

Zbigniew J. Jurek

REMARKS ON THE SELFDECOMPOSABILITY
AND NEW EXAMPLES

Dedicated to Professor Kazimierz Urbanik

Abstract. The analytic property of the *selfdecomposability* of characteristic functions is presented from stochastic processes point of view. This provides new examples or proofs, as well as a link between the stochastic analysis and the theory of characteristic functions. A new interpretation of the famous Lévy's stochastic area formula is given.

1. Introduction and notations

The class of *selfdecomposable* probability distributions, denoted as *SD*, (known also as the class *L* or Lévy class *L* distributions), appears in the theory of limiting distributions as laws of normalized partial sums of independent random variables but not necessarily *identically* distributed. However, the additional assumption of the *infinitesimality* of the summands guarantees their *infinite divisibility*; cf. Jurek & Mason (1993), Section 3.3.9.

All our random variables or stochastic processes are defined on a fixed probability space $(\Omega, \mathcal{F}, \mathcal{P})$. For a given random variable X (for short: rv) or its probability distribution $\mu = \mathcal{L}(X)$ or its probability density f , provided it exists (i.e., $d\mu(x) = f(x)dx$), we define its *characteristic function* (in short: char.f.) $\phi_X(t) = \phi(t)$ as follows

$$\phi(t) = \phi_X(t) = \mathbb{E}[e^{itX}] = \int\limits_{\Omega} e^{itX(\omega)} d\mathcal{P}(\omega) = \int\limits_R e^{itx} d\mu(x), \quad t \in R.$$

Research supported in part by Grant no. 2 P03 A02914 from KBN, Warsaw, Poland.

Key words and phrases: Lévy process; scaling and strong Markov property; Brownian motion; infinite divisibility; selfdecomposability property or class *L* distributions, or *SD* distributions; Lévy-Khintchine formula.

We will say that a characteristic function ϕ has *the selfdecomposability property* if

$$(1) \quad \forall(0 < c < 1) \exists(\text{char.f. } \psi_c) \forall(t \in R) \quad \phi(t) = \phi(ct)\psi_c(t).$$

In terms of a random variable X the above means that for any $0 < c < 1$ there exists a rv X_c such that

$$X \stackrel{d}{=} cX + X_c, \quad \text{with independent rv } X, X_c;$$

where $\stackrel{d}{=}$ means equality in distribution.

The class of all selfdecomposable char.f. (or probability distributions or rv.) we denote here by SD , although, it is often denoted by L and called *the Lévy class L*. It is known that all elements $\phi \in SD$ are *infinitely divisible*, i.e.,

$$\forall(n \geq 1) \exists(\text{char.f. } \phi_n) \forall(t \in R) \quad \phi(t) = (\phi_n(t))^n.$$

The class of all infinitely divisible char.f. (or rv's or probability distributions) is denoted by ID . The classical Lévy-Khintchine Theorem says that

$$(2) \quad \text{a function } \phi : R \rightarrow \mathbb{C} \text{ is an ID characteristic iff } \phi(t) = e^{\Phi(t)},$$

$$(3) \quad \text{where } \Phi(t) = ita - \frac{1}{2}t^2\sigma^2 + \int_{R-\{0\}} [e^{itx} - 1 - \frac{itx}{1+x^2}]dM(x),$$

where $a \in R, \sigma^2 \geq 0$ and M is called Lévy spectral measure , i.e., M is finite measure outside every neighbourhood of 0 and integrates x^2 in all neighbourhoods of 0. The triple $[a, \sigma^2, M]$ is uniquely determined by a char.f. ϕ from ID. Conversely, each triple gives an ID char.f. by (3); cf. Jurek & Mason (1993), Section 1.1.8. The function Φ is called *the Lévy exponent* of the infinitely divisible char.f. ϕ .

A stochastic processes $Y(t, \omega)$, $t \geq 0$, with stationary and independent increments, starting from zero is called *a Lévy process*. Usually we may choose a version with *cadlag paths*. The law of $Y(\cdot)$ is determined by the law of $Y(1)$ which is ID. Moreover, each infinitely divisible distribution μ can be inserted into a Lévy process Y such that $\mathcal{L}(Y(1)) = \mu$. The Lévy spectral measure $M(A)$, in (3), is the expected number of jumps of $Y(t)$, for $0 \leq t \leq 1$, whose sizes are in a set A .

