DEMONSTRATIO MATHEMATICA
Vol. XXXIV No 2 2001

Makoto Maejima, Jan Rosinski

THE CLASS OF TYPE G DISTRIBUTIONS ON R¢
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Abstract. Classes of infinitely divisible distributions obtained by iteration of Gaus-
sian randomization of Lévy measures are introduced and studied.

Their relation to Urbanik-Sato nested classes of selfdecomposable distributions is also
established.

1. Introduction

In our previous paper [MR00], we studied the class of type G distribu-
tions on R? defined in the following way. A symmetric infinitely divisible
probability distribution u on R? is of type G if its Lévy measure v is of the
form

(1.1) v(A) = E[vo(Z271A)), A € By(R?),

where vg is a Borel measure on R? \ {0}, Z is the standard normal random
variable, and Bo(R?) is the class of all Borel sets A in R? such that A C
{|z| > €} for some £ > 0. Such kind of distributions combine Gaussian and
Poissonian structures in a nontrivial way (see Section 5 in [MRO00]). Denote
by TG(R?) the class of type G distributions on R¢.
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A typical representative of the class TG(R?) is a symmetric stable dis-
tribution. In this paper we will use the following convention. Given a class
of measures H on R?, we will denote by H the subset of H consisting
of symmetric measures. Denote by S(R?) and I(R?) the classes of stable
and infinitely divisible distributions on R4, respectively. Therefore, we have
S(R*) c TG(R?) c I(R?). Our goal is to introduce and investigate the
nested classes TG (R%), m > 1, between TGo(R?) := TG(R?) and S(R?),
using the procedure somewhat analogous to Urbanik-Sato construction of
subclasses of selfdecomposable distributions.

In Section 2, we define the classes TG, (R%), m > 1, and show that they
form a strictly descending sequence. In Section 3, we compare our nested
subclasses of T'Go(R?) and those of the class Lo(R?) of selfdecomposable
distributions introduced and studied by Urbanik [U72], [U73] and Sato [S80].
A necessary and sufficient condition for a type G distribution on R! to be
selfdecomposable was given in [R91]. We generalize this result to R? and give
an answer to the converse question: When is a symmetric selfdecomposable
distribution of type G? We also study related problems.

Every distribution € T'G,,(R?) has its predecessor pg € TGpm—1(R?),
as defined in Section 2. In Section 4, we study the relationship between p and
1o along the following lines : If u belongs to a certain class of distributions,
then does pg belong to the same class? The answers are obtained for some
important classes in Theorem 4.1. Section 5 contains some examples and
Section 6 discusses open problems.

We conclude the introduction by stating a basic characterization theorem
for type G distributions on R?, which has been proved in [MRO0], and will
also be needed later in this paper.

THEOREM A ([MROO0]). A symmetric probability measure u on R? is of type
G if and only if it is infinitely divisible and its Lévy measure v is either zero
or represented as

v(EB) = S A(dz) S g:(r?)dr  for E € B(R)), B € B(S),
B E
where A is a probability measure on S and g, (r) is a jointly measurable func-
tion which, for any fized , is completely monotone on (0,00) and satisfies

oo

S (1 ArH)ge(rt) dr = c € (0, 00)

0
with ¢ independent of x. This representation is unique in the sense that, if
v # 0 and two pairs (A, gz) and (A, gz) both satisfy the above conditions,
then A = X and g, = g, for A-a.e. x. Moreover, X is a symmetric probability
measure and g, = g—z A-a.e.
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2. Subclasses of the class of type G distributions

In the following, if u is infinitely divisible, we denote its Lévy measure
by v{p).

We first rewrite the definition of type G distribution. In the definition
(1.1), vo is a Borel measure but since v is a Lévy measure, vy is also a Lévy
measure (see Proposition 2.2 (i)—(ii) in [MROO] or Proposition 2 in [J90]).
Moreover, vy in (1.1) always can and will be taken symmetric. For any
po € I(R%), define K (uo) as the symmetric infinitely divisible distribution
i having the same Gaussian component as pg and Lévy measure v given
by (1.1) with vy = vo(po). The symmetric distribution pg will be called the
predecessor of p (relative to the operation K). The predecessor is uniquely
defined. Indeed, suppose that u has two predecessors p; and pg. Then v
satisfies (1.1) with vy = v1(pu1) and vy = va(pe). By Proposition 2.2 (iii) in
[MROO] v; = vs, and since u1 and po have the same Gaussian part, u; = pa.
We have just shown that the operation K is one-to-one. If we write

