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Abstract. The analytic property of the selfdecomposability of characteristic functions
is presented from stochastic processes point of view. This provides new examples or proofs,
as well as a link between the stochastic analysis and the theory of characteristic functions.
A new interpretation of the famous Lévy’s stochastic area formula is given.

1. Introduction and notations

The class of selfdecomposable probability distributions, denoted as SD,
(known also as the class L or Lévy class L distributions), appears in the the-
ory of limiting distributions as laws of normalized partial sums of indepen-
dent random variables but not necessarily identically distributed. However,
the additional assumption of the infinitesimality of the summands guaran-
tees their infinite divisibility; cf. Jurek & Mason (1993), Section 3.3.9.

All our random variables or stochastic processes are defined on a fixed
probability space (2, F, P). For a given random variable X (for short: rv) or
its probability distribution p = £(X) or its probability density f, provided
it exits (i.e.,du(z) = f(z)dz), we define its characteristic function ( in short:
char.f.) ¢x(t) = ¢(t) as follows

3(t) = ¢x(t) = E[e™] = | X “dP(w) = | e"*du(z), teR.
Q R
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We will say that a charactersitic function ¢ has the selfdecomposability pro-
perty if

1) V(0 < ¢ < 1)3(charf. P )V(t € R) $(t) = d(ct)pe(t).

In terms of a random variable X the above means that forany 0 <c < 1
there exits a rv X, such that

X g cX + X., with independent rv X, X;

where d means equality in distribution.

The class of all selfdecomposable char.f. (or probability distributions or
rv.) we denote here by SD, although, it is often denoted by L and called the
Lévy class L. It is known that all elements ¢ € SD are infinitely divisible,
ie.,

V(n 2 1)3(charf. ¢.)V(t € R) (t) = (¢n(t))".

The class of all infinitely divisible char.f. (or rv’s or probability distributions)
is denoted by ID. The classical Lévy-Khintchine Theorem says that

(2) afunction ¢: R — C is an ID characteristic iff ¢(t) = %),

itT
M
1 +$2]d (m)7

(3) where @(t) = ita — ltzo-z + S [eit:z: 1
R-{0}

where a € R,0? > 0 and M is called Lévy spectral measure , i.e., M
is finite measure ouside every neighbourhood of 0 and integrats 2 in all
neighbourhoods of 0. The triple [a, 02, M] is uniquely determined by a char.f.
¢ from ID. Conversely, each triple gives an ID char.f. by (3); cf. Jurek &
Mason (1993), Section 1.1.8. The function @ is called the Lévy exponent of
the infinitely divisible char.f. ¢.

A stochastic processes Y (t,w), t > 0, with stationary and idependent
increments, starting from zero is called a Lévy process. Usually we may
choose a version with cadlag paths. The law of Y(.) is determined by the
law of Y (1) which is ID. Moreover, each infinitely divisible distribution p
can be inserted into a Lévy process Y such that £(Y(1)) = p. The Lévy
spectral measure M (A), in (3), is the expected number of jumps of Y (¢), for
0 <t <1, whose sizes are in a set A.

We say that X has the scaling or rescaling property if foreach0 < ec <1
there exixts a constant h(c) such that

(4) X (ct) £ h(c)X ().

Some of self-similar processes have the scaling property. In general case one
needs to add a deterministic function, depending on c, in (4).
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For a Lévy process Y, it is easy to see that Y (t + s) — Y (s), (s is fixed)
t > 0, is another Lévy process with the same distribution, on the Skorochod
space of cadlag functions, as the process Y (¢). Moreover, the second process
is independent of o field o({Y(u) : u < s}). More importantly, for any rv
T > 0 we have

(6) Y({+T)-Y(T)and Y(t),t > 0 have the same probability
distributions whenever Y (.) and T are stochasticly independent.

This is so called the strong Markov property and it holds also for Markov
stopping times 7 with respect to the natural filtration associated with Y.
Basic examples are the Brownian motion B(t), and the stable process 7,(t),
where 0 < p < 2 is the exponent of stability. The case p = 2 corresponds to
Brownian motion.

