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A N D MARKOV PROCESSES 

Dedicated to Professor K. Urbanik on his Seventies 

Abstract. We study the relationship between generalized translation operators and 
stochastic convolutions on locally compact spaces. We prove that stochastic convolution 
semigroups can generate Levy type processes which are strong Markov Feller processes 
and, as an example, we study the Bingham convolution and its dual on integers. 

1. Notations and preliminaries 
Let E denote a locally compact separable topological space and let V 

and Q denote the class of p.m.'s and sub-p.m.'s on E, respectively. The 
one-point compactification of E is denoted by E. Let oo denote the isolated 
point of E. The convergence of p.m.'s resp. sub-p.m.'s will be understood in 
the weak and vague sense, respectively. 

Let Cb denote the Banach space all bounded continuous real valued func-
tions on E and C0 := {/ G Cb : /(oo) = 0}. 

Let rx, x £ E, denote the class of bounded linear operators on Cb such 
that the following conditions are satisfied : 

(i) There exists an element eeE such that r e = / , the identity operator. 
For any x,y £ E, f £ C0, 
(ii) r x f ( y ) = ryf(x). 
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The function F(x,y) :— rxf(y) is continuous in the product space and 
vanishes whenever x or y tends to the isolated point oo. 

(iv) Positivity : If / > 0 then r x f > 0. 
(v) Sub-Markovian property: If 0 < / < 1 then 0 < rx f < 1. 

Operators { r x ] with properties (i)-(v) stand for a subclass of generalized 
translation operators (g.t.o.'s) (cf. Levitan [10]) which appear in the theory 
of DE's and PDE's . . . ) 

By virtue of (ii), (iv) and (v) it follows that the functional Txf(y) (x, y) 
are given) is positive which implies that there exists a unique sub- p.m., say 
8 x o 6 y , s.t. for every / 6 Cj,. 

Then we get a binary operation o on Q with the following properties: 

(a) (Q, o) is a commutative topological semigroup with 6e as the unit 
element.The topology in Q is understood in the vague sense. 

(b) For any fi,v, 7 and a, ¡3 > 0, a + ¡3 < 1 we get 7 o (a/z + /3v) = 
ay o /j, + (3y o v. 

(c) If E is non-compact then 600 is the only one cluster point of the set 
{<5X o 6y : x,y E E}. 

Conversely, if o is a binary operation defined on Q such that the condi-
tions (a), (b) and (c) are satisfied then the formula (1.1) defines a system 
of g.t.o.'s with the properties (i)-(v). 

Thus we have proved the following 

1.1. PROPOSITION. Generalized translation ooperators satisfy conditions 
(i)-(v) if and only if there exists a binary operation o on the set Q of sub-
p.m.'s on E such that the conditions (a), (b) and (c) are satisfied. 

The equation (1.1) determines a one to one correspondence between 
g.t.o. 's and operation o. 

In the sequel we shall confine ourselves to the case when the relation 
(1.1) defines a p.m. 6X o 6y, x,y 6 E. It is easy to prove the following : 

1.2. PROPOSITION. Suppose that g.t.o.'s { r x } satisfy conditions (i)-(v). 
Then for any € V the measure \i o v in (1.2) is a p.m. if and only 
if for every x G E. 

(iii) Txry = TyTX. 

(1.2) H oi/(.) = o 6y(.)n(dx)u(dy). 
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(vi) TXI = I, 
where I denotes the function identically equal to 1. 

In what follows we shall consider g.t.o.'s { r x } such that the conditions 
(i)-(vi) are satisfied which implies that the set V is closed under the opera-
tion o. 

Following Vol'kovich [16], we will call the operation o on V a stochastic 
convolution. It is evident that the stochastic convolution o is continuous in 
the weak topology and hence (V, o) becomes a topological semigroup. From 
now on we will call (V , o) a stochastic semigroup on E. 

1.3. EXAMPLES. Let us consider the case E = R+ — [0, oo). Then, E = 
R+ = [0, oo]. Let o denote a regular Urbanik convolution operation defined 
on p.m'.s and let fi(i), t € R+, denote the kernel for its characteristic func-
tion (cf. [14]). Since, for any t,x,y € R+, J 0,(tu)6x o 6y(du) = fl(tx)Q(ty) 
it follows that if fi 6 Co then the Urbanik convolution o satisfies our con-
ditions (a), (b) and (c). As examples of such convolutions one can take 
a-convolutions and Kingman convolutions. 

