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IN PRODUCT OF GROUPS 

Abstract. The 0-1 law for measurable subgroups and cosets in arbitrary product of 
Abelian groups with product measure is investigated. 

1. Introduction 
In this paper we study the 0-1 law for measurable cosets and subgroups 

in the product of groups with product measure. The 0-1 law in the product 
of linear spaces with product measure has been studied by a lot of authors 
(see e.g. [3-5], [7]). In [3] for example, the 0-1 law for linear subspaces in 
R°° was investigated. In the present paper we shall consider more general 
situation, namely the case of an arbitrary product of Abelian groups with 
the product measure and the 0-1 law for measurable subgroups and cosets. 

The main result of this paper (Theorem 1) generalizes the known 0-1 laws 
in product of linear spaces. It states namely, that the 0-1 law for measurable 
cosets holds true in the product l i t e r Gt of Abelian groups if and only if 
such law is valid in every group Gt-

As a corollary we obtain then the 0-1 law for measurable cosets on RT 

(Theorem 2), which extends the known similar facts for measurable linear 
subspaces (for example Th.3.1 in [3]). 

2. Preliminaries 
In this section we fix terminology and notation. Moreover we give some 

simple facts which we shall need to prove our main results. 
By a group we will always understand in this paper an additively written 

Abelian group. Let G be a group and a an arbitrary element of G, and let 
H be a subgroup of G. The set a + H, consisting of all elements a + h with h 
running over all elements of H, is said to be a coset of G with respect to H. 
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L e m m a 1. Let G be a group and let A be a subset of G. A is a coset of 
G (with respect to some subgroup) if and only if x + y — z E A for any 
x,y,zE A. 

Proof . Necessity: Let A be a coset of G with respect to some subgroup H, 
that is A = a + H for some a € G. Assume that x,y,z E A, i.e. x = x\ + a, 
y = yi + a, z = zi + a, where xi,yi,z\ E H. Then x+y — z — x\ +y\ — z\ +a. 
Since H is a subgroup, xi + y\ — z\ E H. Therefore x + y — z E A. 

Sufficiency: Let A be a subset of G and let a E A. Put H = A — a. Then 
A = H+a. To prove that A is a coset of G it is sufficient to show that H is a 
subgroup of G, i.e. that x — y E H if x,y E H. Let therefore x,y E H. Then 
x = x\ — a, y — — a where xi, y\ E A. Hence x — y = xi — a — (yi — o) = 
x\ + a — yi — a. Since x\,y\,a E A then from the assumption we have that 
X\ + a — yi E A and consequently x — y E H, what completes the proof of 
Lemma 1. 

Let Gt be a group for each t of some set T. The product space G = 
I l ier ^t itself is a group with addition defined in the canonical way by 
(xt)teT + (yt)t£T - (xt + yt)t€T-

L e m m a 2. Let G\ and G2 be groups. If H C Gi x G2 is a coset of the group 
G\ x G2, then for every y E G2 the y-section of H, i.e. the set Hy = {x E 
G1 : {x,y) E H} is either an empty set or a coset of the group G1. 

Proof . Suppose that for y E G2 Hy ^ 0 and let x\,x2,xs E Hy. Then 
(xi,y) E H, (x2,y) E H, (X3,y) E H. Since H is a coset of G\ x G2, then 
by virtue of Lemma 1 we obtain that (x±,y) + (X2,y) — (%3,y) E H, i.e. 
(xi + X2 — £3,y) E H. Hence x\ + X2 — £3 E Hy, what means that Hy is a 
coset of G\. 

At the end of this section we give some well known facts about the 0-1 
law in the product of arbitrary probability spaces. 

Let for any n = 1 ,2 , . . . (Gn,Bn, fin) be an arbitrary probability space 
and let (G, B, fx) = ( n ^ L i Gn, I l ^ L i I I^Li A set A C G is called a 
tail event if A satisfies the condition: 

(1) If x = (x n ) E G and X{ = yi for all i > no, for some y = (yn) E A and 
some no > 1, then x E A. 

It is well known that n(A) is either 0 or 1 if A is a measurable tail event. 
This follows immediately from the Kolmogorov zero-one law (see [6], p.241). 

