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Abstract. We consider quadratic forms that appear in the least squares estimator 
for the unknown parameter in the AR(1) model with stable innovations. In three cases we 
obtain different limit distributions. 

1. Introduction 
Consider the following AR(1) model 

Xo = 0 a.s. 

and 
Xk - lXk-i + efc, A; = 1 , 2 , . . . , 

where £1,62, • • • are independent identically distributed (i.i.d.) with a stable 
distribution function (F(-;a,fi)) and satisfy the stability property 

(1.1) + + 

for k = 1,2, — = stands for: has the same distribution as. This implies that 
we restrict ourselves to strictly stable random variables. Thus, for a = 1 we 
restrict ourselves to the case ft = 0 (Cauchy distribution). 

The least squares estimator 7 n for 7 is given by 

k=l k=1 
and satisfies 

(1-2) 7n - 7 = ( E ^ - i ) " 1 -
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In this paper we consider only the two quadratic forms that appear on the 
right hand side (r.h.s.) of (1.2). We restrict ourselves to random variables 
with a strictly stable distribution and do not consider random variables in 
the domain of attraction. We do not make the assumption that e\ is sym-
metrically distributed. We also consider Only for a = 1 we assume 
symmetry. In papers on quadratic forms or double stochastic integrals one 
often makes this assumption. See Kwapien and Woyczynski (1992) and Hu 
and Woyczynski (1995). 

We make use of the notation as used in Mijnheer (1998a). The random 
variables also satisfy the following stability property. For s, t > 0 we have 

(1.3) s^ei + tie2 = (s + 

From the theory of time series with innovations with a finite variance we 
know that we have to distinguish the cases |-y| < 1, I7I = 1 and [-y| > 1. In 
the (non-normal) stable case we also have to distinguish 7 > 0 and 7 < 0. 
See Mijnheer (1998a). 

Let e'n = (e i , . . . , en) and Tn a symmetric n x n-matrix. We write the 
quadratic forms as e'nTnen. 

2. The case 0 < 7 < 1 
We first consider the case where r n = (ji,j) is given by 

(2.1) 
v ' | y - 1 - 1 f o r 1 <1 < j <n. 

Then we have 
(2.2) r 2 „ = ( ^ £ ) 

where An = (dij) is given by 

<Hj = 7 n + J - i - 1 for 1 < i < j < n. 
An is not symmetric. 

Define e^ = ( e n + i , . . . , t^n)- Then we have 

(2.3) + 

and 
(2.4) e'n Anen = ( c n + 1 + • • • + <yn-1e2n)(ln~1ei + ••• + €„) 

4 ( 1 - 7 ^ ) 1 ( 1 - 7 a ) - i e i e 2 

by using stability property (1.3). In Mijnheer (1998b) we have derived the 
tail behavior of eie2-
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PROPOSITION 2 . 1 . 

P(ei€2 > x) = cix~a(l + o(l))\ogx for x —• oo. 

Making use of this proposition we have 

(2.5) e'nAnen • (logn)_° 0 for n —> oo. 

means: convergence in probability. Let YI,Y2, . . . be independent copies 
with the limit distribution of ( ra logn)"e^r n e n for n —• oo. From (2.3) and 
(2.5) we obtain 

Y1 + Y2 = 2^Yl. 

We may also consider e3nr3„e3n. Similarly we obtain 

Y\ + Y2 + Y3 = 3 ± Y i . 

Now one may use criterion 3 on p. 14 of Zolotarev (1986). But one has to 
prove that Yi is non-degenerated or, in other words, that (n log n) ° is the 
proper choice for the norming constants. In Mijnheer (1998b) we proved 

PROPOSITION 2 .2 . 

