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Abstract . Classes of infinitely divisible distributions obtained by iteration of Gaus-
sian randomization of Levy measures are introduced and studied. 

Their relation to Urbanik-Sato nested classes of selfdecomposable distributions is also 
established. 

1. Introduction 
In our previous paper [MR00], we studied the class of type G distribu-

tions on defined in the following way. A symmetric infinitely divisible 
probability distribution ¡JL on Rd is of type G if its Levy measure v is of the 
form 

(1 .1) u(A) = E[u0(Z^A)], A € B0(Rd), 

where i/o is a Borel measure on Rd \ {0} , Z is the standard normal random 
variable, and BQ ) is the class of all Borel sets A in Rd such that A c 
{|i| > e} for some e > 0. Such kind of distributions combine Gaussian and 
Poissonian structures in a nontrivial way (see Section 5 in [MR00]). Denote 
by TG{Rd) the class of type G distributions on Rd. 
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A typical representative of the class TG(Md) is a symmetric stable dis-
tribution. In this paper we will use the following convention. Given a class 
of measures H on Rd, we will denote by H the subset of H consisting 
of symmetric measures. Denote by 5(1^) and 7(Rd) the classes of stable 
and infinitely divisible_distributions on respectively. Therefore, we have 
S(Rd) C TG(Rd) C I(Rd). Our goal is to introduce and investigate the 
nested classes TGm(Rd), m > 1, between TG0(Rd) := TG(Rd) and S(Rd), 
using the procedure somewhat analogous to Urbanik-Sato construction of 
subclasses of selfdecomposable distributions. 

In Section 2, we define the classes TGm(Rd), m> 1, and show that they 
form a strictly descending sequence. In Section 3, we compare our nested 
subclasses of TGo(Rd) and those of the class Lo(Rd) of selfdecomposable 
distributions introduced and studied by Urbanik [U72], [U73] and Sato [S80]. 
A necessary and sufficient condition for a type G distribution on M1 to be 
selfdecomposable was given in [R91]. We generalize this result to Rd and give 
an answer to the converse question: When is a symmetric selfdecomposable 
distribution of type G? We also study related problems. 

Every distribution /x € TGm(Rd) has its predecessor fio € TGm_i(Rd) , 
as defined in Section 2. In Section 4, we study the relationship between /j, and 
¡j,q along the following lines : If n belongs to a certain class of distributions, 
then does /¿o belong to the same class? The answers are obtained for some 
important classes in Theorem 4.1. Section 5 contains some examples and 
Section 6 discusses open problems. 

We conclude the introduction by stating a basic characterization theorem 
for type G distributions on Rd, which has been proved in [MROO], and will 
also be needed later in this paper. 
THEOREM A ([MROO]). A symmetric probability measure ¡i on Md is of type 
G if and only if it is infinitely divisible and its Levy measure v is either zero 
or represented as 

u(EB) = J A(dx) J gx{r2)dr for E e B{R+), B G B(S), 
B E 

where A is a probability measure on S and gx(r) is a jointly measurable func-
tion which, for any fixed x, is completely monotone on (0, oo) and satisfies 

oo 
S ( l A r 2 ) 5 x ( r 2 ) d r - c € ( 0 , o o ) 
o 

with c independent of x. This representation is unique in the sense that, if 
v ^ 0 and two pairs (A,gx) and (A,gx) both satisfy the above conditions, 
then A = A and gx = gx for X-a.e. x. Moreover, A is a symmetric probability 
measure and gx = g-x A-a.e. 
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2. Subclasses of the class of type G distributions 
In the following, if /x is infinitely divisible, we denote its Levy measure 

by v{n). 
We first rewrite the definition of type G distribution. In the definition 