The symmetric convolution is defined by 

fix *1,1 6y = ^(fix+y + <5|x-y|)-
It is a Urbanik convolution with the kernel fl(t) — cost and does not sat-
isfy (c). 

3. Levy type processes 
Suppose that ('V, o) is a stochastic semigroup on E. The operation o can 

be extended to the set V of all p.m.'s on E. Namely, every p.m. on E is of 
the form 

(2.1) a / j ,+ (1 - a)6oo 
where 0 < a < 1_and /z € P . Let 0u + (1 - 0)6^ (0 < (3 < 1, v e V) be 
another p.m. on E. Define 

(2.2) [a/z + (1 - a)««,] o [f3 + (1 - = a/3^ou + { l - aP)600. 

Then, by virtue of (ii), (2.1) and (2.2), the pair (V, o) becomes a new 
stochastic semigroup with the unit element 8e. 

Let {fit} CP be a, continuous semigroup w.r.t. the operation o (shortly, 
o - semigroup) i.e. for any t, s > 0, 

(2-3) fxto fi3 = f i t + s , 
(2.4) lim nt = 6e. 

It is evident that every p.m. ¡it is i.d. in the following sense 

Mt = Mt/n ° • • • 0 Vt/n (n-times) = 
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Let B denote the Borel u-algebra of subsets of E, respectively. Given 
x G E, t > 0, B G B we put 

(2.5) P(t, x, B) = (fit 0 8X)(B). 

It is easy to prove the following 

2 . 1 . PROPOSITION. The function P(.,.,.) defined by ( 2 . 5 ) satisfies the Chap-
man-Kolmogorov equation i.e. 

(2.6) j P{t, x, dy)P(s, y, B) = P{t + a, B), 

where t,s > 0, x G E and B G B and J denotes the integration over E. 
Consequently, there exists an E-valued Markov process { X t } with the 

transition probability P(t,x,B) given by (2.5) and 

(2.7) P(t, x, B) = P(Xt G B | X 0 = x). 

It should be noted that if o = *, the ordinary convolution on the real 
line, then the process {-X"t} in Proposition 2.1. stands for a classical Levy 
process i.e. a stochastic process with stationary independent increments (see 
Sato [11]). Hence and in the sequel, the time homogenuous Markov process 
induced by an o-semigroup {/zt} will be called a Levy type process or 
shortly, o-Levy process. The Levy type processes (or generalized Levy 
processes) related to Urbanik convolution o [15] were first introduced and 
studied by Thu [13]. 

2 . 2 . LEMMA. Under conditions (i)-(vi) g.t.o.'s { r x } , x G E, transform Co 
into Co-
Proof . Given / G Co and x G E we consider the family of p.m.'s {8X o <5y} 
in the compact space E. Naturally, it is relatively compact and if y tends 
to oo we get 8X o 5y weakly converges to . Consequently, regarding / as a 
function on E with /(oo) = 0, we have limy-^ J f(u)6xo8y(du) — /(oo) - 0 
which implies that r x f belongs to Co. 

Lemma 2.2 allows us to extend g.t.o's to the space E. Namely, we put 
rxf{y) - /(oo) where x,y G E with x = oo or y = oo and / G C(E). Then, 
{Tx}, x G E, becomes a new system of g.t.o's satisfying conditions (i)-(vi). 
Moreover, formula (1.1) holds also on the space E. Namely, for any x,y G E 
and / G C(E), 

(1.1') T*f(y)=]f(u)6xo8y. 

Let ¡J, be a p.m. on E. We put 

(2.8) T"/(:t) = ] f(u)ii O 6x(du) = I rxf(u)fM(du) 

for x G E and / G C{E). 



Generalized translation operators 299 

2.3. LEMMA. For every (J,, V e V R̂  transforms CO into Co (here CQ is 
regarded as a subspace of C(E)). Moreover, we get 

(2.9) r ' V = t»0". 

Proof . The fact that transforms Co into Co follows immediately from 
Lemma 2.2. Equation (2.9) is an easy consequence of (1.1') and (2.8). 

From Lemma 2.3 and (2.8) we have the following: 

2.4. LEMMA. Let {/¿t} C V be a continuous o-semigroup. The formula 

(2.10) St := T* {t > 0) 

defines a strongly continuous contraction semigroup on Co-
Let { X t } be an J5-valued Markov process with the transition probability 

P(.,.,.) defined by (2.5). Then we have 

(2.11) Stf(x) = Exf(Xt). 

