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Abs t r ac t . The analytic property of the seljdecomposability of characteristic functions 
is presented from stochastic processes point of view. This provides new examples or proofs, 
as well as a link between the stochastic analysis and the theory of characteristic functions. 
A new interpretation of the famous Levy's stochastic area formula is given. 

1. Introduction and notations 
The class of selfdecomposable probability distributions, denoted as SD, 

(known also as the class L or Levy class L distributions), appears in the the-
ory of limiting distributions as laws of normalized partial sums of indepen-
dent random variables but not necessarily identically distributed. However, 
the additional assumption of the infinitesimality of the summands guaran-
tees their infinite divisibility; cf. Jurek & Mason (1993), Section 3.3.9. 

All our random variables or stochastic processes are defined on a fixed 
probability space (fI , T, V). For a given random variable X (for short: rv) or 
its probability distribution /x = C(X) or its probability density / , provided 
it exits (i.e.,d/j,(x) = f(x)dx), we define its characteristic function ( in short: 
char.f.) 4>x{t) = 4>(t) as follows 

<t>(t) = 4x{t) = E[e i t X] = J eitXMdV(cj) = J eitxdfi(x), t € R. 
n R 
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We will say that a charactersitic function <f> has the selfdecomposability pro-
perty if 

(1) V(0 < c < l)3(char.f. Vc)V(i € R) <f>{t) = <j>{ct)i>c{t). 

In terms of a random variable X the above means that for any 0 < c < 1 
there exits a rv Xc such that 

X = cX + Xc, with independent rv X, Xc; 

where = means equality in distribution. 
The class of all selfdecomposable char.f. (or probability distributions or 

rv.) we denote here by SD, although, it is often denoted by L and called the 
Levy class L. It is known that all elements <f> € SD are infinitely divisible, 
i.e., 

V(n > 1)3(char.f. ¿n)V(i e R) <t>(t) = (<j>n(t))n. 
The class of all infinitely divisible char.f. (or rv's or probability distributions) 
is denoted by ID. The classical Levy-Khintchine Theorem says that 

(2) a function <f>: R —> C is an ID characteristic iff <p(t) — e * ^ , 
1 . ftor 

(3) where $(t) = ita - -t2a2 + [eitx - 1 - x]dM(x), 
2 J, , 1 + x l 

R-{ 0} 

where a G R,a2 > 0 and M is called Levy spectral measure , i.e., M 
is finite measure ouside every neighbourhood of 0 and integrats x2 in all 
neighbourhoods of 0. The triple [o, a 2 ,M] is uniquely determined by a char.f. 
<j) from ID. Conversely, each triple gives an ID char.f. by (3); cf. Jurek & 
Mason (1993), Section 1.1.8. The function $ is called the Levy exponent of 
the infinitely divisible char.f. 4>. 

A stochastic processes Y(t,iv), t > 0, with stationary and ¿dependent 
increments, starting from zero is called a Levy process. Usually we may 
choose a version with cadlag paths. The law of Y"(.) is determined by the 
law of Y(l) which is ID. Moreover, each infinitely divisible distribution n 
can be inserted into a Levy process Y such that £(F(1)) = /¿. The Levy 
spectral measure M(A), in (3), is the expected number of jumps of Y(t), for 
0 < i < 1, whose sizes axe in a set A. 

We say that X has the scaling or rescaling property if for each 0 < c < 1 
there exixts a constant h(c) such that 

(4) X(ct) = h(c)X(t). 

Some of self-similar processes have the scaling property. In general case one 
needs to add a deterministic function, depending on c, in (4). 
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For a Levy process Y, it is easy to see that Y(t + s) — y(s), (s is fixed) 
t > 0, is another Levy process with the same distribution, on the Skorochod 
space of cadlag functions, as the process Y(t). Moreover, the second process 
is independent of a field <r({F(u) : u < s}). More importantly, for any rv 
T > 0 we have 

(5) Y(t + T)~ Y(T) and Y(t),t > 0 have the same probability 
distributions whenever Y(.) and T are stochasticly independent. 