(nlogn)~° e'nTnen stable law 

for 71 —> 0 0 . 

n 
Next we consider the quadratic form £ -^fc-i- From the model, 

it=i 
as described in section 1, we obtain 

(2.6) Xl + (1 - 7
2 ) £ = E + E 

k=1 fc=l fe=l 
The random variables ef,«^,... are i.i.d. and in the domain of normal at-
traction of the stable law F ( - ; f , l ) . The norming constants are 
n = 1,2,..., for some constant C2- From the foregoing results in this section 

2 n 

we derive that n " Xk-\tk —• 0 for n —> 00. We also have, using the 
fc=i 

stability property (1.3), Xn = (1 - yna)±(1 - 7 a ) _ - e i . Since 0 < 7 < 1, 
we have 0 for n —> 00. In theorem 2.3 in Mijnheer (1998b) we 
proved the following proposition. 

PROPOSITION 2 .3 . For n —• 00 
n n 

(ci(nlogn) -» (Si>So) 
k=1 k=l 
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where So and S i , are independent with stable distributions 1) and 

The parameter ¡3 is given in Proposition 2.1. in that paper. If we write 
p = pa - q a with pa + qa = 1. Then P = ( p 2 a + q 2 a - 2«pq. 

3. The case 7 = 1 
In this section we first consider the matrix Tn = ( l i , j ) where 7¿j = 1 — 6 i j 

and Sij is Kronecker's delta function. The matrix has the property as given 
in (2.2) with An = ( a i j ) and ciij = 1, 1 < i, j < n. Again relation (2.3) is 
true. But now we have 

(3.1) e'nAnen = (ex + b en)(en +i + 1- e2n) 
d 2. = n°e ie2. 

Let {S( t ) : 0 < t < 1} be a stable process such that 5(1) = €1. One easily 
proves, for n —• 00, 

1 
( 3 . 2 ) n~ie'nTnen 2 J S(t-)dS(t). 

0 
The tail behavior of the double stable integral on the r.h.s. of (3.2) is, in 
the case 0 < a < 1 and /? = 1, given in Mijnheer (1991). For the general 
case, see remark 2 in Mijnheer (1997). More information about the norming 
constant n« in the left hand side (l.h.s.) of (3.2) will be given in appendix 1. 

Consider relation (2.3). Making use of (3.1) and (3.2), let YI,Y2, . • • stand 
for independent copies of the r.v. on the r.h.s. of (3.2), dividing (2.3) by n« 
gives, for n —• 00, 

2*Yi = Y 1 + Y 2 + 2e1e2. 

Remark that 2ei62 = e'^2e2. Next we consider e'3nr3ne3n. Similarly we 
obtain 

3°Yi = Yi + Y2 + Y3 + e'3T3e3. 

The random variable Yi belongs to the domain of (non-normal) attraction 
of a stable law with characteristic exponent a. 

n 
Now we consider J2 Then 

k=l 

n-1" - £ n = n - ^ i ± ( e i + ••• + ek)2 4 n"1 ± S2 

k=1 fe=i fc=i ^ ' 

1 
J S2(t)dt f o r n - » 0 0 . 

0 
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n 
In matrix notation ~ e n ^ n e n where Tn = {lij) with 7i,j — n — j + 1 

k=1 
for 1 < i < j < n. We write r n = Bn + C„, where Bn = (&ij) with 

b _ f 0 for i = j 
1,3 \ n - j + 1 for 1 < i < j < n. 

Thus Bn is equal to Tn except there are zeros on the diagonal. Then e'nCnen 
n 

= (n - fc + l)e | . The random variables ef, • • • are i.i.d. and in the 
k=l 

domain of normal attraction of the law F(-\ f , 1). It is easy to prove that, 
2 7 1 

for some constant c, c n - 1 - « — k + converges in distribution to a 
k=l 

r.v. So with distribution function F(-; f , 1). Using the tail expansion of 
one obtains the behavior of the characteristic function of ef near the origin. 
Then we obtain that So is non-degenerated. Next we continue as in section 
2 and make use of criterion 3 mentioned in Zolotarev (1986 p. 14) in order 
to conclude that So has a stable distribution. 
REMARK . In the case a = 2, i.e. the innovations have a standard normal 
distribution, one easily shows n 2e'nCnen —> ^ for n —• oo. 