We say that X has *the scaling or rescaling property* if for each $0 < c < 1$ there exists a constant $h(c)$ such that

$$(4) \quad X(ct) \stackrel{d}{=} h(c)X(t).$$

Some of self-similar processes have the scaling property. In general case one needs to add a deterministic function, depending on c , in (4).

For a Lévy process Y , it is easy to see that $Y(t + s) - Y(s)$, (s is fixed) $t \geq 0$, is another Lévy process with the same distribution, on the Skorochod space of *cadlag functions*, as the process $Y(t)$. Moreover, the second process is independent of σ field $\sigma(\{Y(u) : u \leq s\})$. More importantly, for any rv $T \geq 0$ we have

(5) $Y(t + T) - Y(T)$ and $Y(t)$, $t \geq 0$ have the same probability distributions whenever $Y(\cdot)$ and T are stochastically independent.

This is so called *the strong Markov property* and it holds also for Markov stopping times τ with respect to the natural filtration associated with Y . Basic examples are the Brownian motion $B(t)$, and the stable process $\eta_p(t)$, where $0 < p \leq 2$ is the exponent of stability. The case $p = 2$ corresponds to Brownian motion.

1. Selfdecomposability and the strong Markov property

The following is a minor generalization of the observation in Bondesson (1992), p. 19. For future references we state it as follows:

PROPOSITION 1. *Let X be a process with independent increments, having the scaling and the strong Markov properties and let $T \geq 0$ be an independent of it selfdecomposable rv. If the scaling function is a homeomorphism of the unit interval, then for all $0 \leq c \leq 1$ we have*

(6) $X(T) \stackrel{d}{=} cX(T) + X_c(T)$ with the two summands
being independent, i.e., $X(T)$ is a selfdecomposable rv.

P r o o f. Note that $X(T) = X(cT) + [X(T) - X(cT)] \stackrel{d}{=} h(c)X(T) + X_c(T)$, where $X_c(T) := [X(T) - X(cT)]$ is independent of $X(T)$; use conditioning on T . Putting for c values $h^{-1}(c)$ we get the selfdecomposability of $X(T)$.

Here are examples of *SD* rv which we obtained from Proposition 1 or via arguments as those in the proof of it.

EXAMPLE 1.

(a) For nonnegative $T \in SD$ that is independent of standard normal rv N and Brownian motion (B_t) , we have that $N\sqrt{T} \stackrel{d}{=} B_T \in SD$.

(b) For a Brownian motion B , let T_a be the exit time from the interval $[-a, a]$, i.e., $T_a = \inf\{t : |B(t)| = a\}$, and let g_{T_a} be its last zero before time T_a , i.e., $g_{T_a} = \sup\{t < T_a : B(t) = 0\}$. Then for $a > 0$ we have that $g_{T_a} \in SD$. Furthermore, $N\sqrt{g_{T_a}} \stackrel{d}{=} B_{g_{T_a}}$ is in *SD*, and its characteristic function is $\tanh(at)/at$, $t \in R$.

(c) For Brownian motion $B(t)$ in R^d , $d \geq 3$ (the transience property holds) let $R(t) := \|B(t)\|$ denotes the Bessel process (the distance from zero). Then

$$L_r := \sup\{t : R(t) \leq r\}, \text{ and } \log L_r \text{ are both in } SD.$$

In fact, the law of L_r is equal to the law of $1/(2\gamma_{\frac{d-2}{2}, r^2})$, where $\gamma_{\alpha, \lambda}$ is the gamma rv.

(d) For a normal rv Z and indepependent of it rv $\gamma_{\alpha, \lambda}$, the ratio $Z/\sqrt{\gamma_{\alpha, \lambda}}$ $\stackrel{d}{=} B(1/\gamma_{\alpha, \lambda})$ is SD rv. In particular, any Student t-distribution is in SD .

