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Abstract. We study the relationship between generalized translation operators and
stochastic convolutions on locally compact spaces. We prove that stochastic convolution
semigroups can generate Lévy type processes which are strong Markov Feller processes
and, as an example, we study the Bingham convolution and its dual on integers.

1. Notations and preliminaries

Let E denote a locally compact separable topological space and let P
and @ denote the class of p.m.’s and sub-p.m.’s on E, respectively. The
one-point compactification of E is denoted by E. Let co denote the isolated
point of E. The convergence of p.m.’s resp. sub-p.m.’s will be understood in
the weak and vague sense, respectively.

Let C}, denote the Banach space all bounded continuous real valued func-
tions on E and Cp := {f € Gy : f(o0) = 0}.

Let 7%, x € E, denote the class of bounded linear operators on Cj such
that the following conditions are satisfied :

(i) There exists an element e € E such that 7¢ =1, the identity operator.
For any z,y € E, f € Cy,

(if) 7% f(y) = 7¥ f ().
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The function F(z,y) := 7 f(y) is continuous in the product space and
vanishes whenever z or y tends to the isolated point oo.

(iil) 7®7Y = 7Y7".

(iv) Positivity : If f > 0 then 7°f > 0.

(v) Sub-Markovian property: If 0 < f <1then 0 < 7%f < 1.

Operators {7%] with properties (i)—(v) stand for a subclass of generalized
translation operators (g.t.0.’s) (cf. Levitan {10]) which appear in the theory
of DE’s and PDE’s...)

By virtue of (ii), (iv) and (v) it follows that the functional 7* f(y) (z,y)
are given) is positive which implies that there exists a unique sub- p.m., say
6z 0 by, s.t. for every f € Cy.

(L.1) 7 f(y) = | f(w)6: 0 8y(du)

where the symbol { denotes the integration over E.
Put, for p,v € Q

(1.2) pov() = {8 0 6,()u(dz)v(dy).
Then we get a binary operation ¢ on @ with the following properties:

(a) (Q,0) is a commutative topological semigroup with 8. as the unit
element.The topology in @ is understood in the vague sense.

(b) For any p,v,y and o, > 0, a+ 8 < 1 we get yo (ap+ fv) =
ayou+ Byovr.

(c) If E is non-compact then o, is the only one cluster point of the set
{6z06y:z,y€ E}.

Conversely, if o is a binary operation defined on @ such that the condi-
tions (a), (b) and (c) are satisfied then the formula (1.1) defines a system
of g.t.0.’s with the properties (i)—(v).

Thus we have proved the following

1.1. PROPOSITION. Generalized translation ooperators satisfy conditions
(1)—(v) if and only if there exists a binary operation o on the set Q of sub-
p.m.’s on E such that the conditions (a), (b) and (c) are satisfied.

The equation (1.1) determines a one to one correspondence between
g.t.0.’s and operation o.

In the sequel we shall confine ourselves to the case when the relation
(1.1) defines a p.m. 8, 0y, z,y € E. It is easy to prove the following :

1.2. PROPOSITION. Suppose that g.t.o.’s {T*} satisfy conditions (i)—(v).
Then for any p,v € P the measure pov in (1.2) is a p.m. if and only
if for every x € E.
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(vi) 7*1=1,
where 1 denotes the function identically equal to 1.

In what follows we shall consider g.t.0.’s {7*} such that the conditions
(i)—(vi) are satisfied which implies that the set P is closed under the opera-
tion o.

Following Vol’kovich [16], we will call the operation o on P a stochastic
convolution. It is evident that the stochastic convolution o is continuous in
the weak topology and hence (P, o) becomes a topological semigroup. From
now on we will call (P, o) a stochastic semigroup on E.

1.3. ExaMPLES. Let us consider the case E = R, = [0,00). Then, E =
R, = [0,00]. Let o denote a regular Urbanik convolution operation defined
on p.m’s and let Q(t), ¢t € R, denote the kernel for its characteristic func-
tion (cf. [14]). Since, for any t,z,y € Ry, | Q(tu)é; o 6,(du) = Q(tx)Q(ty)
it follows that if Q € Cy then the Urbanik convolution o satisfies our con-
ditions (a), (b) and (c). As examples of such convolutions one can take
o-convolutions and Kingman convolutions.
The symmetric convolution *; ; is defined by

0z *1.1 6 (6:z:+y + 6|a: yl)

It is a Urbanik convolution with the kernel Q(¢) = cost and does not sat-

isfy (c).