Next we consider e'nBnen. First we assume that 0 < a < 1 and ¡3 = 1, 
i.e. the random variable ei is positive. Then we have 

n n 2 n 2 n 

tie0 < e2nB2ne2n < 2n ^ tifLj. 
t=l j=l ¿=1 j=1 

¿ / j ijtj 

Divide by (2n)1 +- and let n —y oo. We obtain the following result. 

PROPOSITION 3 .1 . In the case 0 < a < 1 and (5 = 1 
I 

\ S2(t)dt = cS0 + B 
o 

where So has distribution function F(-\ f , 1) and the random variable B is 
non-degenerated. The tail of So dominates the tail of B. 

In the general case we may use Remark 2 from Mijnheer (1997), in order 
to obtain the assertion as above. 

4. The case 7 > 1 
n 

As in the previous sections we first consider Xk-i^k = | e ^ r n e n , 
fc=i 

where Tn is given by (2.1). Making use of (2.3) and e'nAnen = 
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(7"° — l ) i ( j a — l ) _ ae 1 e 2 we obtain, after dividing by j 2 n and taking the 
limit for n —• 00, that for Y = limn_»oo J~2ne'_2rir2ne2n that, for some 
c > 0, 

(4.1) Y = 2ceie2. 

This is the analogue of Theorem 2.2 in Anderson (1959). Thus e'nAnen 

dominates in (2.3). 
Next we rewrite (2.6) 

( 4 . 2 ) - 2 7 £ X k - i e k = ( 7
2 - 1 ) E X l _ x + £ 4 

fc=l k=1 fc=l 

From the model it follows that Xn = (7"° - 1)^(7° - l ) " - e i . The ran-
dom variables ef, e2,... belong to the domain of attraction of the stable law 

n 
.F(-;§,1)- Therefore j~2n £ —i• 0 a.s. for n —> 00. We also have, for 

n 
n —• 00, 7 - 2 n —• 0. Thus we have proved that, for n —* 00, 

fc=i 

(4.3) 7 ~ 2 n { x l - ( 7
2 - l ) E * L i } 0. 

k=1 
In the finite variance case this result is proved in Theorem 2.1 in Anderson 
(1959). He also asserts a.s. convergence in (4.3) when the innovations have 
a finite variance. 

Now we can formulate and prove a similar assertion as in the case 7 = 1. 
n 

T H E O R E M 4 . 1 . The limit distribution of ^~2n ^ forn —• 0 0 , is given 
fc=1 

by cSo + B, where So has distribution function F(-; 1) and the tail of B 
is dominated by the tail of So • 
P r o o f . In view of (4.3) we may also consider f~2nX2. We have 

(4.4) j~2nX2 = ± r 2 k 4 + 
fc=1 ¿=1 j=1 

n d As described in section 3 we show that ^ l~2ke\ —> cSq for n —• 00. In 
fc=1 

appendix 2 we shall prove that the second sum on the r.h.s. of (4.4) converges 
in distribution to a r.v. B and P( |B | > x) < x~a logx for x —> 00. • 

5. Appendix 1. On the norming constants 
Let ei have a stable distribution function F(-;a, 1) with 0 < a < 1. Let 

r n = (•7tj) with 7i tj = 1 — 6{j as in section 3. In Mijnheer (1995) we proved 
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that 

i)) constant # 0 
for n —> oo, where e(i) < • • • < e(n_i) < e(n) are the ordered random vari-
ables e i , . . . , en . Thus we see a dominant influence of e(n)C(n_i) in e'nTnen. 
If we apply arguments - well-known in the theory of order statistics and 
[/-statistics we may write 

