

Andrzej Wiśniewski

0-1 LAW FOR PRODUCT MEASURES IN PRODUCT OF GROUPS

Abstract. The 0-1 law for measurable subgroups and cosets in arbitrary product of Abelian groups with product measure is investigated.

1. Introduction

In this paper we study the 0-1 law for measurable cosets and subgroups in the product of groups with product measure. The 0-1 law in the product of linear spaces with product measure has been studied by a lot of authors (see e.g. [3-5], [7]). In [3] for example, the 0-1 law for linear subspaces in R^∞ was investigated. In the present paper we shall consider more general situation, namely the case of an arbitrary product of Abelian groups with the product measure and the 0-1 law for measurable subgroups and cosets.

The main result of this paper (Theorem 1) generalizes the known 0-1 laws in product of linear spaces. It states namely, that the 0-1 law for measurable cosets holds true in the product $\prod_{t \in T} G_t$ of Abelian groups if and only if such law is valid in every group G_t .

As a corollary we obtain then the 0-1 law for measurable cosets on R^T (Theorem 2), which extends the known similar facts for measurable linear subspaces (for example Th.3.1 in [3]).

2. Preliminaries

In this section we fix terminology and notation. Moreover we give some simple facts which we shall need to prove our main results.

By a group we will always understand in this paper an additively written Abelian group. Let G be a group and a an arbitrary element of G , and let H be a subgroup of G . The set $a + H$, consisting of all elements $a + h$ with h running over all elements of H , is said to be a *coset* of G with respect to H .

LEMMA 1. *Let G be a group and let A be a subset of G . A is a coset of G (with respect to some subgroup) if and only if $x + y - z \in A$ for any $x, y, z \in A$.*

Proof. Necessity: Let A be a coset of G with respect to some subgroup H , that is $A = a + H$ for some $a \in G$. Assume that $x, y, z \in A$, i.e. $x = x_1 + a$, $y = y_1 + a$, $z = z_1 + a$, where $x_1, y_1, z_1 \in H$. Then $x + y - z = x_1 + y_1 - z_1 + a$. Since H is a subgroup, $x_1 + y_1 - z_1 \in H$. Therefore $x + y - z \in A$.

Sufficiency: Let A be a subset of G and let $a \in A$. Put $H = A - a$. Then $A = H + a$. To prove that A is a coset of G it is sufficient to show that H is a subgroup of G , i.e. that $x - y \in H$ if $x, y \in H$. Let therefore $x, y \in H$. Then $x = x_1 - a$, $y = y_1 - a$ where $x_1, y_1 \in A$. Hence $x - y = x_1 - a - (y_1 - a) = x_1 + a - y_1 - a$. Since $x_1, y_1, a \in A$ then from the assumption we have that $x_1 + a - y_1 \in A$ and consequently $x - y \in H$, what completes the proof of Lemma 1.

Let G_t be a group for each t of some set T . The product space $G = \prod_{t \in T} G_t$ itself is a group with addition defined in the canonical way by $(x_t)_{t \in T} + (y_t)_{t \in T} = (x_t + y_t)_{t \in T}$.

LEMMA 2. *Let G_1 and G_2 be groups. If $H \subset G_1 \times G_2$ is a coset of the group $G_1 \times G_2$, then for every $y \in G_2$ the y -section of H , i.e. the set $H_y = \{x \in G_1 : (x, y) \in H\}$ is either an empty set or a coset of the group G_1 .*

Proof. Suppose that for $y \in G_2$ $H_y \neq \emptyset$ and let $x_1, x_2, x_3 \in H_y$. Then $(x_1, y) \in H$, $(x_2, y) \in H$, $(x_3, y) \in H$. Since H is a coset of $G_1 \times G_2$, then by virtue of Lemma 1 we obtain that $(x_1, y) + (x_2, y) - (x_3, y) \in H$, i.e. $(x_1 + x_2 - x_3, y) \in H$. Hence $x_1 + x_2 - x_3 \in H_y$, what means that H_y is a coset of G_1 .

At the end of this section we give some well known facts about the 0-1 law in the product of arbitrary probability spaces.