(1.1), Vq is a Borel measure but since v is a Levy measure, Vq is also a Levy 
measure (see Proposition 2.2 (i)-(ii) in [MROO] or Proposition 2 in [J90]). 
Moreover, u0 in (1.1) always can and will be taken symmetric. For any 
fio 6 I(Rd), define K(/j,o) as the symmetric infinitely divisible distribution 
/x having the same Gaussian component as ¡jlq and Levy measure v given 
by (1.1) with vq = vo(po). The symmetric distribution /xo will be called the 
predecessor of n (relative to the operation K). The predecessor is uniquely 
defined. Indeed, suppose tha t /u. has two predecessors ¡jl\ and ¡12• Then v 
satisfies (1.1) with vq — f i ( n i ) and vq — 1^2(^2)- By Proposition 2.2 (iii) in 
[MROO] ui = 1/2, and since fii and /i2 have the same Gaussian part , — 
We have just shown tha t the operation K is one-to-one. If we write 

K(H) = {K{ii0) : f i o e H } , H C I ( R d ) , 

then 

TG{Rd) = K(I(Rd)). 

Put TG-!(Rd) = I{Rd) and TG0(Rd) = TG(Rd). Define for 1 < m < 00, 

TGm(Rd) = K(TGm^(Rd)), 

and 
00 

TGoo(Rd) = f ) TGm{Rd). 
m=0 

THEOREM 2 . 1 . I{Rd) D TG0(Rd) D TGi(Rd) D •• • D TGm(Rd) D 

r G m + 1 ( I R i i ) D • • O TGoo(Rd) D 5 ( R d ) . 

P r o o f . By the definition, 

TG-i(Rd) D TGo(Rd). 

Suppose tha t TGm-1(Rd) D TGm{Rd) for some 0 < m < 00. If (i € 
TG m + i ( IR d ) , then v(^)(A) = E[i/o(2"_1j4)], where v0 is the Levy measure of 
the predecessor ¡jlq € TG r

m(R<i). By the induction hypothesis, we have tha t 
Ho € TGm-i{Rd). Hence fi € T G m ( R d ) , concluding 

rGm+i(Rd) C TGm(Rd). 

The assertion TGm(Rd) D TG00(Rd) is trivial from its definition. 
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We next show that TG^R!*) D S(Rd). If fi0 <5 S(Rd), then v(A) = 
'E[vo(Z~1A)} is the Levy measure of a symmetric stable distribution, where 
vp is the Levy measure of /¿0. Thus K(S(Rd)) C S(Rd). Conversely, if /x e 
S{Rd), then 

v(ri(A) = E[v0(Z-1A)}, 

where vq is also the Levy measure of a distribution in S(Rd). For, since the 
Levy measure of// £ S(Rd) satisfies the condition aav{n)(A) = v([i)(a~l A), 
for every a > 0 and A € Bo{Rd), where a € (0,2] is the index of stability, 
(1.1) holds with u0 = (E[\Z\a])-lv. Hence S(Rd) C K{S(Rd)) and thus 
K(S{Rd)) = S{Rd), namely, S{Rd) is invariant under the operation K. We 
thus have, for each m > 0, 

S(Rd) = Km(S(Rd)) c K m ( I (R d ) ) = TGm(Rd), 

where Km is the mth iteration of K. Thus S(Rd) C f)m>o TGm(Rd) = 
TGoo(Kd)- This completes the proof. • 

It might be asked whether the inclusions in Theorem 2.1 are strict or 
not. The answer is the following. 

THEOREM 2 .2 . The inclusions in Theorem 2 . 1 are all strict, namely 

I{Rd) 3 TG0(Rd) P rGi(Md) =2 • • • ^ TGm(Rd) ^ TGm+1{Rd) £ 

•••^TG00(Rd)^S(Rd). 

Proof . First note that TG-i(Rd) ^ TG0{Rd), since the existence of non-
type G infinitely divisible distribution is assured by Theorem A. Since the 
operation K is one-to-one we have 

TGm-i(Rd) \ TGm{Rd) = Km(TG-i(Rd) \ TG0(Rd)) ± 0, 

proving 

(2.1) TG m _i(R d ) ^ TGm(Rd), Vm > 0. 

We next show that 

TGm(Rd) ^ TGoo{Rd), Vm > 0. 