Let (G, B, n) be a probability space and let G be a group. We will say that 
the 0-1 law for measurable cosets (subgroups) holds in the space (G,B,fi) if 
for any measurable coset (subgroup) A either n{A) — 0 or n(A) = 1. 
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3. Main results 
Let for each t of some set T, Gt be a group, Bt a cr-algebra on Gt and fit a 

probability measure on Bt. We shall here not assume the connection between 
the structures of a group and a space with measure. Let G = l i t e r and 
denote by B the product cr-algebra l i t e r > an<^ by M the product measure 
Titer Mt on B. 
L e m m a 3. Suppose that for any countable set { i i , i 2 , • • •} C T the 0-1 law 
holds in the space (JI^Li II^Li ®t„i TI^Li Mt„) for measurable cosets. 
Then the 0-1 law for measurable cosets holds also in the space (G,B,fi). 

P r o o f . Let A E B be a coset of G. It follows from the definitions of the 
product cr-algebra and the product measure, that there exists a countable 
subset {ti,t2,...} of elements of T and a set A e l i t e r s u c ^ that 
a cylinder in G with basis A, i.e. A = {(xt)teT £ G : (x t n) E A} and 

oo 

(2) M(A) = I I 
n=1 

Since A is a coset of G then obviously A is a coset of flnLi Gtn • Therefore 
by virtue of the assumption we obtain that either II^Li Mtn = 0 or 
i r = i Min = Thus from (2) it follows that also either [¿(A) = 0 or 
/i(A) — 1, which completes the proof of Lemma 3. 

Now we are ready to present the main result of this paper. 

T H E O R E M 1. Let for each t E T Gt be an Abelian group endowed with 
the a-algebra Bt and let fit be a probability measure on Bt- Then the 0-1 
law for measurable cosets holds in the space (G,B,[i) = ( l i t e r l i t e r 
l i t e r A1*) tf and on^y tf the 0-1 law for measurable cosets holds in each space 
( G U B U I H ) . 

P r o o f . The necessity of the condition in this theorem is evident. Indeed, 
if to is fixed and A is a measurable coset of Gt0, then A = A x Y\t^tt Gt 
is a measurable coset of G and fJ,(A) = fit0{A). Since by the assumption 
fi(A) = 0 or /¿(A) = 1 then also fi to(j1) = 0 or Ht0{A) = 1. 

To prove the sufficiency we may assume, by virtue of Lemma 3, that the 
set T is countable. Moreover, without loss of generality we may suppose for 
simplicity that T = {1, 2 , . . . } . 

Let therefore A be a measurable coset in the space (G, B, ¡JL) — (II^Li Gn> 
r r = i r r = i Mn) Which has positive measure. We must prove that /¿(A) 
== 1. 

First of all we show that for each finite set { n i , . . . ,n& } of indexes there 
exists a measurable coset Anit,, tTllc in (G ,B ,n ) such that the following two 
conditions are fulfilled: 
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(3) if x - ( x n ) £ i , i E Anu...tnk, and for some y = (yn) £ Anii...>nfc 

Xn = Vn for any n ^ n\,...,nfc, then y € A. 

(4) An i i . . . ,n f c = n ~ x v l ^ 1 1 ' - ' " ^ , where for any n A<C1,"',n"') is a measur-
able coset in (Gn,Bn, nn) such that ^ „ ( ^ l " 1 ' = 1. 

We show the above fact in two steps. In the first place we prove that for 
any no = 1 , 2 , . . . there exists a measurable coset Ano of G which satisfies 
conditions (3) and (4). Of course, we may identify the space (G ,B , / / ) with 
the product space (G„ 0 x G0,Bno x B0, Hn0 x Mo), where, G0 = Un^n0

 Gn, 
n^no Mo — Unjino Vn- Furthermore, we may treat the set A as a 

measurable coset of the group Gno x Go-
Since fin o x no (A) > 0 then from the definition of the product measure it 

follows that there is an element yo £ Go such that Ayo £ Bno and /zno (Ayo) > 
0, where Ayo is a i/o_section of A, i.e. Ayo = {x £ Gno : (x,yo) £ A}. But 
from Lemma 2 we have that Ayo is a coset of Gno. Hence, in view of the 
assumption of this theorem, we obtain that fj,no(Ayo) = 1. Therefore if we 
put Ano = Ayo x Go, then Ano is a coset of G, and the condition (4) is 
fulfilled. 