Let for any $n = 1, 2, \dots$ $(G_n, \mathcal{B}_n, \mu_n)$ be an arbitrary probability space and let $(G, \mathcal{B}, \mu) = (\prod_{n=1}^{\infty} G_n, \prod_{n=1}^{\infty} \mathcal{B}_n, \prod_{n=1}^{\infty} \mu_n)$. A set $A \subset G$ is called a *tail event* if A satisfies the condition:

- (1) If $x = (x_n) \in G$ and $x_i = y_i$ for all $i \geq n_0$, for some $y = (y_n) \in A$ and some $n_0 \geq 1$, then $x \in A$.

It is well known that $\mu(A)$ is either 0 or 1 if A is a measurable tail event. This follows immediately from the Kolmogorov zero-one law (see [6], p.241).

Let (G, \mathcal{B}, μ) be a probability space and let G be a group. We will say that the 0-1 law for measurable cosets (subgroups) holds in the space (G, \mathcal{B}, μ) if for any measurable coset (subgroup) A either $\mu(A) = 0$ or $\mu(A) = 1$.

3. Main results

Let for each t of some set T , G_t be a group, \mathcal{B}_t a σ -algebra on G_t and μ_t a probability measure on \mathcal{B}_t . We shall here not assume the connection between the structures of a group and a space with measure. Let $G = \prod_{t \in T} G_t$ and denote by \mathcal{B} the product σ -algebra $\prod_{t \in T} \mathcal{B}_t$, and by μ the product measure $\prod_{t \in T} \mu_t$ on \mathcal{B} .

LEMMA 3. *Suppose that for any countable set $\{t_1, t_2, \dots\} \subset T$ the 0-1 law holds in the space $(\prod_{n=1}^{\infty} G_{t_n}, \prod_{n=1}^{\infty} \mathcal{B}_{t_n}, \prod_{n=1}^{\infty} \mu_{t_n})$ for measurable cosets. Then the 0-1 law for measurable cosets holds also in the space (G, \mathcal{B}, μ) .*

Proof. Let $A \in \mathcal{B}$ be a coset of G . It follows from the definitions of the product σ -algebra and the product measure, that there exists a countable subset $\{t_1, t_2, \dots\}$ of elements of T and a set $\bar{A} \in \prod_{t \in T} \mathcal{B}_{t_n}$ such that A is a cylinder in G with basis \bar{A} , i.e. $A = \{(x_t)_{t \in T} \in G : (x_{t_n}) \in \bar{A}\}$ and

$$(2) \quad \mu(A) = \prod_{n=1}^{\infty} \mu_{t_n}(\bar{A}).$$

Since A is a coset of G then obviously \bar{A} is a coset of $\prod_{n=1}^{\infty} G_{t_n}$. Therefore by virtue of the assumption we obtain that either $\prod_{n=1}^{\infty} \mu_{t_n}(\bar{A}) = 0$ or $\prod_{n=1}^{\infty} \mu_{t_n}(\bar{A}) = 1$. Thus from (2) it follows that also either $\mu(A) = 0$ or $\mu(A) = 1$, which completes the proof of Lemma 3.

Now we are ready to present the main result of this paper.

THEOREM 1. *Let for each $t \in T$ G_t be an Abelian group endowed with the σ -algebra \mathcal{B}_t and let μ_t be a probability measure on \mathcal{B}_t . Then the 0-1 law for measurable cosets holds in the space $(G, \mathcal{B}, \mu) = (\prod_{t \in T} G_t, \prod_{t \in T} \mathcal{B}_t, \prod_{t \in T} \mu_t)$ if and only if the 0-1 law for measurable cosets holds in each space $(G_t, \mathcal{B}_t, \mu_t)$.*

Proof. The necessity of the condition in this theorem is evident. Indeed, if t_0 is fixed and A is a measurable coset of G_{t_0} , then $\bar{A} = A \times \prod_{t \neq t_0} G_t$ is a measurable coset of G and $\mu(\bar{A}) = \mu_{t_0}(A)$. Since by the assumption $\mu(\bar{A}) = 0$ or $\mu(\bar{A}) = 1$ then also $\mu_{t_0}(A) = 0$ or $\mu_{t_0}(A) = 1$.

To prove the sufficiency we may assume, by virtue of Lemma 3, that the set T is countable. Moreover, without loss of generality we may suppose for simplicity that $T = \{1, 2, \dots\}$.

