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Abstract. We consider quadratic forms that appear in the least squares estimator
for the unknown parameter in the AR(1) model with stable innovations. In three cases we
obtain different limit distributions.

1. Introduction
Consider the following AR(1) model

Xo=0 a.s.
and
Xp =y X1 + €, k=12,...,

where €1, €2, ... are independent identically distributed (i.i.d.) with a stable
distribution function (F'(-; e, 8)) and satisfy the stability property

(1.1) e+ tex=kae

fork=1,2,.... 2 stands for: has the same distribution as. This implies that
we restrict ourselves to strictly stable random variables. Thus, for a = 1 we
restrict ourselves to the case 3 = 0 (Cauchy distribution).

The least squares estimator 4, for + is given by

= (3 Xeaxe) (LX)
k=1 k=1
and satisfies

(1.2) A~y = (ixk_lek)(ixf_l)—l.
k=1 k=1
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In this paper we consider only the two quadratic forms that appear on the
right hand side (r.h.s.) of (1.2). We restrict ourselves to random variables
with a strictly stable distribution and do not consider random variables in
the domain of attraction. We do not make the assumption that ¢; is sym-
metrically distributed. We also consider § # 0. Only for a = 1 we assume
symmetry. In papers on quadratic forms or double stochastic integrals one
often makes this assumption. See Kwapien and Woyczynski (1992) and Hu
and Woyczynski (1995).

We make use of the notation as used in Mijnheer (1998a). The random
variables also satisfy the following stability property. For s, > 0 we have

(13) 8%61 +t%€2 g(s—kt)%el.

From the theory of time series with innovations with a finite variance we
know that we have to distinguish the cases |y| < 1, |y =1 and || > 1. In
the (non-normal) stable case we also have to distinguish v > 0 and y < 0.
See Mijnheer (1998a).

Let e, = (€1,...,€,) and T, a symmetric n X n-matrix. We write the
quadratic forms as €/, T'ne,.

2. Thecase 0 <y<1
We first consider the case where I';, = (7, ;) is given by

Yi,; =0 fori=j
(2.1) {’y"‘"l forl1<i<j<n.

Then we have

'n A,
(2.2) I‘Zn = (AE Fn)

where A, = (a; ;) is given by
Qi 5 = ’)’n+j—i—1 for 1<i<j<n.

A, is not symmetric.

Define €], = (€n+1,---,€2n). Then we have
(2.3) en,Toneon = €l Tne, + €. Tne, + 26l Aney
and
(2.4) €hAn€n = (nt1+ -+ 7" Ten) (V" a1+ + €n)

d nay 2 ay—2

S (=" (1-7%) " ae
by using stability property (1.3). In Mijnheer (1998b) we have derived the
tail behavior of ¢;¢5.
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ProprosITION 2.1.
P(erex > z) = 1z~ *(1+o(1))logz  for = — 0.
Making use of this proposition we have
(2.5) e A€, -n s (logn)"s 250  for n — oo.

-2, means: convergence in probability. Let Y7, Y5, ... be independent copies
with the limit distribution of (nlogn)~%e,Tne, for n — co. From (2.3) and
(2.5) we obtain

Y +Y, 2 2%y
We may also consider e}, I'3,€3,. Similarly we obtain
Y1+ Y +Ys £3311.

Now one may use criterion 3 on p. 14 of Zolotarev (1986). But one has to
prove that Y7 is non-degenerated or, in other words, that (nlog n)&l' is the
proper choice for the norming constants. In Mijnheer (1998b) we proved

PROPOSITION 2.2.
(nlog n)'%eill‘nen 4, stable law

for n — oo.

n
Next we consider the quadratic form Y X7?_,. From the AR(1) model,
k=1

as described in section 1, we obtain

n n n
(26) X3+ (=) XP1=2v) Xerex+ ) 6.
k=1 k=1 k=1
The random variables €2,€2,... are ii.d. and in the domain of normal at-
traction of the stable law F(-; §,1). The norming constants are c; Ink,
n=1,2,..., for some constant c;. From the foregoing results in this section
n
we derive that n=3 3 Xp—1€k 2,0 for n — 0o. We also have, using the
k=1

stability property (1.3), X, L (1 —4™®)a(1 — v*)~%¢;. Since 0 < v < 1,
we have n=% X2 £, 0 for n — oo. In theorem 2.3 in Mijnheer (1998b) we
proved the following proposition.