3. Lévy type processes
Suppose that (P, o) is a stochastic semigroup on E. The operation o can
be extended to the set P of all p.m.’s on E. Namely, every p.m. on E is of
the form
(2.1) ap+ (1 - 0)bso
where 0 <a<landp € P.Let Bv+ (1~ PB)6s (0SB <1, veETP)be
another p.m. on E. Define
(2.2) lap+ (1 —a)bos) o [B+ (1 — B)uo] = aBuov+ (1 —af)b
Then, by virtue of (ii), (2.1) and (2.2), the pair (P, o) becomes a new
stochastic semigroup with the unit element &,.

Let {1} C P be a continuous semigroup w.r.t. the operation o (shortly,
o - semigroup) i.e. for any t,s > 0,

(2.3) Ht O fbs = [tys,
(2.4) tlirr(l} e = be.

It is evident that every p.m. yu; is i.d. in the following sense

[t = Pe/n O ... 0 Pe/n (n-times) = py7 .
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Let B denote the Borel a—algebra' of subsets of E, respectively. Given
ze€FE, t>0, Be B weput

(2.5) P(t,z,B) = (pt © 62)(B).
It is easy to prove the following

2.1. PROPOSITION. The function P(.,.,.) defined by (2.5) satisfies the Chap-
man—-Kolmogorov equation i.e.

(26) | P(t,3,dy)P(s,y, B) = P(t + 5,3, B),

wheret,s >0, € E and BEB a_nd { denotes the integration over E.
Consequently, there exists an E-valued Markov process {X;} with the
transition probability P(t,z, B) given by (2.5) and

(27) P(t,JJ,B)=P(Xt €B 'X():(II)

It should be noted that if o = x, the ordinary convolution on the real
line, then the process {X,;} in Proposition 2.1. stands for a classical Lévy
process i.e. a stochastic process with stationary independent increments (see
Sato [11]). Hence and in the sequel, the time homogenuous Markov process
induced by an o-semigroup {u:} will be called a Lévy type process or
shortly, o-Lévy process. The Lévy type processes (or generalized Lévy
processes) related to Urbanik convolution o [15] were first introduced and
studied by Thu [13].

2.2. LEMMA. Under conditions (i)-(vi) g.t.0.’s {r*}, = € E, transform Cj
into Co.

Proof. Given f € Cy and z € E we consider the family of p.m.’s {6, 0 §,}
in the compact space E. Naturally, it is relatively compact and if y tends
to oo we get 6, o 6, weakly converges to §.,. Consequently, regarding f as a
function on E with f(00) = 0, we have limy o Ef(u)&zoéy(du) = f(o0) =0
which implies that 7% f belongs to Cg.

Lemma 2.2 allows us to extend g.t.o’s to the space E. Namely, we put
7% f(y) = f(oo) where z,y € E with £ = 0o or y = oo and f € C(E). Then,
{r*}, z € E, becomes a new system of g.t.o’s satisfying conditions (i)-(vi).
Moreover, formula (1.1) holds also on the space E. Namely, for any z,y € E
and f € C(E),

(1.1) ™ f(y) = | f(u)b: 06,
Let i be a p.m. on E. We put
(2.8) ™f(@) = | fwpobe(du) = | 7°f(u)n(du)

for z € E and f € C(E).



Generalized translation operators 299

2.3. LEMMA. For every p,v € P T transforms Cy into Cy (here Cp is
regarded as a subspace of C(E)). Moreover, we get

(2.9) TRV = 7HoV,

Proof. The fact that 7* transforms Cy into Cp follows immediately from
Lemma 2.2. Equation (2.9) is an easy consequence of (1.1’) and (2.8).