K(H) = {K(uo): po € H}, H CI(R?),
then
TG(R?) = K(I(R?)).
Put TG_;(R?) = I(R?) and TGo(R?) = TG(R?). Define for 1 < m < oo,
TCm(R) = K(TGm_1(RY)),

and
o0

TGo(R?) = () TGm(RY).

m=0

TueoreM 2.1. I(R?) D> TGo(RY) > TGi(RY) D -+ > TGm(R?Y) >
TGrms1(RY) D -+ D TG (R?) D S(RY).

Proof. By the definition,
TG _1(R?) D TGo(R).

Suppose that TGm—1(R?) D TGn(R?) for some 0 < m < oo. If u €
TGm+1(R?), then v(u)(A) = E[vg(Z 1 A)], where g is the Lévy measure of
the predecessor pg € TG, (R?). By the induction hypothesis, we have that
o € TGm—1(R%). Hence u € TG, (R?), concluding

TGms1(R) C TGm(RY).
The assertion TG, (R?) D TG (R?) is trivial from its definition.



254 M. Maejima, J. Rosinski

We next show that TGo(R?) D S(RY). If o € S(RY), then v(4) =
E[vp(Z~1A)] is the Lévy measure of a symmetric stable distribution, where
g is the Lévy measure of pg. Thus K (§ (R%)) S(R?). Conversely, if y €
S(R4), then

v(u)(4) = Elw (271 4)],

where v is also the Lévy measure of a distribution in S(R?). For, since the
Lévy measure of y € S (R?) satisfies the condition a®v(u)(4) = v(u)(a—1A4),
for every a > 0 and A € By(R?), where o € (0,2] is the index of stability,
(1.1) holds with vy = (E[|Z|*])~v. Hence S(R?) c K(S(R%)) and thus
K(S(R?)) = S(R?), namely, S(R?) is invariant under the operation K. We
thus have, for each m > 0,

SR = K™(S(R?)) C K™(I(R)) = TGm(R?),
where K™ is the mth iteration of K. Thus S(R?) C N,,50 TGm(R?Y) =
TG (R?). This completes the proof. m -

It might be asked whether the inclusions in Theorem 2.1 are strict or
not. The answer is the following.

THEOREM 2.2. The inclusions in Theorem 2.1 are all strict, namely
I(R%) 2 TGo(R?) 2 TG1(R?) 2 -+ 2 TGm(R?) 2 TG 41 (RY) 2
- 2 TG (R?) 2 S(RY).
Proof. First note that TG_;(R%) 2 T'Gp (R?), since the existence of non-

type G infinitely divisible distribution is assured by Theorem A. Since the
operation K is one-to-one we have

TGm-1(R) \TGm(R") = K™(TG_1(R?) \ TGo(R")) # 0,
proving
(2.1) TGm-1(R*) 2 TGm(RY), V¥m > 0.
We next show that
TGm(R?) 2 TGo(R?), V¥m > 0.
If there exists an mg such that
TGmo(R?) = TGoo(R?),
then
TGrmg(R?) = TGrmp1 (RY) = - - = TG (RY),
which contradicts (2.1).
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Finally the fact that TGoo(R?) 2 S(R4) follows from Corollary 3.1 in
Section 3, and so the rest of the proof is postponed to the end of Section 3. =

The class TGoo(R?) has the following special property.

THEOREM 2.3. TGoo(R?) is the largest subclass of I(R?) invariant under
the operation K.

Proof. By Theorem 2.1,
TGm(R?) D TG i1 (RY) = K(TG(RY)),

and hence
N TG~ (&%) > [ K(TGm(R)) D K( N TGm(Rd)).
m>0 m>0 m2>0

Thus

TG (R?) D K(TGw(RY)).
Let us show the converse inclusion. Let 4 € TGoo (R?). Then for any m > 0,
t € TG (R?). Hence p has the predecessor p in every class TG, (R?).
Since the predecessor is uniquely defined,

to € () TGm(RY) = TGoo(RY),
m2>0
and hence
1 € K(TGo(RY)).

We thus conclude that

K(TGoo(R?)) = TGoo (R?).