We prove that condition (3) is also satisfied. Let thus (£1,2/1) € A, 
(xi,2/i) £ Ano and (x2,yi) £ Ano, where xi,x2 £ G n o and yi £ G 0 . We 
must show that also (2:2,2/1) £ A. Prom the definition of the set Ano we 
have that x\ £ Ayo and x2 £ Ayo> whence it follows that (xj,yo) € A and 
(x2,yo) € A. Since A is a coset of Gno x Go we obtain by virtue of Lemma 1 
that (x2,yo) + {xi,yi) - {xi,y0) £ A, i.e. (x2 + xx - xx,yQ + yi - yo) <E A, 
and consequently (X 2 , y i ) £ A. Thus the set Ano satisfies in fact the condi-
tion (3). 

In the second step of our proof we show, for every finite set { n i , . . . , n^} 
of indexes, the existence of the measurable coset Anit^,tJlk of G, which sat-
isfies conditions (3) and (4). Let for any n = 1, 2 , . . . An be a coset of G 
constructed in the first step of the proof and put An i ) . . . ) n f c = D i L i ^ m -
Each set Ani is of the form A^o x Y\.n^n ^n, where Ayw is a coset of G n i , 

such that nni{A ti)) = 1. Hence Anii...iTlk = H^=1A m x Hn^n.Gn, and 
y o "o 

consequently the set satisfies the condition (4). We prove that the 
condition (3) is also fulfilled. Without loss of generality we restrict to the 
case k = 2; the transition to the general case can be made by induction 
over k. Let therefore Ani!Tl2 = Ay(i) x x n2

 an<^ 358111116 

that (xi,yi,zi) £ A,(xi,y1,zi) £ Anu7l2, and (x2,y2,zi) G AnuTl2, where 
x1}x2 £ Ay(i) 2/1,3/2 G Ayw and zi £ f l n / m , ^ Gn. We have to show that 

also (x2,y2,zi) £ A. Since X2 € A <i) and y\ £ A (2) then (®2,3/i,^i) G 
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Ani,n2) a n d because AnitTl2 C Ani then we have that (xi,yi,<zi) E Ani and 
(x2,yi,zi) ^ Ani Hence, taking into account that (®i,yi ,2i) E A we obtain 
that also (X2, yi, zi) € A. On the other hand from the inclusion An i ) T l 2 C An2 

it follows that (x2,2/2, ^l) € An2 and (x2, yi, £i) € A„2. Therefore we receive 
that also (£2,y2>2i) ^ what completes the proof of the existence of the 
sets Ani)...)nfc with properties (3) and (4). 

Let us remark that from the condition (4) it follows that for each set 
Anil...tnk fi(Ani!,,,tnk) = 1. 

Now we put 
oo 

n An> 
Then Ao is a measurable coset of G. From (3) we obtain the following 

property of Ao : 

(5) if x = (xn) G A, x £ AQ and { n i , . . . , n f c } is an arbitrary finite 
subset of indexes, and for some y = (yn) E A0 xn = yn for any 
n ^ ni,..., rife, then y E A. 

Moreover from the definition of the set AQ and from (4) we have that 
oo oo oo oo 

A0=n n (n^—
}) = n(n n 

k=ln1,...,nk n = l n=1 fc=lni,...,m 

If we now put 
oo 

n n 4Bi--nt). 
then from (4) it follows that: 

(6) Ao = n ~ i An> where for any n is a measurable coset in ( G n , B n , 
Hn) such that /¿n(A°) = 1. 

From (6) we infer also that /¿(Ao) = 1. Denote by fio a restriction of 
the measure /x to Ao. Then it is easy to see that fi = n ^ L i Mn, where for 
any n is a restriction of fin to A°. Observe now that the condition (5) 
means that the set A fl AQ is a tail event in the product space Ao with the 
measure /¿o- Therefore /¿o(A fl Ao) = 1 or no(A fl Ao) = 0. Hence /¿(A) = 1 
or fi(A) = 0. But, by the assumption, /x(A) > 0. Thus (¿(A) = 1, and this is 
what we had to show. The theorem is thus proved. 

REMARK 1. The above theorem is not true in the case of subgroups. More 
precisely, if in the space (G, B, fi) the 0-1 law holds for measurable subgroups 
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then, of course, the same law holds also in each space (Gt,Bt, Ht)- But, as 
opposed to the case of cosets, from the validity of the 0-1 law for subgroups in 
each space (Gt,Bt, fa) does not follow that such law holds also in (G, B, fi). 
This is shown in the following simple example. 