(e) Let $\eta_p(t)$, $t \geq 0$, be a symmetric stable process with the exponent $0 < p \leq 2$ and $\gamma_{\alpha, 1}$ be independent of it rv. Then rv $\eta_p(\gamma_{\alpha, 1})$ is in SD with the characteristic function $(1 + c_p|t|^p)^{-\alpha}$.

(f) For Brownian motion B_t on R , $b > 0$, $a \neq 0$, random variables

$$\int_0^\infty \exp(aB(t) - bt)dt \text{ and } \log \left(\int_0^\infty \exp(aB(t) - bt)dt \right) \text{ are both in } SD.$$

Proof. Notice that $N\sqrt{T} \stackrel{d}{=} B(T)$, which proves (a). For (b) first observe that $T_{ca} = \inf\{t : |c^{-1}B(t)| = a\} \stackrel{d}{=} \inf\{t : |B(t/c^2)| = a\} = c^2T_a$. For $0 < a < 1$, random variables $g_{T_a}, g_{T_1} - g_{T_a}$ are independent and thus we have

$$g_{T_1} \stackrel{d}{=} g_{T_a} + g_{T_1} - g_{T_a} \stackrel{d}{=} a^2 g_{T_1} + [g_{T_1} - g_{T_a}]$$

which shows that g_{T_1} and thus g_{T_a} are in SD . Further, Proposition 1 gives that $B_{g_{T_a}} \in SD$ and use Yor (1997), Section 18.6, p.133.

(c) Note the scaling property $L_{ct} \stackrel{d}{=} c^2 L_t$ and increments independence of L_t , $t \geq 0$; cf. Getoor (1979). This and Proposition 1 shows that L_t is SD . Getoor (1979) also identified the law of L_t as the law of appropriate inverse of gamma rv. Furthermore, log-gamma is SD , cf. Jurek (1997), Example (c).

(d) From (c) we know that rv $1/\gamma_{\alpha, \lambda}$ is in SD . Taking independent of it BM (B_t) and stopping it at $1/\gamma_{\alpha, \lambda}$ we obtain SD distribution. Since t-distribution is defined as the ratio of a normal rv and square root of χ^2 , which belongs to gamma family, we conclude the selfedecomposability of t -distributions. Comp. the original proof of Grosswald (1976).

(e) Symmetric stable Lévy process admits the scaling property (with $h(c) = c^{1/p}$) as well as the strong Markov property. Therefore the Proposition 1 gives the selfdecomposability. The remainder is a consequence of the equation

$$\eta_p(\gamma_{\alpha,1}) \stackrel{d}{=} \eta_p(1) \cdot \gamma_{\alpha,1}^{1/p},$$

where the two factors are independent. Note that the selfdecomposability of the characteristic functions in question, is also easy to obtain by checking the property (1) when $\alpha = 1$ (for all $p > 1$ Polya criterion implies that it is char.f.) and then using properties of the class SD .

(f) Dufresne (1990) (cf. also Yor (1992) and Urbanik (1992), Example 3.3, p.309) proved that the integral has probability distribution of an inverse of a gamma rv. Thus (c) gives that both rv are in SD .

3. Selfdecomposability and BDLPs

In this section we are focussing on the so called BDLPs or BDRVs. The following is *the random integral representation*

X has SD distribution iff there exists a unique, in distribution, Lévy process Y such that

$$(7) \quad \mathbb{E}[\log(1 + |Y(1)|)] < \infty \quad \text{and} \quad X \stackrel{d}{=} \int_0^\infty e^{-s} dY(s).$$

The process Y is referred to as the background driving Levy process or, in short, BDLP for X . Similarly, $Y(1)$ is called the background driving random variable for X . Cf. Jurek and Mason (1993), Theorem 3.9.3. and the bibliographical comments there.

Here is a new method of finding the law of $Y(1)$ in (7).