If there exists an mo such that 

TGm0(Rd) = TGoo(Rd), 

then 
TGm o(Rd) = TGmo+1(Rd) = ••• = TGoo (Rd), 

which contradicts (2.1). 
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Finally the fact that TGoo(Rd) ^ S(Rd) follows from Corollary 3.1 in 
Section 3, and so the rest of the proof is postponed to the end of Section 3. • 

The class TG00(]Rd) has the following special property. 

THEOREM 2.3. TG00(Rd) is the largest subclass of I(Rd) invariant under 
the operation K. 
P r o o f . By Theorem 2.1, 

TGm(Rd) D T G m + i ( R d ) = K(TGm(Rd)), 

and hence 

P i r G m ( R d ) D f l K(TGm(Rd)) D TGm(Rd)). 

m> 0 m> 0 m> 0 
Thus 

TGoo(Rd) D K(TGoo{Rd))-
Let us show the converse inclusion. Let n £ TG00(M<i). Then for any m > 0, 
H € TGm(Rd). Hence /i has the predecessor /¿0 in every class TGm_i(Rd) . 
Since the predecessor is uniquely defined, 

MoG f | TGm(Rd) = TGoc(Rd), 

m> 0 

and hence 
m 6 ^ ( r G o o ^ ) ) . 

We thus conclude that 
K{TG00{Rd)) = TG00(Rd). 

We next show that TGoo(Rd) is the largest class among such classes. 
Suppose that H(C I(Rd)) satisfies that K(H) = H. As before, for each 
m > 0, 

H = Km(H) C Km(T(Rd)) = TGm(Rd), 
and thus 

H c f ) TGm{Rd) = rG 0 0 (M d ) . 
m> 0 

This completes the proof. • 
In one dimensional case (d = 1), any random variable X with distribution 

¡j, in TGq(R1 ) can be characterized by 

(2.2) X = V^Z, 
where V is some nonnegative infinitely divisible random variable indepen-
dent of Z and = means equivalence in law. Then a natural question is how 
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we can characterize X with ¡1 in TGm(R1), m = 1 ,2 , . . . , or what type of 
condition on V assures that fi belongs to TG m (R 1 ) . 

To answer this question, we need a relationship between u0 in (1.1) and 
the Levy measure p of V in (2.2). 

THEOREM 2.4. For A e B0{R), let Ax = A fl and A2 = A \ Ai. Then 

v0(A) = p(A2) + ±p(A2), 

where A2 = {x2 : x € A}. Particularly, 

v0([x, 00)) = ip([a;2, oo)), x > 0. 

P r o o f . Let {^ ( i )} be a Levy process such that V( l ) = V, {Z(t)} the stan-
dard Brownian motion independent of {V(i)}, and X(t) = Z(V(t)). X(t) is 
a subordination, and X ( l ) = X. The Levy measure of the subordination is 
given by 

00 

v{A) = $ P{Z{t) e A}P(dt), 
0 

(see [Z58]). Hence 
00 

v(A) = j P{t^2Z e A}p{dt) 
0 

00 
= E [ S 1{t>/*€Z-iA}p(dt) 

0 
00 j 00 

= E [ 5 1 {t€Z-2A2}p{dt)] + - E [ J l{t€Z-2A2}p(dt)\ 
0 0 

= E[p(Z- 2 A 2 ) ] + ±E[p(Z~2A2)]. 

Here if we put 

p0(A) = p(A2) + ±p(A2
2), 

then we have 

u(A) = B[p0{Z-lA)\. 
Note that po is a symmetric measure. 

On the other hand, 

^(,4) = E M Z - 1 ^ ) ] . 



Type G and related subclasses 257 

Hence, from the uniqueness of VQ determined by v among symmetric mea-
sures, it follows that po = uq, namely, 

u0(A) = p{A\) + ^p(A22). 

The proof is completed. • 

We thus have the following equivalence from the definition of TGm(IRii). 

T H E O R E M 2 . 5 . Let m = 1 , 2 , — Then the following are equivalent: 

(i) p e TGmiR1). 

(ii) The symmetric measure VQ determined by 

(2.3) v0([x, oo)) = ip([x2, oo)), x > 0, 
where p is the Levy measure of V, is the Levy measure of some po € 
TGm-l(RX). 