Let therefore A be a measurable coset in the space $(G, \mathcal{B}, \mu) = (\prod_{n=1}^{\infty} G_n, \prod_{n=1}^{\infty} \mathcal{B}_n, \prod_{n=1}^{\infty} \mu_n)$ which has positive measure. We must prove that $\mu(A) = 1$.

First of all we show that for each finite set $\{n_1, \dots, n_k\}$ of indexes there exists a measurable coset A_{n_1, \dots, n_k} in (G, \mathcal{B}, μ) such that the following two conditions are fulfilled:

(3) if $x = (x_n) \in A$, $x \in A_{n_1, \dots, n_k}$, and for some $y = (y_n) \in A_{n_1, \dots, n_k}$ $x_n = y_n$ for any $n \neq n_1, \dots, n_k$, then $y \in A$.

(4) $A_{n_1, \dots, n_k} = \prod_{n=1}^{\infty} A_n^{(n_1, \dots, n_k)}$, where for any n $A_n^{(n_1, \dots, n_k)}$ is a measurable coset in $(G_n, \mathcal{B}_n, \mu_n)$ such that $\mu_n(A_n^{(n_1, \dots, n_k)}) = 1$.

We show the above fact in two steps. In the first place we prove that for any $n_0 = 1, 2, \dots$ there exists a measurable coset A_{n_0} of G which satisfies conditions (3) and (4). Of course, we may identify the space (G, \mathcal{B}, μ) with the product space $(G_{n_0} \times G_0, \mathcal{B}_{n_0} \times \mathcal{B}_0, \mu_{n_0} \times \mu_0)$, where, $G_0 = \prod_{n \neq n_0} G_n$, $\mathcal{B}_0 = \prod_{n \neq n_0} \mathcal{B}_n$, $\mu_0 = \prod_{n \neq n_0} \mu_n$. Furthermore, we may treat the set A as a measurable coset of the group $G_{n_0} \times G_0$.

Since $\mu_{n_0} \times \mu_0(A) > 0$ then from the definition of the product measure it follows that there is an element $y_0 \in G_0$ such that $A_{y_0} \in \mathcal{B}_{n_0}$ and $\mu_{n_0}(A_{y_0}) > 0$, where A_{y_0} is a y_0 -section of A , i.e. $A_{y_0} = \{x \in G_{n_0} : (x, y_0) \in A\}$. But from Lemma 2 we have that A_{y_0} is a coset of G_{n_0} . Hence, in view of the assumption of this theorem, we obtain that $\mu_{n_0}(A_{y_0}) = 1$. Therefore if we put $A_{n_0} = A_{y_0} \times G_0$, then A_{n_0} is a coset of G , and the condition (4) is fulfilled.

We prove that condition (3) is also satisfied. Let thus $(x_1, y_1) \in A$, $(x_1, y_1) \in A_{n_0}$ and $(x_2, y_1) \in A_{n_0}$, where $x_1, x_2 \in G_{n_0}$ and $y_1 \in G_0$. We must show that also $(x_2, y_1) \in A$. From the definition of the set A_{n_0} we have that $x_1 \in A_{y_0}$ and $x_2 \in A_{y_0}$, whence it follows that $(x_1, y_0) \in A$ and $(x_2, y_0) \in A$. Since A is a coset of $G_{n_0} \times G_0$ we obtain by virtue of Lemma 1 that $(x_2, y_0) + (x_1, y_1) - (x_1, y_0) \in A$, i.e. $(x_2 + x_1 - x_1, y_0 + y_1 - y_0) \in A$, and consequently $(x_2, y_1) \in A$. Thus the set A_{n_0} satisfies in fact the condition (3).