PROPOSITION 2. If $X_t := \int_0^t e^{-s} dY(s)$, for $t \geq 0$, then

$$(8) \quad \mathcal{L}(X_t)^{*1/t} \Rightarrow \mathcal{L}(Y(1)), \quad \text{as } t \rightarrow 0.$$

Proof. Note that Lemma 1.1 in Jurek (1985) gives

$$(9) \quad \begin{aligned} \mathcal{L}(X_t)^{*1/t} &\stackrel{d}{=} \int_0^t e^{-s} dY(s/t) \\ &= \int_0^1 e^{-tu} dY(u) \Rightarrow \mathcal{L}\left(\int_0^1 dY(u)\right) = \mathcal{L}(Y(1)), \end{aligned}$$

as $t \rightarrow 0$, which completes the proof.

REMARK 1. The above process X_t allows the identification of the law of $Y(1)$ (as $t \rightarrow 0$) as well it gives the random integral representation of SD rv (as $t \rightarrow \infty$); cf. Jurek and Mason (1993), Theorem 3.6.8 and 3.9.3.

For future references we need the following new description of the self-decomposability property.

PROPOSITION 3. *If ϕ is a class SD characteristic function then it is differentiable at $t \neq 0$, and*

$$(10) \quad \psi(t) := \exp[t\phi'(t)/\phi(t)] \text{ for } t \neq 0 \text{ and } \psi(0) := 1$$

is a characteristic function from the class ID_{log} .

Conversely, if ψ satisfies the above then ϕ is in the class SD.

[ψ or $Y(1)$ is referred to as the *background driving random variable* of SD char. f. ϕ ; in short: BDRV].

In mathematical economy the expression $t\phi'(t)/\phi(t)$ is called *the elasticity of a function ϕ at a point t* . It represents the relative change in ϕ over relative change in argument t . Usually one is interested in the demand and supply functions].

P r o o f. In terms of characteristic functions the random integral representation says that

$$\phi \in SD \quad \text{iff} \quad \log \phi(t) = \int_0^t \log \psi(u) \frac{du}{u},$$

where the characteristic function ψ corresponds to the distribution of $Y(1)$; cf. Jurek and Mason (1993), Remark 3.6.9(4), p.128. Hence we conclude the claim in Proposition 3.

COROLLARY 1. *A Lévy exponent Φ corresponds to a class SD characteristic function iff it is differentiable (in $R - \{0\}$), $\lim_{t \rightarrow 0} t\Phi'(t) = 0$ and $t\Phi'(t)$ is a Lévy exponent of a characteristic function in ID_{log} .*

As we have seen the selfdecomposability is sometimes preserved by taking logarithm of a positive SD rv. Here we have a criterion for a such phenomena and at the same time we have a method of "producing" char. f. from a given SD char.f. .

COROLLARY 2. *Let $X > 0$ be an SD rv. Then $\log X$ is in SD iff the function*

$$t \rightarrow \exp\left\{it \frac{\mathbb{E}[X^{it} \log X]}{\mathbb{E}[X^{it}]}\right\} = \exp\left[t \frac{d}{dt}(\log \mathbb{E}[X^{it}])\right]$$

exists and is an infinitely divisible char.f. with a finite logarithmic moment.

P r o o f. Write the char. f. for $\log X$ and use Proposition 3 for char. f. of X from the class SD.

REMARK 2. Using the property from Proposition 3 one can also get the criterion when SD rv X is such that $\exp(X)$ is again in SD. But as in the above Corollary 2 these are not easily applicable methods. On the other

hand, if one knows that $X > 0$ and $\log(X)$ are in SD then the Corollary 2 "produces" and ID_{\log} char. f.

EXAMPLE 2. Let T^ν , for a real $\nu > 0$, denotes the Student t-distribution with 2ν degrees of freedom. It has the probability density function

$$f(x) = \frac{\Gamma(\nu + 1/2)}{\sqrt{2\pi\nu}\Gamma(\nu)}(1 + \frac{x^2}{2\nu})^{-\nu-1/2}, \text{ for } x \in R.$$

Hence its char. f. is equal to

$$\phi_{T^\nu}(t) = \frac{2^{1-\nu}}{\Gamma(\nu)}(\sqrt{2\nu}|t|)^\nu K_\nu(\sqrt{2\nu}|t|),$$

where K_ν is the Bessel function; cf. Grosswald(1976) or use Gradshteyn & Ryzhik (1994) formulae: 3.771(2) with 8.334(2).