Since, by Lemma 2.3 and Lemma 2.4, {St} is a strongly continuous 
semigroup we infer that { X t } is a Feller process. Moreover, since the func-
tion (t,x,f) —> Stf(x) is continuous, it follows that the process is a strong 
Markov process (cf. Blumenthal and Getoor [2], p. 41). Hence and by Propo-
sition 2, p.50 and Theorem 6 p.54 in Chung [5] the following theorem holds: 

2.5. THEOREM. Every O-Levy process on E is a strong Markov Feller pro-
cess. Consequently, it is stochastically continuous and has a version with 
right continuous paths having left limits. 

2.6. REMARK. Theorem 2.6. in Thu [7] is a special case of Theorem 2.5. 

3. Bingham convolution 
This section is concerned with the compact space case E = [—1,1] and 

g.t.o'.s Tx, xeE defined for / € C{E) by 
l l 

(3.1) rxf(y)= J f(u)6xo6y(du)= j G„-1/2(d\)f(xy +\y/(l - x2)(l - y2) 
- l - l 

where 0 < v < oo, 

G_ 1 / 2 (dA) = i ( 6 1 + < 5 _ 1 ) (v = —1/2), 

C o o = 6O {V = oo). 
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To study the convolution (3.1) we consider classical ultraspherical or Gegen-
bauer polynomials W^(x), x E E, n — 0,1,2,... v 6 (0, oo) 

l 
S WZ(x)WZ(x)Gv(dx) = 6mn/< 

- l 

where 
„ _ n + 1 r(w + 2v) 

UJn~ v ' n!r(2v) ' 
l 

W:(x) = 5 [x + ¿A(l - x2)V2]nG^1/2(d\). 

- l 
By the classical multiplication theorem of Gegenbauer ([17], p.369) we 

have 

(3.2) w:{x)w:{y)= j Wn(xy + A(1 — x2)l^2{l — y2)1^2Gl/_i(d\) 

- l 

(x,y 6 [—1,1], v e [0,oo]). Consequently, 

(3.3) T*WZ(y) = WZ(x )W: (y ) . 

By a similar way as in Thu ([13], formula 3.1) one can introduce the 
following generalized differential operator 

(3.4) 
y-* i - 1 — y 

where o and r x are defined by (3.1) and the convergence is taken in C(E)-

norm. 

3.1. LEMMA. D° is densely defined in C(E) and its domain T>(D°) contains 

all Gegenbauer polynomials W„(x), n = 0,1,2,... Moreover, we get the 

formula 

(3.5) D°w:(x) = 

P r o o f . By a result of Bingham ([1], formula (8)) it follows that 

(3.6) lim i ^ i S M . + 
V ' y-l 1 ~y (1 + 2v) 

which together with (3.3) and (3.4) implies (3.5). 
By virtue of (3.2) and (3.3) it follows that the map -ku, defined by 

* „ ( P ) = { s wz\ (3.7) * A P ) = <i \ W : { x ) P { d x ) \ 
) n=0 
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(P G V) provides a homomorphism of the semigroup (V, o) to a certain class 
Vv of sequences under termwise multiplication. 

If Vu is equipped with term-wise convergence then, under ttv, (V, o) is 
isomorphic to Vu (cf. Bingham [1], Proposition 1. a). 

3 . 2 . LEMMA. Let {/¿t} be an o-semigroup, where o is given by ( 3 . 1 ) . Then 
there exists a p.m. H £ V such that 

(3.8) (1 - y)t~ly,t{dy)—>H weakly as t -> 0. 

Proof . By a result of Bochner [3] the i.d. elements { c n } of Vv are of the 
form 

(3.9) cn = exp [ J l ~ W } { x ) H { d x ) 
L ^ I X 

with H € V. In particular, H = 6X, x E [—1,1) correspond to Poisson 
measures and H = ¿i corresponds to the Gaussian measure. Consequently, 
since ¡i\ is i.d. in {V,o), Tru(fii) is of the form (3.9) and thus 

(3.10) M * ) = { « p ( - t S l \ W ^ X ) H ( d x ) ) } -

Let mt = i _ 1 ( l - y)nt(dy) for t > 0. Then 

which implies the weak convergence 

lim mt = H. t-» o 
3 . 3 . THEOREM. Let A be the infinitesimal generator of an o-Levy process 
{£t} corresponding to {fa}- Then, the following inclusion holds: 

( 3 . 1 1 ) V(D°)CV(A). 