This is so called the strong Markov property and it holds also for Markov 
stopping times r with respect to the natural filtration associated with Y. 
Basic examples are the Brownian motion B(t), and the stable process r}p(t), 
where 0 < p < 2 is the exponent of stability. The case p = 2 corresponds to 
Brownian motion. 

1. Selfdecomposability and the strong Markov property 
The following is a minor generalization of the observation in Bondesson 

(1992), p. 19. For future references we state it as follows: 

P R O P O S I T I O N 1. Let X be a process with independent increments, having the 
scaling and the strong Markow properties and let T > 0 be an independent 
of it self decomposable rv. If the scaling function is a homeomorphism of the 
unit interval, then for all 0 < c < 1 we have 

(6) X(T) = cX(T) + XC(T) with the two summands 
being independent, i.e., X(T) is a self decomposable rv. 

P r o o f . Note that X(T) = X(cT) + [X(T) - X(cT)] = h(c)X(T) + XC(T), 
where XC(T) := [X(T) - X{cT)] is independent of X(T); use conditioning 
on T. Putting for c values h~1(c) we get the selfdecomposability of X(T). 

Here are examples of SD rv which we obtained from Proposition 1 or 
via arguments as those in the proof of it. 

E X A M P L E 1 . 

(a) For nonnegative T € SD that is independent of standard normal rv 
N and Brownian motion (Bt), we have that Ns/T = Bt € SD. 

(b) For a Brownian motion B, let Ta be the exit time from the interval 
[—a,a], i.e., Ta = inf{t : |.B(f)| = a}, and let be its last zero before 
time Ta, i.e., gra = sup{t < Ta : B(t) = 0}. Then for a > 0 we have that 
gra £ SD. Furthermore, N^Jgxa = BgTa is in SD, and its characteristic 
function is tanh(a£)/ai, t 6 R. 
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(c) For Brownian motion B{t) in Rd, d > 3 (the transience property-
holds) let R(t) := ||i?(f)|| denotes the Bessel process (the distance from 
zero). Then 

Lr :— sup{t : R(t) < r}, and logL r are both in SD. 

In fact, the law of Lr is equal to the law of 1/(27<¿-2 r2 ) , where yai\ is the 
gamma rv. 

(d) For a normal rv Z and indepependent of it rv 7a,A> the ratio Z/y/ja,x 

= B(l/^a \) is SD rv. In particular, any Student t-distribution is in SD. 

(e) Let T]p(t),t > 0, be a symmetric stable process with the exponent 
0 < p < 2 and 7Qji be independent of it rv. Then rv 7?p(7Q)i) is in SD with 
the characteristic function (1 + cp|i|p)-a. 

( f ) For Brownian motion Bt on R, b > 0, a ^ 0, random variables 

00 00 
^ exp(aB(t) — bt)dt and log ^ ^ exp(aB(t) — bt)dt^j are both in SD. 
0 0 

P r o o f . Notice that Ny/T = B(T), which proves (a). For (b) first observe 

that Tca = inf{t : I c " 1 ^* ) ! = a} = inf{t : \B{t/c2)\ = a) = c2Ta. For 
0 < a < 1 , random variables gra, 9tx — 9ra a r e idependent and thus we have 

9Ti = 9Ta + 5Ti - 9Ta = a2gTl + [gTl - gTa] 

which shows that gand thus gxa are in SD. Further, Proposition 1 gives 
that B9Ta 6 SD and use Yor (1997), Section 18.6, p.133. 

(c) Note the scaling property Lct = c2Lt and increments independence 
of Lt,t > 0; cf. Getoor (1979). This and Proposition 1 shows that Lt is SD. 

Getoor (1979) also identified the law of Lt as the law of appropriate inverse 
of gamma rv. Furthermore, log-gamma is SD , cf. Jurek (1997), Example 
(c). 

(d) From (c) we know that rv 1/7q,a is in SD. Taking independent of 
it BM (B t ) and stopping it at 1/7q,a we obtain SD distribution. Since 
t-distribution is defined as the ratio of a normal rv and square root of x2, 
which belongs to gamma family, we conclude the selfedecomposability of 
i-distributions. Comp. the original proof of Grosswald (1976). 