In the second step of our proof we show, for every finite set $\{n_1, \dots, n_k\}$ of indexes, the existence of the measurable coset A_{n_1, \dots, n_k} of G , which satisfies conditions (3) and (4). Let for any $n = 1, 2, \dots$ A_n be a coset of G constructed in the first step of the proof and put $A_{n_1, \dots, n_k} = \bigcap_{i=1}^k A_{n_i}$. Each set A_{n_i} is of the form $A_{y_0^{(i)}} \times \prod_{n \neq n_i} G_n$, where $A_{y_0^{(i)}}$ is a coset of G_{n_i} , such that $\mu_{n_i}(A_{y_0^{(i)}}) = 1$. Hence $A_{n_1, \dots, n_k} = \prod_{i=1}^k A_{y_0^{(i)}} \times \prod_{n \neq n_i} G_n$, and consequently the set A_{n_1, \dots, n_k} satisfies the condition (4). We prove that the condition (3) is also fulfilled. Without loss of generality we restrict to the case $k = 2$; the transition to the general case can be made by induction over k . Let therefore $A_{n_1, n_2} = A_{y_0^{(1)}} \times A_{y_0^{(2)}} \times \prod_{n \neq n_1, n_2} G_n$ and assume that $(x_1, y_1, z_1) \in A$, $(x_1, y_1, z_1) \in A_{n_1, n_2}$, and $(x_2, y_2, z_1) \in A_{n_1, n_2}$, where $x_1, x_2 \in A_{y_0^{(1)}}$, $y_1, y_2 \in A_{y_0^{(2)}}$ and $z_1 \in \prod_{n \neq n_1, n_2} G_n$. We have to show that also $(x_2, y_2, z_1) \in A$. Since $x_2 \in A_{y_0^{(1)}}$ and $y_1 \in A_{y_0^{(2)}}$ then $(x_2, y_1, z_1) \in$

A_{n_1, n_2} , and because $A_{n_1, n_2} \subset A_{n_1}$ then we have that $(x_1, y_1, z_1) \in A_{n_1}$ and $(x_2, y_1, z_1) \in A_{n_1}$. Hence, taking into account that $(x_1, y_1, z_1) \in A$ we obtain that also $(x_2, y_1, z_1) \in A$. On the other hand from the inclusion $A_{n_1, n_2} \subset A_{n_2}$ it follows that $(x_2, y_2, z_1) \in A_{n_2}$ and $(x_2, y_1, z_1) \in A_{n_2}$. Therefore we receive that also $(x_2, y_2, z_1) \in A$, what completes the proof of the existence of the sets A_{n_1, \dots, n_k} with properties (3) and (4).

Let us remark that from the condition (4) it follows that for each set A_{n_1, \dots, n_k} $\mu(A_{n_1, \dots, n_k}) = 1$.

Now we put

$$A_0 = \bigcap_{k=1}^{\infty} \bigcap_{n_1, \dots, n_k} A_{n_1, \dots, n_k}.$$

Then A_0 is a measurable coset of G . From (3) we obtain the following property of A_0 :

(5) if $x = (x_n) \in A$, $x \in A_0$ and $\{n_1, \dots, n_k\}$ is an arbitrary finite subset of indexes, and for some $y = (y_n) \in A_0$ $x_n = y_n$ for any $n \neq n_1, \dots, n_k$, then $y \in A$.

Moreover from the definition of the set A_0 and from (4) we have that

$$A_0 = \bigcap_{k=1}^{\infty} \bigcap_{n_1, \dots, n_k} \left(\bigcap_{n=1}^{\infty} A_n^{(n_1, \dots, n_k)} \right) = \prod_{n=1}^{\infty} \left(\bigcap_{k=1}^{\infty} \bigcap_{n_1, \dots, n_k} A_n^{(n_1, \dots, n_k)} \right).$$

If we now put

$$A_n^0 = \bigcap_{k=1}^{\infty} \bigcap_{n_1, \dots, n_k} A_n^{(n_1, \dots, n_k)},$$

then from (4) it follows that:

(6) $A_0 = \prod_{n=1}^{\infty} A_n^0$, where for any n A_n^0 is a measurable coset in $(G_n, \mathcal{B}_n, \mu_n)$ such that $\mu_n(A_n^0) = 1$.

From (6) we infer also that $\mu(A_0) = 1$. Denote by μ_0 a restriction of the measure μ to A_0 . Then it is easy to see that $\mu = \prod_{n=1}^{\infty} \mu_n^0$, where for any n μ_n^0 is a restriction of μ_n to A_n^0 . Observe now that the condition (5) means that the set $A \cap A_0$ is a tail event in the product space A_0 with the measure μ_0 . Therefore $\mu_0(A \cap A_0) = 1$ or $\mu_0(A \cap A_0) = 0$. Hence $\mu(A) = 1$ or $\mu(A) = 0$. But, by the assumption, $\mu(A) > 0$. Thus $\mu(A) = 1$, and this is what we had to show. The theorem is thus proved.