Moreover, for every f 6 T>(D°), we have 

( 3 . 1 2 ) Af(x) = j Tyf{:")-f{x)H(dy) 
_ I 1 ~ y 

where H is a p.m. in V and the integrand assumes the value D°f(x) at 
y = 1. The measure H is uniquely determined. 
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Proof . Suppose that / 6 V(D°). Then, by (3.4), T " A * ? assumes the 
value D°f(x) at y = 1 and is a continuous function on the compact product 
space E x E. Moreover, by (3.8), we have 

l 
Af(x) = l i m f " V f / ( s ) - /(*)) = Jim J (ryf(x) - f(x))t~\»t(dy) t—>-U t—>0 J 

-1 

i _ > 0 _ i 1 ~ y _ i 1 ~ y 

where H 6 V. 
Note that the last expression is a continuous function in E and, since the 

convergence is boundedly pointwise, the limit can be taken in C(£J)-norm 
by the use of a general theory of Dynkin (cf. [6], Lemma 2.11). This shows 
that the inclusion (3.11) is true and hence (3.12) is proved. 

By Lemma 3.1 all Gegenbauer polynomials n = 0 , 1 ,2 , . . . , be-
long to V{D°) and consequently they belong to T>(A). Finally, the unique-
ness of representation (3.12) follows from the uniqueness of representation 
(3.9) (cf. Bochner [3]). 

3 . 4 . THEOREM. Let A, {/¿t} and {£t} be the same as in Theorem 3.3. 
If {fit} is "Gaussian" (w.r.t. Bingham convolution) then there exists a 

constant a > 0 such that 

(3.13) A = aD°. 

Consequently, for every n = 0 ,1 ,2 , . . . and v 6 [0, oo] 

(3.14) Avrn = a n } n + n 2 / V . v ' n 1 + 2v) 

Proof . If {¿¿t} is "Gaussian", then so is the corresponding sequence 7r„(/¿t) 
and therefore measure H in (3.9) becomes 8\ which together with (3.5) 
implies (3.13) and (3.14). 

4. Ultraspherical generating functions 
Suppose ¡jl is a p.m. on Z+. Write 

oo 

(4.1) n = Y ^ a n 6 n 
71 = 0 

where an > 0 and X^̂ Lo a n — 1-
The ultraspherical generating function, say fi(x), of ¡j, is defined on 

[-1,1] by 
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(4.2) = 
71=0 

with n — 0 , 1 , 2 . . . , being Gegenbaure polynomials. It is evident that 
(j, uniquely dermines ¡JL. 

Let Qv denote the set of all ultraspherical generating functions. The par-
ticular case v = oo Qv becomes the set of the classical generating functions. 
4.1. THEOREM. For every v e [0, oo] Qv is closed under uniform convergence 
and convex combinations and pointwise multiplications. 
Proof . The fact that Qv is closed under convex combinations and uniform 
convergence is clear. 

Suppose that n,m = 0 ,1 ,2 , . . . are given. Then the product IIn)m(x) of 
two Gegenbauer polynomials W%{x) and W^(x) stands for an element of 
L2([— 1, \\,Gu{dx)) and admits a linearization (cf. Lasser [8], p. 299) 

2 m i n ( n , m ) 

(4.3) n„,m(s) = Y1 n(n, m, k)W^+m_k(x) 
k=0 

which together with the linearization formula in (Bressound [4], Th.l) im-
plies that the quantity 

l 
(4.4) 11(71,™,*)= j WZ(x)W»(x)W};(x)Gv(dx) 

-1 
is nonnegative and moreover, for any n,m. 

2 m i n ( n , m ) 

(4.5) n(n,m, fc) = 1. 
k=0 

Consequently, Hn>rn(x) belongs to Qv. Thus, by an easy reasoning, we 
infer that the set Qv is closed under pointwise multiplications. The proof is 
complete. 

By Theorem 4.1 it follows that for any n, m — 0,1 ,2 , . . . there exists a 
p.m. say ¿„•<5m on Z+ with the ultraspherical generating function (4.3). 

Hence we get a binary operation • on point measures 6n which can be 
easily extended to discrete p.m.'s on Z+. This convolution on Z+ can be 
considered as a natural dual convolution of the Bingham convolution on 
[—1,1] defined by (3.1). For an alternative study of the convolution • on 
Z+ the reader is refered to Vol'kovich [16]. 
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