From Lemma 2.3 and (2.8) we have the following:
2.4. LEMMA. Let {u;} C P be a continuous o-semigroup. The formula
(2.10) Sp=71H (£ 2>0)

defines a strongly continuous contraction semigroup on Cp.
Let {X;} be an E-valued Markov process with the transition probability
P(.,.,.) defined by (2.5). Then we have

(2.11) Sif(z) = E* f(Xy).

Since, by Lemma 2.3 and Lemma 2.4, {S;} is a strongly continuous
semigroup we infer that {X,} is a Feller process. Moreover, since the func-
tion (t,z, f) — Sif(z) is continuous, it follows that the process is a strong
Markov process (cf. Blumenthal and Getoor [2], p. 41). Hence and by Propo-
sition 2, p.50 and Theorem 6 p.54 in Chung [5] the following theorem holds:

2.5. THEOREM. Every o-Léuvy process on E is a strong Markov Feller pro-
cess. Consequently, it is stochastically continuous and has a version with
right continuous paths having left limits.

2.6. REMARK. Theorem 2.6. in Thu [7] is a special case of Theorem 2.5.

3. Bingham convolution
This section is concerned with the compact space case E = [~1,1] and
g.t.0’.s 7%, x € E defined for f € C(F) by

1 1
(3.1) 7 f(y)= | f(w)bz06,(du)= | G,_1/2(dN) f(zy+ A/ (1 = 2?)(1 - ¢?)

-1 -1

where 0 < v < o0,

Culd) = ripea s (L= V)N, (v (-1/2,00),
G-1/2(d) = %(51 +61)  (v=-1/2),

Goo = bo (v = 00).
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To study the convolution (3.1) we consider classical ultraspherical or Gegen-
bauer polynomials WY (z), z € E, n=0,1,2,...v € (0,00)

1

| Wi(@)W2 (2)G.(d2) = Smn s

-1
where

W — n+1 I'(n+ 2v)
"y all(20)

1
Wa(z) = § [o+ir1—2%) /2" G, 2(dN).
-1
By the classical multiplication theorem of Gegenbauer ([17], p.369) we
have
1

(32) Wr(@WX(y)= | W(zy+ 71~ 22?1~ ¢*)V2G,_1(dN)
-1

(z,y € [-1,1], v € [0,00]). Consequently,

(3.3) TTWR (y) = Wi ()W (y).

By a similar way as in Thu ([13], formula 3.1) one can introduce the
following generalized differential operator
y -
(3.4) D°f(z) = lim mf(z) — f(z)
y—1-— 1-— Yy
where o and 7% are defined by (3.1) and the convergence is taken in C(E)-
norim.

3.1. LEMMA. D° is densely defined in C(E) and its domain D(D°) contains
all Gegenbauer polynomials WY (z), n = 0,1,2,... Moreover, we get the
formula

_ n(n+2v)

(3.5) D°WY(z) = W (z).

1+2v 7
Proof. By a result of Bingham ([1], formula (8)) it follows that
. 1=-WZ(y) n(n+2v)
. 1 L =
(3.6) vl 1o Y (1+2v)
which together with (3.3) and (3.4) implies (3.5).
By virtue of (3.2) and (83.3) it follows that the map ,, defined by

) nip) = { | wrpa)”

-1 n=0
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(P € P) provides a homomorphism of the semigroup (P, o) to a certain class
P., of sequences under termwise multiplication.

If P, is equipped with term-wise convergence then, under w,, (P,0) is
isomorphic to P, (cf. Bingham [1}], Proposition 1. a).

3.2. LEMMA. Let {u:} be an o-semigroup, where o is given by (3.1). Then
there exists a p.m. H € P such that

(3.8) (1—y)t 'y (dy) — H weakly as t — 0.