PRroPOSITION 2.3. For n — oo

(c1 nlogn)~ ZXk 1€k, Con” 5 Xn:e ) (81, S0)

k=1
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where So and S1, are independent with stable distributions F(-;5,1) and
F('; a, Ig)

The parameter E is given in Proposition 2.1. in that paper. If we write
B = p* — ¢* with p* + ¢* = 1. Then 8 = (p2* + ¢2*)= — 2apq.

3. The case y =1

In this section we first consider the matrix I'y, = (7; ;) where y; ; = 1-6; ;
and ¢; ; is Kronecker’s delta function. The matrix has the property as given
in (2.2) with A, = (a;;) and a;; =1, 1 < 4,5 < n. Again relation (2.3) is
true. But now we have

(31) e;Angn = (61 +"'+€n)(€n+1+"'+62n)
g n% €1€9.
Let {S(t) : 0 < t < 1} be a stable process such that S(1) 2 ¢,. One easily
proves, for n — oo,
1
(3.2) n~ %€, Tnen — 2| S(t-)dS(t).
0
The tail behavior of the double stable integral on the r.h.s. of (3.2) is, in
the case 0 < & < 1 and 8 = 1, given in Mijnheer (1991). For the general
case, see remark 2 in Mijnheer (1997). More information about the norming
constant na in the left hand side (1.h.s.) of (3.2) will be given in appendix 1.
Consider relation (2.3). Making use of (3.1) and (3.2), let Y7, Y5, ... stand
for independent copies of the r.v. on the r.h.s. of (3.2), dividing (2.3) by né
gives, for n — oo,
2%Y1 g Yl + },2 + 26162.
Remark that 2e1e; = e5I'2es. Next we consider e5,I'spesn. Similarly we
obtain
VLY +YVa+ Va4 esl'zes.
The random variable Y; belongs to the domain of (non-normal) attraction

of a stable law with characteristic exponent .
n

Now we consider Y, X2. Then
k=1

n n n
n—l—% ZXI% = n“l—% z(el 4+ 4 6k)2 —_d: n—l 252 (I_c.)
k=1 k=1 k=1 n
1
N S.S'z(t)dt for n— oo.
0 .
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n
In matrix notation Y X2 = e}, I'nen, where T, = (7;;) with v ; =n—j+1
k=1
for 1 <1< j <n. We write I',, = B, + C,, where B,, = (b; ;) with

b« = 0 fori=7j
W ln—j3+1 for1<i<j<n.

Thus B, is equal to I';, except there are zeros on the diagonal. Then e}, Cre,
n

= kZ (n — k + 1)e2. The random variables €?,€3,... are i.i.d. and in the
=1
domain of normal attraction of the law F(-;§,1). It is easy to prove that,

k(3
for some constant ¢, cn~1"% Y~ (n—k + 1)€2 converges in distribution to a
k=1
r.v. Sp with distribution function F(:; £,1). Using the tail expansion of ¢;
one obtains the behavior of the characteristic function of €2 near the origin.
Then we obtain that Sp is non-degenerated. Next we continue as in section
2 and make use of criterion 3 mentioned in Zolotarev (1986 p. 14) in order

to conclude that Sy has a stable distribution.

REMARK. In the case o = 2, i.e. the innovations have a standard normal

. . . . — ) o
distribution, one easily shows n~2e/ Cpe, — % for n — oc.

k3

Next we consider e}, Bye,. First we assume that 0 < a < 1land =1,
i.e. the random variable ¢; is positive. Then we have

n n 2n 2n
n E E €i€5 < ananegn < 2n E E €5€;.
i=1 j=1 i=1 j=1
i#] i#j

Divide by (2n)1+% and let n — oo. We obtain the following result.

PROPOSITION 3.1. In the case 0 < a <l and =1

1

[ S2(t)dt = cSo + B

0
where Sp has distribution function F(; §,1) and the random variable B is
non-degenerated. The tail of Sy dominates the tail of B.

In the general case we may use Remark 2 from Mijnheer (1997), in order
to obtain the assertion as above.

4. The case v > 1

n
As in the previous sections we first consider > Xi_jex = %e;I‘nen,
k=1

where T', is given by (2.1). Making use of (2.3) and el A,€, 4



332 J. Mijnheer

(v - 1)§(7“ — 1)~ % €16, we obtain, after dividing by 42" and taking the

limit for n — oo, that for Y = lim,_o 7 *"€’_, T'neon that, for some
2n

c>0,

(4.1) vy< 2cer €.