From the Example (e) above we have that T^ν are selfdecomposable and therefore Proposition 3 and the property 8.486(12), in Gradshteyn & Ryzhik (1994), of Bessel funtions K_ν imply that

$$\begin{aligned} (11) \quad \psi_{T^\nu}(t) &= \exp \left[\nu + \frac{|t|\sqrt{2\nu}K'_\nu(\sqrt{2\nu}|t|)}{K_\nu(\sqrt{2\nu}|t|)} \right] \\ &= \exp \left[-|t|\sqrt{2\nu} \frac{K_{\nu-1}(\sqrt{2\nu}|t|)}{K_\nu(\sqrt{2\nu}|t|)} \right], \quad t \neq 0, \end{aligned}$$

is the BDRV for t-distribution. In particular, it is char. f. from ID_{\log} . Because of properties of characteristic functions we have the following properties of Bessel functions at zero.

COROLLARY 3. For Bessel functions K_ν , we have

$$\begin{aligned} (12) \quad (i) \quad \lim_{z \rightarrow 0} \frac{|z|K'_\nu(|z|)}{K_\nu(|z|)} &= -\nu. \\ (ii) \quad \lim_{z \rightarrow 0} \frac{|z|K_{\nu-1}(|z|)}{K_\nu(|z|)} &= 0. \end{aligned}$$

4. Two "curious" formulae

It is natural to define two "integral mappings": \mathcal{I} from the class ID_{\log} onto SD by

$$(13) \quad \mathcal{I}(\nu) := \mathcal{L} \left(\int_0^\infty e^{-s} dY(s) \right),$$

and similarly, \mathcal{J} from ID onto \mathcal{U} by

$$(14) \quad \mathcal{J}(\nu) := \mathcal{L} \left(\int_0^1 s dY(s) \right),$$

where in both cases Y is a Lévy process such that $Y(1) = \nu$. More about the class \mathcal{U} one can find in Jurek (1985). [Let us add here that \mathcal{I} and \mathcal{J} are isomorphisms between the corresponding topological convolution semigroups; Theorems 2.6 and 3.6 in Jurek (1985)]. Moreover, probability measures of the form

$$(15) \quad \mathcal{J}(\nu * \mathcal{I}(\nu)) \in SD, \text{ whenever } \nu \in ID_{log}.$$

Cf. Jurek (1985), Theorem 4.5. The argument of \mathcal{J} above, $\nu * \mathcal{I}(\nu)$, which is the convolution of SD distribution $\mathcal{I}(\nu)$ and its background driving distribution ν , appears in some known formulae. Here are two occurrences of such convolution products.

A. Let $B_t = (Z_t, \tilde{Z}_t)$ be \mathbf{R}^2 -Brownian motion and let

$$\mathcal{A}_u = \int_0^u Z_s d\tilde{Z}_s - \tilde{Z}_s dZ_s, u > 0,$$

be the Lévy's stochastic area integral. P. Lévy (1951) (see also Yor (1992a), p.19) has proved that

$$(16) \quad \mathbb{E}[e^{it\mathcal{A}_u} | B_u = a] = \frac{tu}{\sinh tu} \exp\left[-\frac{|a|^2}{2u}(tu \coth tu - 1)\right], \quad t \in R,$$

where $a \in R^2$ and $u \geq 0$ are fixed. The family of characteristic functions $\frac{bt}{\sinh bt}$, ($b \in R$ is a fixed parameter), is in SD and its BDRV/BDLP are of the form $\exp[-2(bt \coth bt - 1)]$; cf. Jurek (1996), Corollary 3 and p. 182. Thus in (16) we have SD characteristic function and its BDRV/BDLP modulo a constant factor $2|a|^2/u$.

REMARK 3. From the formula (16) we infer that, conditionally, the stochastic area integral is infinitely divisible. In fact, the area integral \mathcal{A}_u has char.f. $1/\cosh ut$, [cf. Lévy (1951), formula (1.3.5) or Yor (1992a), pp. 16-19 taking there in the formula (2.1): $\delta = 2, \alpha = 0$ and $x = 0$]. Thus the area integral itself has SD distribution and, in particular, it is infinitely divisible. (see the example **B** below for its BDLP/BDRV).