REMARK 1. The above theorem is not true in the case of subgroups. More precisely, if in the space (G, \mathcal{B}, μ) the 0-1 law holds for measurable subgroups

then, of course, the same law holds also in each space $(G_t, \mathcal{B}_t, \mu_t)$. But, as opposed to the case of cosets, from the validity of the 0-1 law for subgroups in each space $(G_t, \mathcal{B}_t, \mu_t)$ does not follow that such law holds also in (G, \mathcal{B}, μ) . This is shown in the following simple example.

EXAMPLE 1. Let $T = \{1, 2\}$ and $G_1 = G_2 = R$ be real lines. Denote by δ_x the probability measure on R concentrated at the point x ($x \in R$) and put $\mu_1 = \delta_1$, $\mu_2 = 1/2(\delta_{-1} + \delta_1)$. Then for measures μ_1 and μ_2 the 0-1 law for measurable subgroups holds true. For μ_1 it is evident, and we show this fact for μ_2 . Let therefore H be an arbitrary subgroup of R . If $1 \in H$ then also $-1 \in H$, and consequently $\mu_2(H) = 1$. Similarly, if $-1 \in H$ then $1 \in H$ and also we have that $\mu_2(H) = 1$. If, on the other hand, $-1 \notin H$ and $1 \notin H$ then $\mu_2(H) = 0$. But in the product $G_1 \times G_2 = R^2$ with the product measure $\mu_1 \times \mu_2$ the 0-1 law for measurable subgroups does not hold. Indeed, if for example $H = \{(x, y) : x = y\}$, then H is a subgroup of R^2 , but $\mu_1 \times \mu_2(H) = 1/2$.

At the end of this paper we consider one important case of the product of groups, namely the situation when for each $t \in T$ G_t is a real line R with the Borel σ -algebra $\mathcal{B}(R)$ and μ_t is a probability measure on R . It is easy to see that if ν is a Borel probability measure on R , which is absolutely continuous with respect to the Lebesgue measure, then for ν the 0-1 law for Borel cosets of R holds true. This follows from the following well known statement (see e.g. [1], Remark 4.2).

LEMMA 4. *Let ν be a Borel measure on a real line R , absolutely continuous with respect to the Lebesgue measure $m(\nu \ll m)$. If H is a Borel coset of R then either $\nu(H) = 0$ or $H = R$.*

P r o o f. Suppose in the first place that ν itself is the Lebesgue measure (i.e. that $\nu = m$), and that H is a subgroup of R . Assume that $m(H) > 0$. We must show that $H = R$. It is well known that if $m(H) > 0$ then the difference set $H - H$ contains an open interval containing the origin (see [2, p. 68, Th. B]). Therefore there exists $\delta > 0$ such that $(-\delta, \delta) \subset H - H$. But H is a subgroup, whence $H - H \subset H$. Thus $(-\delta, \delta) \subset H$. Let t be an arbitrary real number. We may choose a sufficiently large positive integer n , so that $t/n \in (-\delta, \delta)$, whence $t/n \in H$. Since H is a group, this implies that $t = n \cdot t/n = t/n + \dots + t/n \in H$. Thus $H = R$.

Let now H be an arbitrary Borel coset of R such that $m(H) > 0$. Then $H = G + a$, where G is a subgroup of R and $a \in R$. Since $m(H) = m(G)$, then $m(G) > 0$ and from the first part of this proof it follows that $G = R$. Thus also $H = R$, what completes the proof in the case when $\nu = m$.

If ν is an arbitrary Borel measure on R such that $\nu \ll m$, and H is a Borel coset of R with $\nu(H) > 0$, then also $m(H) > 0$, and from the first part of the proof we receive that $H = R$. The lemma is thus proved.

Of course, the 0-1 law for Borel cosets of R is valid if the measure ν on R is concentrated at one point. Therefore from Theorem 1 we receive the following theorem.