(e) Symmetric stable Levy process admits the scaling property (with 
h(c) = c1/,p) as well as the strong Markov property. Therefore the Proposi-
tion 1 gives the selfdecomposability. The remainder is a consequence of the 
equation 
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where the two factors are independent. Note that the selfdecomposability of 
the characteristic functions in question, is also easy to obtain by checking 
the property (1) when a = 1 (for all p > 1 Polya criterion implies that it is 
char.f.) and then using properties of the class SD. 

(f) Dufresne (1990) (cf. also Yor (1992) and Urbanik (1992), Example 
3.3, p.309) proved that the integral has probability distribution of an inverse 
of a gamma rv. Thus (c) gives that both rv are in SD. 

3. Selfdecomposability and BDLPs 
In this section we are focussing on the so called BDLPs or BDRVs. The 

following is the random integral representation 

X has SD distribution iff there exists a unique, in distribution, 
Levy process Y such that 

oo 
(7) E[log(l + |Y(1)|)] < oo and X = \ e-gdY(s). 

o 
The process Y is refered to as the background driving Levy process or, in 
short, BDLP for X. Similarly, F ( l ) is called the background driving ran-
dom variable for X. Cf. Jurek and Mason (1993), Theorem 3.9.3. and the 
bibliografical comments there. 

Here is a new method of finding the law of Y(l) in (7). 

P R O P O S I T I O N 2. If Xt := e~sdY(s), for t > 0, then 

( 8 ) CiXt)*1'1 = * £ ( y ( l ) ) , as t-* 0 . 

P r o o f . Note that Lemma 1.1 in Jurek (1985) gives 
t 

(9) C{Xt)*l/i ¿\e~sdY(s/t) 
0 
1 l 

= \e~tudY(u) £ ( j d y ( u ) ) = £ ( y ( l ) ) , 
0 0 

as t —> 0, which completes the proof. 

R E M A R K 1 . The above process Xt allows the identification of the law of 
F( l ) (as t —> 0) as well it gives the random integral representation of SD 
rv (as t —• oo); cf. Jurek and Mason (1993), Theorem 3.6.8 and 3.9.3. 
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For future references we need the following new description of the self-
decomposability property. 

PROPOSITION 3. If (j) is a class SD characteristic function then it is differ-
entiable att ^ 0 , and 

(10) VM := exp[t<j)'(t)/(j)(t)} for t ± 0 and V>(0) := 1 
is a characteristic function from the class IDiog. 

Conversely, if I)J satisfies the above then <j> is in the class SD. 
[ip or Y(l) is referred to as the background driving random variable of 

SD char. f. fa in short: BDRV. 
In mathematical economy the expression tip'(t)/<fi(t) is called the elastic-

ity of a function (f) at a point t. It represents the relative change in <j) over 
relative change in argument t. Usually one is interested in the demand and 
supply functions]. 

P r o o f . In terms of charcteristic functions the random integral representa-
tion says that 

t , 
</>eSD iff log^(i) = JlogV>(u)—, 

o u 

where the characteristic function ip corresponds to the distribution of F( l ) ; 
cf. Jurek and Mason (1993), Remark 3.6.9(4), p.128. Hence we conclude the 
claim in Proposition 3. 

COROLLARY 1. A Levy exponent $ corresponds to a class SD characteristic 
function iff it is differentiate (in R — {0},), limt->ot§ (t) = 0 and (t) is 
a Levy exponent of a characteristic function in IDiog. 

As we have seen the selfdecomposability is sometimes preserved by taking 
logarithm of a positive SD rv. Here we have a criterion for a such phenomena 
and at the same time we have a method of "producing" char. f. from a given 
SD char.f. . 

COROLLARY 2. Let X > 0 be an SD rv. Then log X is in SD iff the function 

* - e M i t E [ X
E = exP[t±(lo9E[X«])] 

exists and is an infinitely divisible char.f. with a finite logarithmic moment. 
P r o o f . Write the char. f. for logX and use Proposition 3 for char. f. of X 
from the class SD. 
REMARK 2 . Using the property from Proposition 3 one can also get the 
criterion when SD rv X is such that exp(X) is again in SD. But as in the 
above Corollary 2 these are not easily applicable methods. On the other 
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hand, if one knows that X > 0 and log(X) are in SD then the Corollary 2 
"produces" and IDio g char. f. 

