integrals and ergodic means*, Math. Z. 168 (1979), 117–142.
- [2] A. Ionescu-Tulcea and C. Ionescu-Tulcea, *Topics in the Theory of Lifting*, *Ergebnisse Math. Grenzgebiete*, Band 48, Springer, 1969.
- [3] K. Musiał, *Topics in the theory of Pettis integration*, Rendiconti Ist. di Matematica dell’Università di Trieste 23 (1991), 177–262.
- [4] K. Musiał, *The completeness problem in spaces of Pettis integrable functions*, Quaestiones Math., accepted.
- [5] B. J. Pettis, *On integration in vector spaces*, TAMS 44 (1938), 277–304.
- [6] V. I. Rybakov, *On Pettis integrability of Stone transformation*, Mat. Zametki 60 (1996), 238–253 (in Russian).
- [7] M. Talagrand, *Pettis integral and measure theory*, Memoirs AMS 307 (1984).
- [8] M. Talagrand, *The Glivenko–Cantelli problem*, Ann. Probab. 15 (1987), 837–870.
- [9] G. E. F. Thomas, *Totally Summable Functions with Values in Locally Convex Spaces, Measure Theory* (Oberwolfach 1975), Lecture Notes in Math. 541 (1976), 117–131.

MATHEMATICAL INSTITUTE
WROCŁAW UNIVERSITY
Pl. Grunwaldzki 2/4
50-384 WROCŁAW, POLAND
E-mail: musial@math.uni.wroc.pl

Received September 29, 2000.