This is the analogue of Theorem 2.2 in Anderson (1959). Thus e/, A,€,
dominates in (2.3).
Next we rewrite (2.6)

(4.2) X2-29) Xeae=( -1 X2+ €.
k=1 k=1 k=1
From the model it follows that X, = (y** — 1)a (y® — 1)~ ¢;. The ran-
dom variables €2, €2, ... belong to the domain of attraction of the stable law
n
F(-;%,1). Therefore y=2" kzl €2 — 0 as. for n — co. We also have, for
n— 00, 772" 3 Xp_16x — 0. Thus we have proved that, for n — oo,
k=1
(4.3) X2 (-3 xE,} Do

k=1
In the finite variance case this result is proved in Theorem 2.1 in Anderson
(1959). He also asserts a.s. convergence in (4.3) when the innovations have
a finite variance.
Now we can formulate and prove a similar assertion as in the case y = 1.

THEOREM 4.1. The limit distribution of y=2" 5 X2_,, forn — oo, is given
k=1

by cSo + B, where Sp has distribution function F(-;5,1) and the tail of B

1s dominated by the tail of Sp.

Proof. In view of (4.3) we may also consider y~2"X2. We have

n n n
(4.4) YEXE=D G+ Y v e
k=1 i=1 j=1
1]

n
As described in section 3 we show that 3 y~2keZ

k=1
appendix 2 we shall prove that the second sum on the r.h.s. of (4.4) converges
in distribution to a r.v. B and P(|B| > z) <z %logz for z — 00. =

d
— ¢Sy for n — o0o. In

5. Appendix 1. On the norming constants
Let €; have a stable distribution function F(-;a, 1) with 0 < o < 1. Let
Ty = (vi,;) with y; ; = 1—6; ; as in section 3. In Mijnheer (1995) we proved
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that
E {(e\,Tnen)(€(n)€(n~1)) '} — constant # 0

for n — oo, where €(1) < -+ < €(n—1) < €(n) are the ordered random vari-
ables e1,...,€,. Thus we see a dominant influence of €(n)€(n—1) in e, Tnen.
If we apply arguments — well-known in the theory of order statistics and
U-statistics we may write

n—2n-2
(5.1) 2enI‘nen = €(n)€(n—-1) T (e(n) + €(n-1) Z Y+ - ; JZI YiY;
i#]
where Y1, ..., Y, 5 are the unordered random variables €3y, . . . , €(n_2). If we

condition on €(,_1) one easily shows that the last two sums on the r.h.s. of

(5.1) are small w.r.t. €(,)€(n-1). In order to see that n@ is the right norming

constant, we consider a r.v. in the domain of attraction of F(-;a,1). Let

Uy, Us,...,U, be iid. with a uniform distribution on (0,1). Let Upny <
»» < U(n) be the order statistics.

PROPOSITION 5.1. For z fized and large

-1 __1
im P(U Uy > naz) =cz %logz.

n—oo

-1
Proof. One easily checks that U1 * belongs to the domain of normal at-
traction of F(-;,1). Let y = n~22~*. Then

-1 __1 2
(5.2) P(UysUyy > n=z) = P(Un)Up) <)

yZuy
= S S n{n — 1)(1 — v)" "2 dv du + error.
y u

The error is O(n™?!) for n — oo and z fixed. The assertion follows by com-
puting the double integral in the r.h.s. of (5.2). m

6. Appendix 2. Tail behavior of B
In this appendix we shall complete the proof of Theorem 4.1.
First we consider (4.4) in the case @ = 2 (i.e. €; has a standard normal

distribution). Martingale theory gives the existence of Y = kZ 2k (2 —1).

Define the sequence Z,, by Z, = E E 7~ %y~ J¢€;e;. Then we have
1=1j=1
i#]
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Zn+1 - Zn = 2(7_n_16n+1) ( 27_1:61')
i=1

flee

—_n— —nay+ -1
2% 1(1 - )clr (Y ~ 1) " ~er1€p41-

For aa =2
oo oo
Y E(Zur1i—Zaf =4) M 1-7(P - )7 < o0
n=1 n=1

Martingale theory gives us that, for n — oo, Z, — Z a.s. and in £2. See,
for example, Williams (1990) Theorem 12.1. Thus for a = 2 we have, for
n — oo,

yx2 L (1) Y + 2,

where Y and Z are as above; random variables with zero expectations and
finite variances. We can prove the same assertion if we assume €y,¢€9,...
ii.d., Ee; = 0 and 02(€;) < oo. See Varberg (1968).

The case a # 2. Again we define Z, = >_ Y v~y ¢;¢;. Then we have

i=1 j=1
i#
n n n n
Zon=Zn+27" D) A enpig 7D Y AT Y P ensienay.
i#]

n n
For each n we have Y > v "y Je,qi6; = cne1€2 where ¢, converges to

i=15=1
n n . .
some constant ¢ for n — oco. The sum Y Y ¥y "y Jepti€nt; has the same
i=17=1
i

distribution as Z,, and is independent of Z,.