EXAMPLE 2. Let Tu, for a real v > 0, denotes the Student t-distribution 
with 2v degress of freedom. It has the probability density function 

Hence its char. f. is equal to 

<fr>(t) = 

where Kv is the Bessel function; cf. Grosswald(1976) or use Gradshteyn & 
Ryzhik (1994) formulae: 3.771(2) with 8.334(2). 

From the Example (e) above we have that Tu are selfdecomposable and 
therefore Proposition 3 and the property 8.486(12), in Gradshteyn & Ryzhik 
(1994), of Bessel funtions Kv imply that 

\t\V2^K(V2^\t\y 
( i i ) IpT" (t) ~ e x P V + 

Kv{\/2v\t\) 

= exp - \t\V2u 
Kv-i{y/2i\t\) 

, tyi 0, 

is the BDRV for t-distribution. In particular, it is char. f. from IDiog. Be-
cause of properties of characteristic functions we have the following proper-
ties of Bessel functions at zero. 

C O R O L L A R Y 3 . For Bessel functions Kv, we have 

(12) 

\z\K'v(\z\) 

( i i ) l i m i i f e i P = o . 
—o Ku(\z\) 

4. Two "curious" formulae 
It is natural to define two "integral mappings": I from the class ID\og 

onto SD by 

(13) 
oo 

I{u) :=£(\e-3dY(s)), 

and similarly, J from ID onto U by 

(14) 
i 

J{v) :=c(\sdY(s)), 
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where in both cases Y is a Levy process such that F(l) = v. More about the 
class U one can find in Jurek (1985). [Let us add here that 1 and J are iso-
morphisms between the corresponding topological convolution semigroups; 
Theorems 2.6 and 3.6 in Jurek (1985)]. Moreover, probability measures of 
the form 

(15) J{y*I[y)) e SD, whenever v 6 IDi 09 • 
Cf. Jurek (1985),Theorem 4.5. The argument of J above, v*T{v), which is 
the convolution of SD distribution X(u) and its background driving distri-
bution v, appears in some known formulae. Here are two occurences of such 
convolution products. 

A. Let Bt = (Zt, Zt) be R2-Brownian motion and let 
u 

Au — J ZsdZs — ZsdZs,u > 0, 
o 

be the Levy's stochastic area integral. P. Levy (1951) (see also Yor (1992a), 
p. 19) has proved that 

tu r a 2 

(16) E[eitAu\Bu = a] = , 7 exp[-^-(tucothtu - 1)1, t G R, sinh tu 2u 
where a € R2 and u > 0 are fixed. The family of characteristic functions 
sinh bt S -R is a fixed parameter), is in SD and its BDRV/BDLP are of the 
form exp[—2(bt coth bt - 1)]; cf. Jurek (1996), Corollary 3 and p. 182. Thus 
in (16) we have SD characteristic function and its BDRV/BDLP modulo a 
constant factor 2\a\2/u. 

REMARK 3. From the formula (16) we infer that, conditionally, the stochas-
tic area integral is infinitely divisible. In fact, the area integral Au has char.f. 
1/ coshut, [cf. Levy (1951), formula (1.3.5) or Yor (1992a), pp. 16-19 taking 
there in the formula (2.1): 6 — 2, a = 0 and x — 0]. Thus the area integral 
itself has SD distribution and, in particular, it is infinitely divisible, (see 
the example B below for its BDLP/BDRV). 

B. Let Bt, 0 < t < 1 be a Brownian motion and let N be an independent 
of it standard normal rv. From Wenocur (1986) (see also Yor (1992a), p.19) 
we infer that 

(17) E[e~ ̂  \l(B°+sx)2ds - E[e
iiiv(So(Bs+-sx): ds) 1 / 2 , 

1 / 2 X2 
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However, 1/ coshi is SD characteristic function and its BDRV/BDLP is 
of the form exp[—t tanhi]. Cf. Jurek (1996), Corollary 4 and an appropriate 
formula on p. 182. Thus again in (17) we see a product of SD distribution 
and its BDRV/BDLP. 
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