We next show that TGo (R?) is the largest class among such classes.
Suppose that H(C I(R?)) satisfies that K(H) = H. As before, for each
m > 0,

H=K™H) c K™(I(R%) = TG (R?),
and thus
HC () TGn(R%) = TGoo(R?).
m>0
This completes the proof. m

In one dimensional case (d = 1), any random variable X with distribution
p in TGo(R!) can be characterized by

2.2) x<virg,
where V' is some nonnegative infinitely divisible random variable indepen-
dent of Z and < means equivalence in law. Then a natural question is how



256 M. Maejima, J. Rosinski

we can characterize X with p in TG,(R'),m = 1,2,..., or what type of
condition on V assures that u belongs to TG, (R!).

To answer this question, we need a relationship between v in (1.1) and
the Lévy measure p of V in (2.2).

THEOREM 2.4. For A € By(R), let Ay = AN(—A) and A2 = A\ A;. Then

1
vo(4) = p(A7) + 5p(43),
where A%2 = {z? : z € A}. Particularly,

vol([z, 00)) = 3p((a%, o0)), @ > 0.

Proof. Let {V(¢)} be a Lévy process such that V(1) £V, {Z(t)} the stan-
dard Brownian motion independent of {V'(¢)}, and X (¢t) = Z(V (¢)). X(t) is
a subordination, and X (1) £ X. The Lévy measure of the subordination is
given by
v(4) = | P{Z(t) € A}p(dt),
0
(see [Z58]). Hence
v(A) = | P{t'/?Z € A}p(dt)
0

E[ | 1{t1/2€Z-1A}p(dt)]

0
[(S) 1{tez—2A§}ﬂ(dt)] + %E[ | 1{tez—2Ag}P(dt)]
= Blp(27243)] + 5Elp(2-243))

E
0
E

Here if we put

po(4) = p(A3) + 3(43),

then we have
v(4) = E[po(Z 1 A)].
Note that pg is a symmetric measure.
On the other hand,

v(A) = E[np(Z271A)].
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Hence, from the uniqueness of vy determined by v among symmetric mea-
sures, it follows that pg = vy, namely,

vo(A) = p(43) + 5p(43).
The proof is completed. w
We thus have the following equivalence from the definition of TG, (R?).
THEOREM 2.5. Let m = 1,2,.... Then the following are equivalent:
(i) p € TGH(RY).
(ii) The symmetric measure vy determined by
(23) wllz,o0) = 5p(% ), @ >0,

where p is the Lévy measure of V, is the Lévy measure of some ug €
TGm-1(RY).

3. The Urbanik-Sato nested subclasses of symmetric selfdecom-
posable distributions
Urbanik [U72], [U73] and Sato [S80] introduced and studied the nested
classes L, (R?), m = 0,1,2,...,00, between I(R?) and S(R?), which are
defined in the following way.
In general, for H C I(R?), define
Q(H) = {u € I(RY) : for any a € (0,1), there exists p, € H
such that [i(8) = fi(a8)p.(6), V8 € R?},
where i is the characteristic function of u.
Then, Lo(R?) is defined as
Lo(R?) = QUI(R?)),
and L,(R%),m =1,2,..., are defined inductively as
Lm(Rd) = Q(Lm—l(Rd))
and
Lo(R?) = (] Lm(R?).
m>0
Then it was shown that
I(R?) D Lo(R?) D Li(R?) D -+ D Lo (R?) D S(RY).

Distributions in Lo(R?) are called selfdecomposable. Throughout this paper,
we are only concerned with symmetric distributions. Therefore we will con-
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sider classes Lo (R?). Now we have two sequences of nested classes between
I(R?) and S(R4):

() I(R*) D TGo(R?) > TG1(R%) D -+ O TGo(R?) 5 S(R?)

and

(i) T(R?) D Lo(R%) > Ly (RY) D -+ D Leo(R%) D S(RY).

Then a natural question is to compare two sequences. The following is due
to Sato [S80).

THEOREM B ([S80]). A probability measure u € I(R?) is selfdecomposable,
namely in Lo(R?) if and only if its Lévy measure v is either zero or repre-
sented as

kz
v(EB) = | Mdz) | ka(r) g for E € B(R,), BeB(S)
B E T

where X is a probability measure on S and k. (r) is, for any fized z, a non-
negative nonincreasing right-continuous function of r satisfying

S(l/\r2)kIT(r)dr= ¢ € (0,00)

0
with ¢ independent of x, and for any r, k;(r) is a measurable function of
z. This representation is unique in the sense that, if v # 0 and two pairs
(A, kz) and (A, k) both satisfy the above conditions, then A = X\ and k; = k;
for A-a.e. x.