E X A M P L E 1 . Let T - { 1 , 2 } and Gi = G2 = R be real lines. Denote by 
6X the probability measure on R concentrated at the point x (x G R) and 
put HI — ¿>i, FI2 = l/2(5-i + <5i)- Then for measures FII and ¡JL2 the 0-1 
law for measurable subgroups holds true. For /¿1 it is evident, and we show 
this fact for fi2- Let therefore H be an arbitrary subgroup of R. If 1 G H 
then also —1 G H, and consequently ju2(H) = 1. Similarly, if — 1 € H then 
1 G H and also we have that (¿2(H) = 1- If, on the other hand, — 1 £ H 
and 1 $ H then /¿2 (H) = 0. But in the product G\ x G2 = R2 with the 
product measure /¿1 x ¿¿2 the 0-1 law for measurable subgroups does not 
hold. Indeed, if for example H — {(x,y) : x = y}, then H is a subgroup of 
R2, but M x IX2{H) = 1/2. 

At the end of this paper we consider one important case of the product 
of groups, namely the situation when for each t ET Gt is a real line R with 
the Borel cr-algebra B(R) and fit is a probability measure on R. It is easy 
to see that if u is a Borel probability measure on R, which is absolutely 
continuous with respect to the Lebesgue measure, then for v the 0-1 law 
for Borel cosets of R holds true. This follows from the following well known 
statement (see e.g. [1], Remark 4.2). 

L E M M A 4 . Let v be a Borel measure on a real line R, absolutely continuous 
with respect to the Lebesgue measure m(v <C m). If H is a Borel coset of R 
then either 1'(H) = 0 or H — R. 

Proof . Suppose in the first place that v itself is the Lebesgue measure (i.e. 
that u = m), and that H is a subgroup of R. Assume that m(H) > 0. 
We must show that H = R. It is well known that if m(H) > 0 then the 
difference set H — H contains an open interval containing the origin (see 
[2, p. 68, Th. B]). Therefore there exists <5 > 0 such that (-6,6) C H - H. 
But H is a subgroup, whence H — H C H. Thus (—6,6) C H. Let t be an 
arbitrary real number. We may choose a sufficiently large positive integer 
n, so that t/n G (—6,6), whence t/n G H. Since H is a group, this implies 
that t = n- t/n = t/n + ... + t/n G H. Thus H = R. 

Let now H be an arbitrary Borel coset of R such that m(H) > 0. Then 
H = G + a, where G is a subgroup of R and a G R. Since m(H) ~ m(G), 
then m(G) > 0 and from the first part of this proof it follows that G = R. 
Thus also H — R, what completes the proof in the case when v = m. 
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If v is an arbitrary Borel measure on R such that v C m, and H is a 
Borel coset of R with v(H) > 0, then also m(H) > 0, and from the first 
part of the proof we receive that H = R. The lemma is thus proved. 

Of course, the 0-1 law for Borel cosets of R is valid if the measure u on 
R is concentrated at one point. Therefore from Theorem 1 we receive the 
following theorem. 

T H E O R E M 2 . Let for each t of some set T FJ,T be a probability measure de-
fined on the Borel a-algebra B(R) of a real line R, and let (RT,BT,fj,) = 
( l i ter l i t e r l i t e r Mt)> where Rt = R and Bt = B(R) for any t G T. 
If for each t £ T the measure is absolutely continuous with respect to the 
Lebesgue measure on R, or fit is concentrated at one point, then for every 
measurable coset A of RT either FI(A) = 0 or FI(A) = 1. 

The above theorem extends some known 0-1 laws for product measures 
in RT, especially in the case of a countable set T. In this case, i.e. if T — 
{1, 2 , . . . } we denote RT by R°°. See for example [3], where the 0-1 law for 
linear subspaces in R°° was received. 

Let us remark at the end of this paper that in the case of the space R°° 
the product a-algebra B°° is equal to the Borel cr-algebra of R°°. Thus from 
Theorem 2 we have the following assertion which extends the 0-1 law for 
measurable linear subspaces in R°° (see [3], Th. 3.1). 

C O R O L L A R Y . Let for any n = 1 , 2 , . . . fj,n be a Borel probability measure on R 
absolutely continuous with respect to the Lebesgue measure, or concentrated 
at one point. If /x = JI^Li then for every Borel coset (in particular 
subgroup or linear subspace) A of R°° either A) — 0 or ¡J,(A) = 1. 

R E M A R K 2 . The author does not know, if the assumptions in the Theorem 2 

are also necessary for the validity of the 0-1 law for measurable cosets in RT 

(even in the case of the measure ¿t on R). 
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