3. The Urbanik-Sato nested subclasses of symmetric selfdecom-
posable distributions 
Urbanik [U72], [U73] and Sato [S80] introduced and studied the nested 

classes Lm(Rd), m = 0 , 1 ,2 , . . . , oo, between /(Rd) and S(Rd), which are 
defined in the following way. 

In general, for H C I(Rd), define 

Q{H) = {pe I(Rd) : for any a € (0,1), there exists pa € H 
such that p{d) = p(a0)pa(0), V0 G Rd} , 

where p is the characteristic function of p. 
Then, L0{Rd) is defined as 

L0(Rd) = Q(I(Rd)), 

and Lm(Rd), m = 1 ,2 , . . . , are defined inductively as 

Lm(Rd) = Q(Lm^1(Rd)) 

and 

Loo(Rd) = n 
m> 0 

Then it was shown that 

I{Rd) D L0(Rd) D Li(Md) D • • • D Loo(Kd) 3 S(Md). 

Distributions in Lo(Rd) are called selfdecomposable. Throughout this paper, 
we are only concerned with symmetric distributions. Therefore we will con-



258 M. Maejima, J. Rosinski 

sider classes Lm(Rd). Now we have two sequences of nested classes between 
I(Rd) and S{Rd): 

(i) I(Rd) D TG0(Rd) d rGi (R d ) D • • • D TGoo(Rd) D S(Rd) 
and 
(ii) I(Rd) D L0(Rd) D Li(Rd) D • • • D l o o ^ ) D S{Rd). 

Then a natural question is to compare two sequences. The following is due 
to Sato [S80]. 

THEOREM B ([S80]). A probability measure /X 6 /(KD) is self decomposable, 
namely in Lo(Rd) if and only if its Levy measure v is either zero or repre-
sented as 

v(EB) = J A(dx) j ^ ^ d r for E e JB(R+), b € B(S) 
B E  T  

where X is a probability measure on S and kx(r) is, for any fixed x, a non-
negative nonincreasing right-continuous function of r satisfying 

°\(lAr2)^-dr = ce(0,oo) 
o r 

with c independent of x, and for any r, kx(r) is a measurable function of 
x. This representation is unique in the sense that, if v ^ 0 and two pairs 
(A, kx) and (A, kx) both satisfy the above conditions, then A = A and kx = kx 

for X-a.e. x. 

A question when a given type G distribution on R1 is selfdecomposable 
was answered in [R91], namely, a type G distribution is selfdecomposable if 
and only if x1/2^x(r) is nonincreasing with respect to r on (0, oo). The proof 
in [R91] did not use Theorem B, but once we have Theorems A and B, we 
can relate selfdecomposable and type G distributions in Rd using spectral 
forms of their Levy measures (which are unique). 

THEOREM 3.1. (i) Let p e TG0{Rd). Then p E L0(Rd) if and only if for 
X-a.e. x, rl/2gx(r) is nonincreasing with respect to r on (0, oo). 

(ii) Let n € Z o ( K d ) . Then \i e TG0(Rd) if and only if for X-a.e. x, 
Mr1/2)/r1/2 is complete monotone. 

Proof . Note that if /z £ TGo(Rd) H L0(Rd), then in the representations of 
v = v((jl) given by Theorems A and B, the measures A and constant c must 
be the same. Furthermore, 

(3.1) rgx(r2) = kx{r) 
for A-a.e. x. The theorem follows from (3.1). • 
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Sato [S80] also gave a necessary and sufficient condition for ¡JL E LM (K ), 
m = 1 , 2 , . . . ,00. Define hx(s) = kx(e~s), and call it the /i-function of ¡x G 
L0(Rd). For 6 > 0, let As be the difference operator, A 6 f ( s ) = f(s+6)-f(s), 
and Ag be its nth iteration. We say that a function f(s) is monotone of order 
n if 

(3.2) A ^ / ( s ) > 0 for 6 > 0, s <E R1 , 

for any j = 0 , 1 , . . . , n. When (3.2) holds for all integers j, f is called abso-
lutely monotone. Then one of results by Sato [S80] is the following. 