A question when a given type G distribution on R! is selfdecomposable
was answered in [R91], namely, a type G distribution is selfdecomposable if
and only if 2'/2g,(r) is nonincreasing with respect to r on (0, 00). The proof
in [R91] did not use Theorem B, but once we have Theorems A and B, we
can relate selfdecomposable and type G distributions in R® using spectral
forms of their Lévy measures (which are unique).

THEOREM 3.1. (i) Let u € TGo(R?). Then p € Lo(R?) if and only if for
A-a.e. z, 7/%g,(r) is nonincreasing with respect to v on (0, 00).

(ii) Let u € Lo(R?). Then u € TGo(R?) if and only if for A-a.e. z,
kz(r'/2)/rY/2 is complete monotone.
Proof. Note that if u € TGo(R?) N Lo(R?), then in the representations of

v = v(p) given by Theorems A and B, the measures A and constant ¢ must
be the same. Furthermore,

(3.1) rgz(r?) = ke (r)
for X-a.e. z. The theorem follows from (3.1). m
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Sato [S80] also gave a necessary and sufficient condition for u € L,,(R%),
m =1,2,...,00. Define h;(s) = k;(e™*), and call it the h-function of u €
Lo(R?). For § > 0, let As be the difference operator, Asf(s) = f(s+6)— f(s),
and A} be its nth iteration. We say that a function f(s) is monotone of order
n if

3.2 Alf(s)>0 for6>0, seR!,
§

for any j = 0,1,...,n. When (3.2) holds for all integers j, f is called abso-
lutely monotone. Then one of results by Sato [S80] is the following.

THEOREM C ([S80]). Let m = 0,1,2,...,00. A probability measure u belongs
to L, (R?) if and only if p € Lo(R?) and h-function h,(s) of u is monotone
of order m + 1 for A-a.e. x, where X is the spherical component of the Léuvy
measure of u, and when m = oo, being monotone of order m+1 is understood
as being absolutely monotone.

The next theorem is a direct consequence of Theorem C and the relation
(3.1).

THEOREM 3.2. Let u € TGo(R?), and m =0,1,2,...,00. Then y € L,,,(R%)
if and only if

he(s) = e *g (e™2°)

is monotone of order m + 1 (absolutely monotone when m = oo) for
A-a.e. .

In [MRO00], we have shown that T'Go(R?) is closed under convolution
and weak convergence. By exactly the same argument, we can show the
following.

THEOREM 3.3. The classes TGm(RY),m = 1,2,...,00, are closed under
convolution and weak convergence.

COROLLARY 3.1. TGoo(R?) D Loo (RY).

Proof. It is known ([S80]) that Lo, (R?) is the smallest class containing
the class S(R?), closed under convolution and weak convergence, and thus
Lo (R?) is the smallest class containing the class S(R?), closed under con-
volution and weak convergence. This fact combined with Theorem 3.3 for
m = oo yields the conclusion. =
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A consequence of Corollary 3.1 is that convolutions of symmetric stable
distributions of different indices are of type G. This fact is pointed out in
[R91] for the case d = 1.

Proofof Theorem 2.2 (continued). As stated above in the proof of Corollary
3.1, we know that L (R?) 2 S(R%), because, for instance, convolutions of
symmetric stable distributions of different indices are in Z(Rd) but not in
S (R%). Thus by Corollary 3.1,

TGo(R?) D Loo(R?) 2 S(RY).

This completes the proof of Theorem 2.2. =

4. Some invariant properties of type G distributions

The first two statements, (i) and (ii) of Theorem 4.1, give examples of
invariant properties under the operation K. (iii) and (iv) show that self-
decomposability of K (ug) is inherited from its predecessor uo but is not a
K-invariant property (see Section 2 for the definition of K).

THEOREM 4.1. Suppose that p € TG (R?) and let po € TGm_1(R?) be its
predecessor, m > 0. Then the following holds:

(i) p 1s operator stable if and only if ug is operator stable.
(ii) p is semi-stable if and only if po is semi-stable.
(iil) If po is selfdecomposable, then so is p.
(iv) Let m = 0 and d > 2. Then there is a type G probability measure p
such that p is selfdecomposable, but pg is not selfdecomposable.