Proof. By a result of Bochner {3] the i.d. elements {c,} of P, are of the
form

1 v (o
(3.9) Cn = €xXp [ S 1= Wile)

—= H(dr)]

with H € P. In particular, H = §,, = € [-1,1) correspond to Poisson
measures and H = §; corresponds to the Gaussian measure. Consequently,
since p; is i.d. in (P,0), 7, (p1) is of the form (3.9) and thus

i 1- W (z)

l1-2

(3.10) m () = {exp (-t H(dz:))}

Let m; = t~}(1 — y)us(dy) for t > 0. Then

(1=
—{1=

which implies the weak convergence

l/

“me(dr) b = 17 (m (ne) — 1)

l—a:

I/

ST
g “Hdz)} (1 0)

1—3:

limm; = H.
t—0

3.3. THEOREM. Let A be the infinitesimal generator of an o-Lévy process
{&} corresponding to {p}. Then, the following inclusion holds:

(3.11) D(D°) C D(A).
Moreover, for every f € D(D°), we have
1
(312 afe) = | L gy

-1

where H is a p.m. in P and the integrand assumes the value D°f(z) at
y = 1. The measure H is uniquely determined.
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Proof. Suppose that f € D(D®). Then, by (3.4), ﬂ%"l;yf@ assumes the
value D°f(z) at y = 1 and is a continuous function on the compact product
space E x E. Moreover, by (3.8), we have

1
Af(@) = lim =} (rHef(z) - 1(2)) = lim | (rVf(2) - f(2))t peld)

1

L V() — f(z)

=t § LR (i = § I )
where H € P.

Note that the last expression is a continuous function in E and, since the
convergence is boundedly pointwise, the limit can be taken in C(E)-norm
by the use of a general theory of Dynkin (cf. [6], Lemma 2.11). This shows
that the inclusion (3.11) is true and hence (3.12) is proved.

By Lemma 3.1 all Gegenbauer polynomials WY (z), n =0,1,2,..., be-
long to D(D°) and consequently they belong to D(A). Finally, the unique-
ness of representation (3.12) follows from the uniqueness of representation
(3.9) (cf. Bochner [3]).

3.4. THEOREM. Let A, {p:} and {&;} be the same as in Theorem 3.3.
If {us} is "Gaussian” (w.r.t. Bingham convolution) then there exists a
constant a > 0 such that

(3.13) A=aD".
Consegquently, for everyn =0,1,2,... and v € [0, 0]
v an(n+2v)
(3.14) AW, = T+ 20) .

Proof. If {u:} is ”Gaussian”, then so is the corresponding sequence , (1)
and therefore measure H in (3.9) becomes é; which together with (3.5)
implies (3.13) and (3.14).

4. Ultraspherical generating functions
Suppose  is a p.m. on Z,. Write

n=0
where a, >0and > o, jon =1.
The ultraspherical generating function, say ji(x), of u is defined on
[_1’ 1] by
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(4.2) Mz) =) aWi(a)
n=0

with WY, n =0,1,2..., being Gegenbaure polynomials. It is evident that
i uniquely dermines .

Let G, denote the set of all ultraspherical generating functions. The par-
ticular case v = 0o G, becomes the set of the classical generating functions.

4.1. THEOREM. For everyv € [0,00] G, is closed under uniform convergence
and conver combinations and pointwise multiplications.

Proof. The fact that G, is closed under convex combinations and uniform
convergence is clear.

Suppose that n,m = 0,1,2,... are given. Then the product I, (z) of
two Gegenbauer polynomials WY (z) and W} (z) stands for an element of
L?([-1,1],G,(dz)) and admits a linearization (cf. Lasser [8], p. 299)

2min(n,m)

(4.3) Dom(z)= Y, T(n,m k)W, (x)

k=0
which together with the linearization formula in (Bressound [4], Th.1) im-
plies that the quantity

1
(4.4) M(n,m, k) = | W (z)W¥(2)Wi (2)G, (dz)

-1
is nonnegative and moreover, for any n,m.

2 min(n,m)

(4.5) > H(n,m,k)=1
k=0

Consequently, II,, ,,(z) belongs to G,. Thus, by an easy reasoning, we
infer that the set G, is closed under pointwise multiplications. The proof is
complete.

By Theorem 4.1 it follows that for any n,m = 0,1,2,... there exists a
p.m. say 6,006, on Z; with the ultraspherical generating function (4.3).

Hence we get a binary operation O on point measures §,, which can be
easily extended to discrete p.m.’s on Z;. This convolution on Z, can be
considered as a natural dual convolution of the Bingham convolution on
[—1,1] defined by (3.1). For an alternative study of the convolution O on
Z4 the reader is refered to Vol’kovich (16].
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