^ n—2 ^ n — 2 n - 2 

C5-1) 2 e " r n C n = e(n)e(n~l) + (e(n) + €(n_i)) ^ Yi + - ^ Y ^ ' 
j=l ¿=1 j = l 

ijij 

where Y i , . . . , Y„_2 are the unordered random variables e ^ ) , . . . , e(n_2)- If we 
condition on € ( n - i ) o n e easily shows that the last two sums on the r.h.s. of 
(5.1) are small w.r.t. e(n)e(n-i)- I n order to see that n« is the right norming 
constant, we consider a r.v. in the domain of attraction of F ( - ; a , 1). Let 
U\, U2, • • •, Un be i.i.d. with a uniform distribution on (0,1). Let U^ < 
• • • < i7(n) be the order statistics. 

PROPOSITION 5 . 1 . For x fixed and large 

— X _i . 2 

lim 2 )° >n°x) = cx " l o g o ; . 

_ x 
P r o o f . One easily checks that U1 a belongs to the domain of normal at-
traction of F(- ; a , 1). Let y = n~2x~a. Then ( 5 . 2 ) P(U-fu~f > n%x) = P(U{1)U{2) < y) 

1 
y? u y 

= $ J n(n — 1)(1 — v)n~2 dv du + error. 
y u 

The error is 0 ( n - 1 ) for n —> 00 and x fixed. The assertion follows by com-
puting the double integral in the r.h.s. of (5.2). • 

6. Appendix 2. Tail behavior of B 
In this appendix we shall complete the proof of Theorem 4.1. 
First we consider (4.4) in the case a = 2 (i.e. ei has a standard normal 

00 
distribution). Martingale theory gives the existence of Y = 7~2 f c(e| — 1). 

k=1 n n 
Define the sequence Zn by Zn = ^ Yl Then we have 

i = i j = i 
j/i 
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n 
Zn+1 -Zn = 2(j-n-1en+1 

i=1 
4 2 7 - n - 1 ( l - 7 " n a ) " ( 7 a - 1 )--«ien+x. 

For a = 2 
oo oo 

£ E(Z n + 1 - Z„)2 = 4 £ 7 - 2 " - 2 ( l - 7 - 2 " ) ( 7 2 - I ) - 1 < oo. 
n = l n=1 

Martingale theory gives us that, for re —» oo, —> Z a.s. and in £ 2 . See, 
for example, Williams (1990) Theorem 12.1. Thus for a = 2 we have, for 
n —> oo, 

7 - 2 n X 2 _ l + ( 7 2 _ 1 ) - l + y + z > 

where Y and Z are as above; random variables with zero expectations and 
finite variances. We can prove the same assertion if we assume e i ,e2 , . . . 
i.i.d., Eei = 0 and cr2(ei) < oo. See Varberg (1968). 

n n 
The case a ^ 2. Again we define Zn = Y1 Then we have 

1=1.7 = 1 

n n n n 
Z2n = Zn + 2 7 - " J2 + 7~ 2 n £ E 7 " V ^ n + i e n + J , 

¿=1j=i ¿=1j=i 
iyij 

71 n d 
For each n we have ^ 7 - l 7 - J e n + i e j = cneie2 where cn converges to 

i=i j=i 
ran 

some constant c for n —> 00. The sum ^ ^ 7 _ i 7 h a s the same 
¿=1j=i 

distribution as Zn and is independent of Zn. 
We follow the proof of the inequality in Theorem 1 in Mijnheer (1995). 

Define An = max 7 _ l | e , | and An~1 the second largest 
1 <i<n 

P{\Zn\ > x) = P(\Zn\ > x A Zn < 

+ P{\Zn\ > i A x 5 <An< x ( logx) - « A AnAn-\ < x) 

+ P(\Zn\ >xAx% < An < x(loga;)_° A AnAn_i > x) 

+ P(\Zn\ > x A An > x(log®)"-) 

= Pl + P2 + P3 + P4. 
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Now we have 

P4 < P( max 7 ^€¿1 > x(logx) « ) 
l<i<n 

n 
< > 7 i ® ( l o g x ) ~ - ) 

i=1 

^̂  clogZ 

i=1 7 

P 3 < P(AnAn_i >x) = P( max 7 - < 7 ~ J > i l M > 1 <t,]<n 
n n 

¿=i j= i 
i^j 

< f v c(z + j ) l o g 7 + cloga: < ci log x 
— Z_/ -y(«+i)axtt — xa 

t=l j = l 

for all n. 
Next we consider Pi. Define 

jp. = / M for |6i| < 
1 0 otherwise. 