Proof. (i) The “if” part. If ug is operator stable with some exponent matrix
M, then its Lévy measure vy satisfies that for any a > 0

(4.1) avg(A) = rp(a™™MA), A€ By(RY),
where tM =377 | & (logt)*M*, for t > 0 and a matrix M. Then we have
v(A) = E[ng(Z271A)] = Ela (Z7a M A)] = a tv(a™M 4),

concluding that u is operator stable.

The “only if” part. If  is operator stable with some exponent M, then
its Lévy measure v satisfies the relation in (4.1) for v instead of vy. Thus
we have

Elavo(Z7*A)] = E[uo(Z27ra"M4)),
and by Proposition 2.3 in [MR00], we obtain
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ave(+) = vo(a™™)

b

concluding that pg is operator stable.
(ii) The “if” part. If pg is R%-valued semi-stable, then for some r € (0,1)
and a € (0, 2],

(4.2) ro(A) = np(r~*A), A e By(R%).
Then obviously, v satisfies (4.2) for the same r and «, which assures the
semi-stability of u. The “if’ part can be shown as in the second half part of
the proof of (i).
(ii) Since pp is selfdecomposable, we have for each a € (0,1),
vo(A) = vo(ad) + v§(A),
where v§ is a Lévy measure. Thus the Lévy measure v of u satisfies
v(A) =v(ad) + v*(A),

where v? is another Lévy measure. This implies the selfdecomposability of p.
(iv) We use the same idea for Theorem 4.1 in [MRO00]. Let D; = {z €
R?:1<|z|<2}and Dy ={z€R:0< |z| <1},d > 2. Let

po(A) :/\d(AﬂDl)—é‘/\d(AﬂDz), 0<e<l,
and
(4.3) p(4) = Elpo(Z714)),

where Aq is the Lebesgue measure on R%. Then we have shown in the proof
of Theorem 4.1 in [MROO] that po is not a measure, but p is a measure for
sufficiently small € > 0. Furthermore, these two pg and p satisfy conditions
in (2.1) in Proposition 2.1 of [S98], and thus we can define

o0

(4.4) vo(A) = | po(dz) | 1a(e™*z)dt
Rd 0

and

(4.5) v(A) = | p(dz) | 1a(e™"z)dt.
R4 0

A direct verification shows that (4.5) is the Lévy measure of some selfdecom-
posable distribution. In fact, it follows from [JV83] or by a reformulation
in [SY84] of a theorem due to Urbanik [U69], that every Lévy measure of a
selfdecomposable distribution can be written in the form (4.5) with p having
the Jogarithmic moment. On the other hand, Sato [S98] showed that v is
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a Lévy measure, but the distribution whose Lévy measure is vy in (4.4) is
not selfdecomposable for € small enough (see Proposition 2.2 of [S98]). It
follows from (4.3) that

v(A) = | E[po(Z7'dz)] | 14(e™z) dt
Rd 0

- E[ [ poldz) § 17-14(c"*a) dt]
Rd 0

= E[I/o(Z—lA)].
Thus the infinitely divisible probability measure, whose Lévy measure is v

in (4.5), is of type G and satisfies our requirements in the statement (iv).
This completes the proof of (iv). m

Related to Theorem 4.1 (iv), we want to know under what conditions in
addition to the selfdecomposability of u, ug is selfdecomposable. To answer

o~

this question, we first prove the following. Note that if H C I(R?), then
Q(H) C I(R?). Thus we can define K (Q(H)).

THEOREM 4.2. For any H C T(Rd),
K(Q(H)) = Q(K(H)).

Proof. We first show that K(Q(H)) C Q(K(H)). Suppose p € K(Q(H)).
Then its Lévy measure v is represented as in (1.1), and its predecessor g
satisfies that for each a € (0,1), there exists p* € H such that [p(6) =
;’Zo(aﬁ);g(O). Thus the respective Lévy measures vy and v§ of uop and pg
satisfy

vo(A) = rp(ad) + v5(A).
Hence we have
v(4) = Elvo(aZ 7 A)] + E[v§ (27 A)] = v(ad) + £°(4),
implying that
i(8) = B(ad)n°(8),
where n° € I(R?) is the probability distribution with Lévy measure £% and
n® € K(H). This concludes that u € Q(K(H)).