THEOREM C ( [ S 8 0 ] ) . Let m = 0 , l , 2 , . . . , o o . A probability measure /z belongs 
to Lm(Rd) if and only if /i € Lo(Rd) and h-function hx(s) of fi is monotone 
of order m + 1 for X-a.e. x, where A is the spherical component of the Levy 
measure of ¡JL, and when M = 00, being monotone of order m+1 is understood 
as being absolutely monotone. 

The next theorem is a direct consequence of Theorem C and the relation 
(3.1). 

THEOREM 3 .2 . Let n e TG0{Rd), andm = 0 , 1 , 2 , . . . , 00. Then fi € Lm(Rd) 
if and only if 

hx(s) = e~sgx(e~2s) 

is monotone of order m + 1 (absolutely monotone when m = 00) for 
X-a.e. x. 

In [MR00], we have shown that TGo(Kd) is closed under convolution 
and weak convergence. By exactly the same argument, we can show the 
following. 

THEOREM 3 .3 . The classes T G m ( R d ) , m = 1 , 2 , . . . , 0 0 , are closed under 
convolution and weak convergence. 

COROLLARY 3 .1 . T G O O ( R D ) D Z O O ( K D ) -

P r o o f . It is known ([S80]) that L00(Md) is the smallest class containing 
the class 5(Kd) , closed under convolution and weak convergence, and thus 
¿00(Kd) is the smallest class containing the class S(Rd), closed under con-
volution and weak convergence. This fact combined with Theorem 3.3 for 
M = 00 yields the conclusion. • 
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A consequence of Corollary 3.1 is that convolutions of symmetric stable 
distributions of different indices are of type G. This fact is pointed out in 
[R91] for the case d — 1. 

P r o o f of Theorem 2.2 (continued). As stated above in the proof of Corollary 
3.1, we know that L00(Rd) ^ S(Rd), because, for instance, convolutions of 
symmetric stable distributions of different indices are in L(Rd) but not in 
S(Rd). Thus by Corollary 3.1, 

TGOO(RD) D L^R1*) 3 5(RD). 

This completes the proof of Theorem 2.2. • 

4. Some invariant properties of type G distributions 
The first two statements, (i) and (ii) of Theorem 4.1, give examples of 

invariant properties under the operation K. (iii) and (iv) show that self-
decomposability of K{no) is inherited from its predecessor fio but is not a 
K-invariant property (see Section 2 for the definition of K). 

THEOREM 4.1. Suppose that ¿x e TGm(Rd) and let /x0 E TGm-i(Rd) be its 
predecessor, m > 0. Then the following holds: 

(i) fx is operator stable if and only if /io is operator stable. 
(ii) fi is semi-stable if and only if /¿o is semi-stable. 

(iii) If no is selfdecomposable, then so is fi. 
(iv) Let m = 0 and d > 2. Then there is a type G probability measure ¡i 

such that fj, is selfdecomposable, but ¿io is not selfdecomposable. 

P r o o f , (i) The "if' part. If /x0 is operator stable with some exponent matrix 
M, then its Levy measure vQ satisfies that for any a > 0 

(4.1) av0{A) = va{a~MA), A 6 B0(Rd), 

where tM = ¿r(logi)feMfe, for t > 0 and a matrix M. Then we have 

v{A) = E [uoiZ^A)} = E[a-1uo{Z-1a~MA)] = a-1u{a~MA), 

concluding that fi is operator stable. 
The "only if ' part. If /z is operator stable with some exponent M, then 

its Levy measure V satisfies the relation in (4.1) for V instead of VQ. Thus 
we have 

E[av0(Z~lA)} = E[u0(Z~1a-M A)}, 

and by Proposition 2.3 in [MR00], we obtain 
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0.Vo(-) = M a M - ) > 

concluding that /io is operator stable. 
(ii) The "if' part. If po is valued semi-stable, then for some r G (0,1) 

and a G (0,2], 

(4.2) ru0(A) = ^ 0 ( r - 1 / a A ) , A G Bo(Kd). 

Then obviously, v satisfies (4.2) for the same r and a, which assures the 
semi-stability of p. The "if' part can be shown as in the second half part of 
the proof of (i). 