1. Selfdecomposability and the strong Markov property

The following is a minor generalization of the observation in Bondesson
(1992), p. 19. For future references we state it as follows:

PROPOSITION 1. Let X be a process with independent increments, having the
scaling and the strong Markow properties and let T > 0 be an independent
of it selfdecomposable rv. If the scaling function is a homeomorphism of the
unit interval, then for all 0 < ¢ <1 we have

(6) X(T) 2 cX(T)+ X(T) with the two summands

being independent, i.e., X (T) is a selfdecomposable rv.

Proof. Note that X(T) = X(cT) + [X(T) — X(cT)] £ h(c)X(T) + X(T),
where X (T) := [X(T) — X(cT)] is independent of X(T'); use conditioning
on T. Putting for ¢ values h=1(c) we get the selfdecomposability of X (T').

Here are examples of SD rv which we obtained from Proposition 1 or
via arguments as those in the proof of it.

EXAMPLE 1.

(a) For nonnegative T' € SD that is independent of standard normal rv
N and Brownian motion (B;), we have that Nv/T £ Br €SD.

(b) For a Brownian motion B, let T, be the exit time from the interval
(~a,a], ie., T, = inf{t : |B(t)| = a}, and let g1, be its last zero before
time T,, ie., g7, = sup{t < T, : B(t) = 0}. Then for a > 0 we have that

gr, € SD. Furthermore, N, /g7, £ By, is in SD, and its characteristic
function is tanh(at)/at,t € R.
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(¢) For Brownian motion B(t) in R¢, d > 3 (the transience property
holds) let R(t) := ||B(t)|| denotes the Bessel process (the distance from
zero). Then

L, :=sup{t: R(t) <r}, and logL, arebothin SD.

In fact, the law of L, is equal to the law of 1/ (27%_2 ,7'2)’ where 7, is the
gamma rv.

(d) For a normal rv Z and indepependent of it rv v, the ratio Z/,/7z x

2 B(1/7a,») is SD rv. In particular, any Student t-distribution is in SD.

(e) Let n,(t),t > 0, be a symmetric stable process with the exponent
0 <p <2 and 7,4, be independent of it rv. Then rv 1y(7q,1) is in SD with
the characteristic function (1 + ¢, [¢[?) .

(f) For Brownian motion B; on R, b > 0, a # 0, random variables

S exp(aB(t) — bt)dt and log ( S exp(aB(t) — bt)dt) are both in SD.
0 0

Proof. Notice that Nv/T < B(T), which proves (a). For (b) first observe
that T., = inf{t : [c"!B(t)| = a} £ inf{t : |B(t/c?)| = a} = c*T,. For
0 < a <1, random variables gr,, g1, — g1, are idependent and thus we have

d d
ng = gTa + ng - gTa = angl + [ng - gTa]

which shows that g7, and thus g, are in SD. Further, Proposition 1 gives
that By, € SD and use Yor (1997), Section 18.6, p.133.

(c) Note the scaling property L 2 c?L; and increments independence
of Ly, t > 0; cf. Getoor (1979). This and Proposition 1 shows that L; is SD.
Getoor (1979) also identified the law of L; as the law of appropriate inverse
of gamma rv. Furthermore, log-gamma is SD , cf. Jurek (1997), Example
(c).

(d) From (c) we know that rv 1/7,,x is in SD. Taking independent of
it BM (B;) and stopping it at 1/v,, we obtain SD distribution. Since
t-distribution is defined as the ratio of a normal rv and square root of x2,
which belongs to gamma family, we conclude the selfedecomposability of
t-distributions. Comp. the original proof of Grosswald (1976).