We next show that Q(K (H)) C K(Q(H)). Suppose p € Q(K(H)). Then
for any a € (0,1) there exists p, € K(H) such that

11(8) = 1a(ab)pa ().
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If p, € K(H), then its Lévy measure v° is represented as
(4.6) v (A) = E[vg(Z71 A)]

for some Lévy measure v§, depending on a, whose corresponding infinitely
divisible distribution belongs to the class H. On the other hand, since p,
is of type G and p, converges weakly to p as a — 0, p is of type G (see
Proposition 2.4 in [MR00]). Hence

v(A) = E[yg(Z714)]
for some symmetric Lévy measure vy. Combining this with (4.6) we get
E[v(Z7'A)] = E[ny(Z71A) - v(aZ71A)]
for any A € By(R?). By Proposition 2.3 in [MR00],
v§(A) = 1p(A) — v(aA)

for any A € By(R?). Hence g, the predecessor of , is selfdecomposable and
po € Q(H). Consequently, u € K(Q(H)) and the proof of Theorem 4.2 is
complete. u

THEOREM 4.3. If u is selfdecomposable and if p, is of type G, then pg, the
predecessor of p, ts selfdecomposable.

Proof. Applying Theorem 4.2 to the case H = I(R%), we have
K (Lo(R") = Q(TGo(R%)).
Therefore, the following two statements are equivalent:
(i) p is selfdecomposable such that for any a € (0, 1), () = (ad)p.(0),
where p, is of type G.

(ii) p is of type and its predecessor ug is selfdecomposable.
This equivalence concludes the statement of the theorem. m

5. Some examples
Here we give simple examples of u € TGy, (R!), m = 0,1. We start with
a lemma due to [ShSr77].

LEMMA 5.1. Let Z be the standard normal random variable and Y be a
positive random variable independent of Z. Then |Z|PY is infinitely divisible
for anyp > 2.

ExaMmPLE 5.1. If Z4,...,Z, are i.i.d. standard normal random variables,
then Z, -+ Z, is of type G.

Proof. Zy---Zn = Z1|Zy--+Zy| and |Zy -+ Z,|? is infinitely divisible by
the above lemma. =
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We are now going to show that the distribution of Z;Z,; belongs to
TG, (R?!), by applying Theorem 2.5.

EXAMPLE 5.2. Let Z, and Z3 be independent standard normal random vari-
ables. Then the distribution of Z,Z, is in TG1(R!).

Proof. Since
X = 212, £ Z,(|1Z22)*/2,

V in (2.2) is |Z2|? in this case. By Theorem 2.5, it is enough to show that
the symmetric measure vy determined by (2.3) with the Lévy measure p of

= |Z2|? is the Lévy measure of a type G distribution. Note that |Z|?
is a x2-distribution, thus is nonnegative infinitely divisible, and its Lévy
measure p is of the form

oo
e u/2

oz, 00) = § —— du.

Then by Theorem 2.4, for z > 0,

°°e—-u/2
vz, ) = 3p(i?, 00)) = 5 | S
0o —v1/2/2 00
= i £ " § g(v?)dv.

By a characterization for type G distributions (see Theorem 1 of [R91], also
see Theorem 2.5 of [MRO0O]), it is enough to check that

g(z) = &~ 1/2e=="/2
is completely monotone. However, this is true, (see again e.g., E 55.1, page
424 in [S99]). The proof is completed. m

6. Further problems

We conclude the paper by stating some further problems which naturally
arise form the observations in this paper.

Problem 1: In Theorem A, we gave a necessary and sufficient condi-
tion for that pu € TGo(R?). Namely, u € TGp(R?) if and only if the ra-
dial component of its Lévy measure has a density involving a completely
monotone function g,(-). What additional conditions on g,(-) assure that
i € TG (R)?

Problem 2: Related to Corollary 3.1, we conjecture that TGoo(R?) =
Loo(R%), namely TGoo(R?) is also the smallest class containing the class
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S(R?) of all symmetric stable distributions, closed under convolution and
weak convergence.

Problem 3: In Examples 5.1 and 5.2, we have shown that the distribu-
tion of the product Z; --- Z, is of type G and furthermore the distribution
of Z,Z, belongs to TG1(R?). Can one say more about the distribution of
Zy 2,7

Problem 4: Type G distributions are continuous but are they absolutely
continuous on their support?
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