Then for large x and 0 < a < 1 

(6.1) EWi ~ c i f ^ - ^ i T 2 

and 
(6.2) EW? ~ c 2 7 i ( 2 _ a ) x ^ . 

Next we define Wi = ¡¿i + <7*Vi, where Vj, z = l , . . . , n , are i.i.d. with 
EVi = 0 and <72(Vj) = 1. The asymptotics for /m and of are given in (6.1) 
and (6.2). We have 

¿=1 j=i 
i^ij 

¿=1j=i ¿=1 j=i ¿=i j=i 
»/j Mj 
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Then 
n n 

Also 

t=lj=l i=1j=1 

~ c x 1 - a for large x and n. 

71 71 71 Tl 
ict joe 2—a. . 

i= l j= l i= l j= l 

¿=1 ¿=i 
i^j 

n n 
We noticed in the beginning of this section that Y1 7 c o n -

¿=ij=i 
i^tj 

verges a.s., for n —• oo, to a random variable Z with EZ = 0 and cr2{Z) < oo. 
Chebyshev's inequality gives us 

Picx^^Z > x ) < c 3 5 = c 4 x ' a . 
xz 

Finally we have, for large n and x, 

¿=1 j=i ¿=1 j=l 

where 
Tl Tl 

• r̂—"V • 1 —o: 1 — o: 

¿=i ¿=i 
and 

n n n 

j=l j=l j=l 
Tl 

The r.v. ^ converges a.s. for n —> oo to a r.v. with a normal 
i=i 

distribution. Again we apply Chebyshev's inequality. 
For 1 < a < 2 we define 

Wt = {  e i  

10 otherwise 
for |e»| < 7®cc2 
oth 

and proceed in the same way as above. 
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For a = 1 we have = 0. 
Finally we consider 

P2 = P(\Zn\ > x A < An < x ( l o g z ) ~ i A AnAn-1 < x) 
n 

< J 2 P ( \ Z n \ > X A X ^ < 7 _ i k i l < x ( l o g x ) - £ A A n A n _ i < x ) . 
i=l 

We now write 
= z « + z<?> 

where the summands in Zn^ do not contain An and Z{n] = AnDn. Here 

D n = t j - i e j . Then 
¿=i 

P{\Z^\ > x / 2 A x * < 7 - i | e i | < x(logx)-^ A AnAn-! < x) 
<P(\eie2\ >cx) 

by using the stability property (1.3) 
< c( logx)x - a 

from the tail expansion of €162 as given in proposition (2.1). Consider 

(6.3) P{\Z^\> x/2 A x^ < 7 - < | £ i | < x( logx)- - A AnAn_i < x). 
Given An = 7 _ l | e j | = y it follows that, for all j i, -y—J |e^| < xy~i. Then 
we define 

W- = /M for \ej\ < jjxy-1 

3 \ 0 otherwise 
and we proceed as we have estimated Pi. Now we have for large n and x, 
0 < a < 1, 

EWj ~ ci7-7 ' ( 1 _ Q )x1 _ 0 iy- ( 1 _ a ) 

and 
E W r ? ~ c 2 y ' ( 2 - a ) x 2 - a i / - ( 2 - a ) . 

Applying Chebyshev's inequality and integrating over y we obtain that the 
probability in (6.3) is 0(x~a) for large x. 

In the case 1 < a < 2 we proceed as mentioned before. • 
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