THEOREM 2. *Let for each t of some set T μ_t be a probability measure defined on the Borel σ -algebra $\mathcal{B}(R)$ of a real line R , and let $(R^T, \mathcal{B}^T, \mu) = (\prod_{t \in T} R_t, \prod_{t \in T} \mathcal{B}_t, \prod_{t \in T} \mu_t)$, where $R_t = R$ and $\mathcal{B}_t = \mathcal{B}(R)$ for any $t \in T$. If for each $t \in T$ the measure μ_t is absolutely continuous with respect to the Lebesgue measure on R , or μ_t is concentrated at one point, then for every measurable coset A of R^T either $\mu(A) = 0$ or $\mu(A) = 1$.*

The above theorem extends some known 0-1 laws for product measures in R^T , especially in the case of a countable set T . In this case, i.e. if $T = \{1, 2, \dots\}$ we denote R^T by R^∞ . See for example [3], where the 0-1 law for linear subspaces in R^∞ was received.

Let us remark at the end of this paper that in the case of the space R^∞ the product σ -algebra \mathcal{B}^∞ is equal to the Borel σ -algebra of R^∞ . Thus from Theorem 2 we have the following assertion which extends the 0-1 law for measurable linear subspaces in R^∞ (see [3], Th. 3.1).

COROLLARY. *Let for any $n = 1, 2, \dots$ μ_n be a Borel probability measure on R absolutely continuous with respect to the Lebesgue measure, or concentrated at one point. If $\mu = \prod_{n=1}^\infty \mu_n$, then for every Borel coset (in particular subgroup or linear subspace) A of R^∞ either $\mu(A) = 0$ or $\mu(A) = 1$.*

REMARK 2. The author does not know, if the assumptions in the Theorem 2 are also necessary for the validity of the 0-1 law for measurable cosets in R^T (even in the case of the measure μ on R).

References

- [1] T. Byczkowski, *Zero-one laws for Gaussian measures on metric abelian groups*, Studia Math. 69 (1980), 159–189.
- [2] P. R. Halmos, *Measure Theory*, Springer, New York–Berlin–Heidelberg, 1974.
- [3] J. Hoffmann-Jørgensen, *Integrability of seminorms, the 0-1 law and the affine kernel for product measures*, Studia Math. 61 (1977), 137–159.
- [4] B. Jamison and S. Orey, *Subgroups and sequences of paths*, Proc. Amer. Math. Soc. 24 (1970), 739–744.

- [5] A. Janssen, *A Survey About Zero-One Laws for Probability Measures on Linear Spaces and Locally Compact Groups*, in: Lecture Notes in Math 1064, Springer, Berlin, Heidelberg, New York, 1984, 119–138.
- [6] M. Loève, *Probability Theory I*, 4th ed., Springer, New York–Heidelberg–Berlin, 1977.
- [7] J. Zinn, *Zero-one laws for non-Gaussian measures*, Proc. Amer. Math. Soc. 44 (1974), 179–185.

INSTITUTE OF MATHEMATICS
SZCZECIN UNIVERSITY
ul. Wielkopolska 15
70-451 SZCZECIN, POLAND
E-mail: awisniew@uoo.univ.szczecin.pl

Received April 24, 1997; revised version September 8, 2000.

Warsaw University of Technology
Faculty of Mathematics and Information Science
DEMONSTRATIO MATHEMATICA
Pl. Politechniki 1
00-661 Warsaw, POLAND

DEMONSTRATIO MATHEMATICA

EDITORIAL BOARD

Peter Burmeister (TU Darmstadt), Dietmar Dorninger (TU Wien),
Andrzej Fryskaowski, Janina Kotus, Zbigniew Lonc, Bohdan Macukow,
Maciej Mączyński *editor*, Erhard Meister (TU Darmstadt), Agnieszka Plucińska,
Danuta Przeworska-Rolewicz, Tadeusz Rzeżuchowski,
Paweł Szabłowski, Zbigniew Żekanowski

XXXIII

Warszawa 2000

SCIENTIFIC EDITORS FOR THE VOLUME
A. Fryszkowski, Z. Pasternak-Winiarski, P. Szabłowski, M. Tryjarska

TECHNICAL EDITOR
Maria Mączyńska

Manuscripts and editorial correspondence should be addressed to:

Warsaw University of Technology
Faculty of Mathematics and Information Science
DEMONSTRATIO MATHEMATICA
Pl. Politechniki 1
00-661 Warsaw, POLAND
e-mail: demmath@mini.pw.edu.pl

Directions for Authors

DEMONSTRATIO MATHEMATICA publishes original papers in mathematics. Manuscripts in English, German or French should be sent in duplicate to the Editorial Office by post. They should be printed on one side and not exceed 20 typed pages. A short abstract should be included. References to the literature should be arranged in alphabetical order, typed with double spacing. Abbreviations of journal names should follow Mathematical Reviews. Titles of papers in Russian should be translated into English. The paper should contain the affiliation of all the authors, including complete postal and e-mail addresses. 2000 Mathematics Subject Classification numbers should be specified. The publisher requires submission of manuscripts written in \TeX , \LaTeX or \AMSLaTeX . After the paper has been accepted for publication, the author should send the final hard copy and file(s) on the disk to the Editorial Office. Authors receive 25 reprints of their articles.