(e) Symmetric stable Lévy process admits the scaling property (with
h(c) = c'/P) as well as the strong Markov property. Therefore the Proposi-
tion 1 gives the selfdecomposability. The remainder is a consequence of the
equation
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d 1
Mo (Y1) £ 7p(1) - 73/T,

where the two factors are independent. Note that the selfdecomposability of
the characteristic functions in question, is also easy to obtain by checking
the property (1) when a = 1 (for all p > 1 Polya criterion implies that it is
char.f.) and then using properties of the class SD.

(f) Dufresne (1990) (cf. also Yor (1992) and Urbanik (1992), Example
3.3, p.309) proved that the integral has probability distribution of an inverse
of a gamma rv. Thus (c) gives that both rv are in SD.

3. Selfdecomposability and BDLPs

In this section we are focussing on the so called BDLPs or BDRVs. The
following is the random integral representation

X has SD distribution iff there exists a unique, in distribution,
Lévy process Y such that

(7) Eflog(1+|Y(1))) <oco and X £ |e*dY(s).

0
The process Y is refered to as the background driving Levy process or, in
short, BDLP for X. Similarly, Y(1) is called the background driving ran-
dom variable for X. Cf. Jurek and Mason (1993), Theorem 3.9.3. and the
bibliografical comments there.

Here is a new method of finding the law of Y'(1) in (7).
PROPOSITION 2. If X, := Xf) e~ *dY (s), for t > 0, then
(8) LX) = L(Y(1)), as t— 0.

Proof. Note that Lemma 1.1 in Jurek (1985) gives

(9) LX)t L (em2dY (/1)

1
et dY (u) = E(SdY(u)) = L(Y (1)),
0

O ey pk (D e b

as t — 0, which completes the proof.

REMARK 1. The above process X; allows the identification of the law of
Y (1) (as t — 0) as well it gives the random integral representation of SD
rv (as t — 00); cf. Jurek and Mason (1993), Theorem 3.6.8 and 3.9.3.
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For future references we need the following new description of the self-
decomposability property.

PROPOSITION 3. If ¢ is a class SD characteristic function then it is differ-
entiable att # 0 , and

(10)  9(t) = expltd'(t)/(t)] for t#0 and $(0) :=

is a characteristic function from the class ID,,.

Conversely, if ¢ satisfies the above then ¢ is in the class SD.

[ or Y (1) is referred to as the background driving random variable of
SD char. f. ¢; in short: BDRV.

In mathematical economy the expression t¢’'(t)/¢(t) is called the elastic-
ity of a function ¢ at a point t. It represents the relative change in ¢ over
relative change in argument t. Usually one is interested in the demand and
supply functions].

Proof. In terms of charcteristic functions the random integral representa-

tion says that
¢

pecSD iff logg(t) =§1og¢ u)—

where the characteristic function corresponds to the distribution of Y'(1);
cf. Jurek and Mason (1993), Remark 3.6.9(4), p.128. Hence we conclude the
claim in Proposition 3.

COROLLARY 1. A Lévy exponent ® corresponds to a class SD characteristic
function iff it is differentiable (in R — {0} ), lim;_ot® (t) = 0 and t® (¢) is
a Lévy ezponent of a characteristic function in IDj,,.

As we have seen the selfdecomposability is sometimes preserved by taking
logarithm of a positive SD rv. Here we have a criterion for a such phenomena

and at the same time we have a method of ”producing” char. f. from a given
SD char.f. .

COROLLARY 2. Let X > 0 be an SD rv. Then logX is in SD iff the function

_E[XtlogX]
t— epr{’Lt—E[)—(T}

exists and is an infinitely divisible char.f. with a finite logarithmic moment.

emp[t - (logE[X ]

Proof. Write the char. f. for logX and use Proposition 3 for char. f. of X
from the class SD.

REMARK 2. Using the property from Proposition 3 one can also get the
criterion when SD rv X is such that exp(X) is again in SD. But as in the
above Corollary 2 these are not easily applicable methods. On the other
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hand, if one knows that X > 0 and log(X) are in SD then the Corollary 2
"produces” and IDy,4 char. f.