(iii) Since po is selfdecomposable, we have for each a G (0,1), 

M A ) = MaA) + v$(A), 

where is a Levy measure. Thus the Levy measure i/ of p satisfies 

v(A) = v{aA) + va{A), 

where va is another Levy measure. This implies the selfdecomposability of fi. 
(iv) We use the same idea for Theorem 4.1 in [MR00]. Let Di = [x G 

Rd : 1 < |x| < 2} and i}2 = { x e R ( i : 0 < |x| < 1 } , d > 2. Let 

p0(A) = Xd(AnDi) - e X d ( A r \ D 2 ) , 0 < e < 1, 

and 

( 4 . 3 ) p{A) = E l M Z - ' A ) ] , 

where Ad is the Lebesgue measure on Then we have shown in the proof 
of Theorem 4.1 in [MR00] that pa is not a measure, but p is a measure for 
sufficiently small e > 0. Furthermore, these two po and p satisfy conditions 
in (2.1) in Proposition 2.1 of [S98], and thus we can define 

oo 

( 4 . 4 ) u0(A) = J p0{dx) ^ 1 Aie-'x)^ 

Rd 0 

and 
oo 

( 4 . 5 ) v(A) = \ p(dx) J l A { e - t x ) d t . 

Rd 0 

A direct verification shows that (4.5) is the Levy measure of some selfdecom-
posable distribution. In fact, it follows from [JV83] or by a reformulation 
in [SY84] of a theorem due to Urbanik [U69], that every Levy measure of a 
selfdecomposable distribution can be written in the form (4.5) with p having 
the logarithmic moment. On the other hand, Sato [S98] showed that vo is 
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a Levy measure, but the distribution whose Levy measure is VQ in (4.4) is 
not selfdecomposable for e small enough (see Proposition 2.2 of [S98]). It 
follows from (4.3) that 

oo 

v(A)= \ E [p 0 {Z- l dx)} \ 1 A(e-*x)dt 
Rd 0 

oo 

= E[ 5 Po(dx) 5 1 z-XAie-tydt 
Rd 0 

= E[u0{Z~1A)}. 

Thus the infinitely divisible probability measure, whose Levy measure is u 
in (4.5), is of type G and satisfies our requirements in the statement (iv). 
This completes the proof of (iv). • 

Related to Theorem 4.1 (iv), we want to know under what conditions in 
addition to the selfdecomposability of P,, ¡JLQ is selfdecomposable. To answer 
this question, we first prove the following. Note that if H C I(Rd), then 
Q{H) C I(Rd). Thus we can define K(Q(H)). 

THEOREM 4.2. For any H c I{Rd), 

K(Q(H)) = Q(K(H)). 

P r o o f . We first show that K(Q(H)) C Q{K(H)). Suppose 6 K(Q(H)). 
Then its Levy measure v is represented as in (1.1), and its predecessor /io 
satisfies that for each a 6 (0,1), there exists pa 6 H such that fio(d) = 
LIO(A9)PQ(0). Thus the respective Levy measures U0 and I/Q of ¡JLQ and pg 
satisfy 

Vq(A) = vQ(aA) + v%(A). 

Hence we have 

v{A) = E [uoiaZ^A)} + E [v^Z^A)} = u{aA) + £a(A), 

implying that 

where T]a E f(Rd) is the probability distribution with Levy measure £a and 
t f e K(H). This concludes that /x € Q(K{H)). 

We next show that Q{K{H)) C K(Q(H)). Suppose /t € Q(K(H)). Then 
for any a € (0,1) there exists pa € K(H) such that 

fi(8) = ${a0)pa{6). 
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If pa € K(H), then its Levy measure va is represented as 