B. Let $B_t, 0 \leq t \leq 1$ be a Brownian motion and let N be an independent of it standard normal rv. From Wenocur (1986) (see also Yor (1992a), p.19) we infer that

$$(17) \quad \begin{aligned} \mathbb{E}[e^{-\frac{t^2}{2} \int_0^1 (B_s + sx)^2 ds}] &= \mathbb{E}[e^{itN(\int_0^1 (B_s + sx)^2 ds)^{1/2}}] \\ &= \left(\frac{1}{\cosh t}\right)^{1/2} \exp\left[-\frac{x^2}{2t} \tanh t\right]. \end{aligned}$$

However, $1/\cosh t$ is SD characteristic function and its BDRV/BDLP is of the form $\exp[-t \tanh t]$. Cf. Jurek (1996), Corollary 4 and an appropriate formula on p. 182. Thus again in (17) we see a product of SD distribution and its BDRV/BDLP.

Acknowledgements. Part of this paper was prepared while the Author visited the Universities Paris VI and VII, June - July, 2000. Discussions with Professors J. Jacod, M. Yor and others about different aspects of the selfdecomposability were very fruitful and interesting.

References

- L. Bondesson (1992), *Generalized gamma convolutions and related classes of distributions and densities*, Lecture Notes in Statistics, vol. 79. Springer-Verlag, New York.
- D. Dufresne (1990), *The distribution of a perpetuity, with applications to risk theory and pension funding*, Scand. Actuarial J., pp. 39–79.
- R. K. Getoor (1979), *The Brownian escape process*, Ann. Probab. 7, pp. 864–867.
- I. S. Gradshteyn and I. M. Ryzhik (1994), *Table of integrals, series, and products*, Academic Press, New York, 5th Edition.
- E. Grosswald (1976), *The student t -distribution of any degree of freedom is infinitely divisible*, Z. Wahrscheinlichkeitstheorie verw. Gebiete vol. 36, pp. 103–109.
- Z. J. Jurek (1985), *Relations between the s -selfdecomposable and selfdecomposable measures*, Ann. Probab. vol. 13(2), pp. 592–608.
- Z. J. Jurek (1996), *Series of independent exponential random variables*, In: Proc. 7th Japan-Russia Symposium on Probab. Ther. Math. Stat.; S. Watanabe, M. Fukushima, Yu.V. Prohorov, and A.N. Shiryaev Eds, pp.174–182. World Scientific, Singapore, New Jersey.
- Z. J. Jurek (1997), *Selfdecomposability: an exception or a rule?*, Annales Univer. M. Curie-Sklodowska, Lublin-Polonia vol. LI, Sectio A, pp. 93–107. (Special volume dedicated to Professor Dominik Szynal).
- Z. J. Jurek and J. D. Mason (1993), *Operator limit distributions in probability theory*, Wiley and Sons, New York. (292 pp.)
- P. Lévy (1951), *Wiener's random functions, and other Laplacian random functions*; Proc. 2nd Berkeley Symposium Math. Stat. Probab., Univ. California Press, Berkeley, pp. 171–178.
- K. Urbanik (1992), *Functionals on transient stochastic processes with independent increments*, Studia Math. vol. 103(3), pp. 299–315.
- M. Wenocur (1986), *Brownian motion with quadratic killing and some implications*, J. Appl. Probab. 23, pp. 893–903.
- M. Yor (1992), *Sur certaines fonctionnelles exponentielles du mouvement Brownien reel*, J. Appl. Probab. 29, pp. 202–208.

M. Yor (1992a), *Some aspects of Brownian motion, Part I: Some special functionals*, Birkhauser, Basel.

M. Yor (1997), *Some aspects of Brownian motion, Part II: Some recent martingale problems*, Birkhauser, Basel.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCŁAW
Pl. Grunwaldzki 2/4
50-384 WROCŁAW, POLAND
E-mail: zjjurek@math.uni.wroc.pl

Received September 27, 2000.