EXAMPLE 2. Let TY, for a real v > 0, denotes the Student t-distribution
with 2v degress of freedom. It has the probability density function

— (V + 1/2) ‘TZ v— 1/2
f(z)= \/%I‘(u) 1 ) for z € R.
Hence its char. f. is equal to
21—-1/ L
¢rv(t) = W(N/Q_Vltl) K, (V2ult)),

where K, is the Bessel function; cf. Grosswald(1976) or use Gradshteyn &
Ryzhik (1994) formulae: 3.771(2) with 8.334(2).

From the Example (e) above we have that T are selfdecomposable and
therefore Proposition 3 and the property 8.486(12), in Gradshteyn & Ryzhik
(1994), of Bessel funtions K, imply that

_ |t|\/2—VKL(\/2_V|t|)
(11) Yrv (t) = exp [1/ + K (V2o i) ]
e Ko (V3]
p[ [tV === AN } t#0,

is the BDRV for t-distribution. In particular, it is char. f. from ID;o4. Be-
cause of properties of characteristic functions we have the following proper-
ties of Bessel functions at zero.

COROLLARY 3. For Bessel functions K,, we have

N 2K (Z])

OmTER

|2| Ky -1(]2])

K. (l2])

(12)
(ii) El_l"% = 0.
4. Two “curious” formulae

It is natural to define two ”integral mappings”: Z from the class I Do
onto SD by

(13) I(v) = z:( | e"dY(s)),
0
and similarly, J from ID onto U by
1
(14) T(v) = c( | de(s)),

0
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where in both cases Y is a Lévy process such that Y (1) = v. More about the
class U one can find in Jurek (1985). [Let us add here that Z and J are iso-
morphisms between the corresponding topological convolution semigroups;
Theorems 2.6 and 3.6 in Jurek (1985)]. Moreover, probability measures of
the form

(15) J(v*ZI(v)) € SD, whenever v € IDjqg.

Cf. Jurek (1985),Theorem 4.5. The argument of J above, v * Z(v), which is
the convolution of SD distribution T(v) and its background driving distri-
bution v, appears in some known formulae. Here are two occurences of such
convolution products.

A. Let B, = (Z;, Z;) be R2-Brownian motion and let

Ay =\2,dZ, — Z,dZ,,u > 0,
0

be the Lévy’s stochastic area integral. P. Lévy (1951) (see also Yor (1992a),
p-19) has proved that

2

tu la
———(tucothtu —1)], te R
sinh tuea;p[ 2u (bucothtu —1)}, t€ R,

where a € R? and u > 0 are fixed. The family of characteristic functions
Smh 77,(b € Ris a fixed parameter), is in SD and its BDRV/BDLP are of the
form exp[—2(bt cothbt — 1)]; cf. Jurek (1996), Corollary 3 and p. 182. Thus
in (16) we have SD characteristic function and its BDRV/BDLP modulo a
constant factor 2|a|?/u.

(16) E[e*A«|B, = a] =

REMARK 3. From the formula (16) we infer that, conditionally, the stochas-
tic area integral is infinitely divisible. In fact, the area integral .4, has char.f.
1/ coshut, [cf. Lévy (1951), formula (1.3.5) or Yor (1992a), pp. 16-19 taking
there in the formula (2.1): § = 2, = 0 and z = 0]. Thus the area integral
itself has SD distribution and, in particular, it is infinitely divisible. (see
the example B below for its BDLP/BDRV).

B. Let B;,0 <t <1 be a Brownian motion and let N be an independent
of it standard normal rv. From Wenocur (1986) (see also Yor (1992a}, p.19)
we infer that

(17) ]E[e__s (Bs+sz)2ds E[ ltN(So(B +3£E)2ds)1/2]

1/2 2
= < osht) [— —2?tanht].
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However, 1/ cosht is SD characteristic function and its BDRV/BDLP is
of the form ezp|[—ttanht]. Cf. Jurek (1996), Corollary 4 and an appropriate
formula on p. 182. Thus again in (17) we see a product of SD distribution
and its BDRV/BDLP.
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