(4.6) va{A) = E MiZ-'A)} 

for some Levy measure depending on a, whose corresponding infinitely 
divisible distribution belongs to the class H. On the other hand, since pa 
is of type G and pa converges weakly to p as a —> 0, p is of type G (see 
Proposition 2.4 in [MR00]). Hence 

v{A) = E IMZ- 'A)} 

for some symmetric Levy measure u0. Combining this with (4.6) we get 

E [ v S i Z ^ A ) ] = E[vo(Z~1 A) - v(aZ~1A)\ 

for any A € B0(M.d). By Proposition 2.3 in [MR00], 

vg{A) = i/o(A) - v{aA) 

for any A € Bo (Md). Hence ¡XQ , the predecessor of /i, is selfdecomposable and 
/io G Q{H). Consequently, ¡JL 6 K(Q(H)) and the proof of Theorem 4.2 is 
complete. • 
THEOREM 4.3 . If n is selfdecomposable and if pa is of type G, then p,Q, the 
predecessor of fi, is selfdecomposable. 
P r o o f . Applying Theorem 4.2 to the case H — 7(Md), we have 

K(L0{Rd)) = Q(TG0(Rd)). 

Therefore, the following two statements are equivalent: 
(i) n is selfdecomposable such that for any a G (0,1), p(6) = p,(a9)pa(0), 

where pa is of type G. 
(ii) p, is of type and its predecessor po is selfdecomposable. 
This equivalence concludes the statement of the theorem. • 

5. Some examples 
Here we give simple examples of p 6 TGm(R1), m = 0,1. We start with 

a lemma due to [ShSr77]. 
LEMMA 5.1. Let Z be the standard normal random variable and Y be a 
positive random variable independent of Z. Then \Z\PY is infinitely divisible 
for any p> 2. 
EXAMPLE 5 . 1 . If Z\,... ,Zn are i.i.d. standard normal random variables, 
then Z\ - • • Zn is of type G. 

P r o o f . Z\---Zn = Zi\Z2 • • • Zn\ and \Z2 • • • Zn\2 is infinitely divisible by 
the above lemma. • 
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We are now going to show that the distribution of Z\Z2 belongs to 
TGi(R1), by applying Theorem 2.5. 

EXAMPLE 5 . 2 . Let Z\ and Z2 be independent standard normal random vari-
ables. Then the distribution of Z1Z2 is in TG^M1). 

P r o o f . Since 

X:= Z1Z2^Z1(\Z2\2)1/2, 
V in (2.2) is \Z2\2 in this case. By Theorem 2.5, it is enough to show that 
the symmetric measure 1/0 determined by (2.3) with the Levy measure p of 
V — \Z2\2 is the Lévy measure of a type G distribution. Note that \Z2\2 

is a x2-distribution, thus is nonnegative infinitely divisible, and its Lévy 
measure p is of the form 

e - u / 2 

p([x, 00))= \ du. J u 
x 

Then by Theorem 2.4, for x > 0, 

1 e - " / 2 

i/0([x,oo)) = ~p([x2,00)) = - j — ¿ — d u 

X2 U 

2 00 g—v1/2/2 00 

= 4 S ^ d v = S 9 ( - v 2 ) d v • 
X X 

By a characterization for type G distributions (see Theorem 1 of [R91], also 
see Theorem 2.5 of [MR00]), it is enough to check that 

g(x) = x-^e-*1'4'2 

is completely monotone. However, this is true, (see again e.g., E 55.1, page 
424 in [S99]). The proof is completed. • 

6. Further problems 
We conclude the paper by stating some further problems which naturally 

arise form the observations in this paper. 
Problem 1: In Theorem A, we gave a necessary and sufficient condi-

tion for that fi G TG0{Rd). Namely, p, G TG0(Rd) if and only if the ra-
dial component of its Lévy measure has a density involving a completely 
monotone function gx(•). What additional conditions on gx(-) assure that 
p e rGm(Rd)? 

Problem 2: Related to Corollary 3.1, we conjecture that TG00(Rd) = 
Loo(Rd), namely TGoo(Rd) is also the smallest class containing the class 
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S(Rd) of all symmetric stable distributions, closed under convolution and 
weak convergence. 

Problem 3: In Examples 5.1 and 5.2, we have shown that the distribu-
tion of the product Z\ • • • Zn is of type G and furthermore the distribution 
of Z1Z2 belongs to TGi(Md). Can one say more about the distribution of 

Problem 4: Type G distributions are continuous but are they absolutely 
continuous on their support? 
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