We follow the proof of the inequality in Theorem 1 in Mijnheer (1995).

Define 4, = max 'y_i|ei| and A,_; the second largest
1<ikn

P(|Zn| > 2) = P(|Z| > A Zy < z%)
+P(|Zn| >z Az <A,< m(logm)‘% ANAnAn_1 <)
+P(|Zn| >z A27 < Ap < 2(logz) % A Apdn_y > )
+ P({Zn| > z A Ap > z(logz)”®)
=P, + Py+ Ps + P;.
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Now we have

P; < P(max y7"|e;| > z(log z)7%)

n ; .
<Y Pllel > v'z(logz)™=)

n n
<33 Pleilles] > v Ha)
i=1 j=1
i#]
n n . .
c(t+j)logy+clogz _ cilogz
<33 itslosr s close b
i=1 j=1
i

for all n.
Next we consider P;. Define

1
2

W = { lei] for |e;| < vz
0  otherwise.

Then for large z and 0 < a2 < 1

(6.1) EW; ~ cl’yi(l_"‘)a:I_Ta
and
(6.2) EW?2 ~ 62,71'(2—01):62‘7"'

Next we define W; = u; + o;V;, where Vi, ¢« = 1,...,n, are ii.d. with
EV; = 0 and 0%(V;) = 1. The asymptotics for u; and o? are given in (6.1)
and (6.2). We have

n n
1Z) <D0 v ey el

i=1 j=1
1#]
D D) DEREINE) 3 e TS 3 B e
i=1 j=1 i=1 j=1 i=1 j=1

i#] i#j i#j
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Then
n n
S~ 33 et
i=1 j=1 i=1 j=1
£ i#j
~cxl™? for large z and n.
Also
DR e
i=1 j=1 i=1 j=1
i#j i#j
R P eI
i=1 j=1
i
n n . -\ Qo
We noticed in the beginning of this section that 3 3 4~ (+9)3V;V; con-
i=1j=1
i#j

verges a.s., for n — 00, to a random variable Z with EZ = 0 and ¢%(Z) < oo.
Chebyshev’s inequality gives us
o 2—aE Z2
P(cz'"%Z > 1) < csz— = cqz” .
Finally we have, for large n and z,

ZZW" I uio; Vi (Zv u,)(i_‘;v"'aﬂ/j),

i=1 j=1 i=1
i
where

n n

—i —ia l—a l—a
E/"i’)’ NECW 7% ~cex?
i=1 i=1

and
n

n n
. 2—a - [23
Vi~ § -j
E UJVﬂJNE c2'y kT V~c2:t; 4 E yITV;.

j=1

n o .
The r.v. > y77ZV; converges a.s. for n — oo to a r.v. with a normal
j=1
distribution. Again we apply Chebyshev’s inequality.
For 1 < a < 2 we define

W; = {e,— for |e;| < viz
0 otherwise

1
b

and proceed in the same way as above.
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For a = 1 we have p; = 0.
Finally we consider

Py =P(|Z,| 2z A z? <A, < w(logz)_% ANApAn-1 < 1)

<Y P(1Z4) 2 2 Azt <y 7ei] < z(logz)TF A Apdny < ).
i=1
We now write
Zn =20 +2?
where the summands in Z,(f) do not contain A, and Z,(,l) = A,D,. Here
n .
Dp, =3 v 7¢j. Then
7
P(|Z,(11)l >z/2A z3 <y el < :tc(log:z;)_é NARAp_1 <1I)
< P(ler€ez2| > cx)
by using the stability property (1.3)
< c(logz)z™®
from the tail expansion of €j¢e; as given in proposition (2.1). Consider
(6.3) P(Z®| > z/2 A z? < 7 Hei| < m(logm)—é ANAL A1 <I).

Given A, = 7 tle;] = y it follows that, for all j # i, y77|¢;| < zy~!. Then
we define
1

W = { lej| for |ej| < v7zy™
0 otherwise
and we proceed as we have estimated P;. Now we have for large n and z,
O0<a<l,
ij ~ cl,yj(l—a)zl—ay-—(l—-a)
and
EWJ2 ~ c27j(2—a)z2—ay—(2—a).
Applying Chebyshev’s inequality and integrating over y we obtain that the
probability in (6.3) is O(z~%) for large z.
In the case 1 < a < 2 we proceed as mentioned before. m
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