Contents

M. AKKOUCHI: Common fixed point theorems by altering the distances between the points in bounded complete metric spaces	843–850
A. E. ALHOSSENY, M. K. AOUF, H. E. DARWISH: see M. K. AOUF, H. E. DARWISH, A. E. ALHOSSENY	
M. K. AOUF, H. E. DARWISH, A. E. ALHOSSENY: A generalization of p -valent classes related to convex functions	467–479
M. K. AOUF, H. E. DARWISH, A. A. ATTIYA: On inequalities for certain multivalent functions involving Ruscheweyh derivative	283–288
Ç. ASMA, R. ÇOLAK: On the Köthe–Toeplitz duals of some generalized sets of difference sequences	797–803
A. A. ATTIYA, M. K. AOUF, H. E. DARWISH: see M. K. AOUF, H. E. DARWISH, A. A. ATTIYA	
B. BAJORSKA, O. MACEDOŃSKA: On subclasses of groups without free subsemigroups	35–42
C. W. BAKER: On a weak form of almost weakly continuous functions	865–872
W. BARTOSZEK: On multidimensional determinate moment sequences	815–829
H. S. BEHNAM, G. S. SRIVASTAVA: Spaces of analytic functions of two complex variables	65–74
L. R. BERRONE: A localization principle for classes of means	557–566
V. K. BHARDWAJ, N. SINGH: Some sequence spaces defined by Orlicz functions	571–582
Z. BINDERMAN: On right inverses for functional shifts	665–678
D. T. T. BINH, N. T. LONG: On the nonexistence of positive solution of Laplace equation in half-space R_+^N with a nonlinear Neumann boundary condition	365–372
J. BOCHENEK: An abstract second order Cauchy problem with non-densely defined operator, I	489–501
J. BOCHENEK, T. WINIARSKA: C_0 -semigroups with weak singularity and its applications	851–864
A. BOGDEWICZ: Some metric properties of hyperspaces	135–149
B. BONILLA, A. A. KILBAS, J. J. TRUJILLO: see A. A. KILBAS, B. BONILLA, J. J. TRUJILLO	
D. BORS: Dirichlet problems with variable boundary data for nonlinear partial differential equations	295–312
A. BUICĂ: Elliptic and parabolic differential inequalities	783–792
I. A. CALINOV: On pluriharmonic morphisms	889–899
P. CERONE, S. S. DRAGOMIR, J. ROUMELIOTIS, J. ŠUNDE: A new generalization of the trapezoid formula for n -time differentiable mappings and applications	719–736
I. CHAJDA, R. HALAŠ, J. RACHUNEK: Ideals and congruences in generalized MV -algebras	213–222

R. ÇOLAK, Ç. ASMA: see Ç. ASMA, R. ÇOLAK	
B. P. DAMYANOV: On Mikusiński type products of distributions	627–640
Z. DARÓCZY, Gy. MAKSA, Zs. PÁLES: Extension theorems for the Matkowski-Sutô problem	547–556
H. E. DARWISH, M. K. AOUF, A. E. ALHOSSENY: see M. K. AOUF, H. E. DARWISH, A. E. ALHOSSENY	
H. E. DARWISH, M. K. AOUF, A. A. ATTIYA: see M. K. AOUF, H. E. DARWISH, A. A. ATTIYA	
K. DEMIRCI: A -statistical core of a sequence	343–353
S. S. DRAGOMIR, S. FITZPATRICK: The Jensen inequality for s -Breckner convex functions in linear spaces	43–49
S. S. DRAGOMIR, P. CERONE, J. ROUMELIOTIS, J. ŠUNDE: see P. CERONE, S. S. DRAGOMIR, J. ROUMELIOTIS, J. ŠUNDE	
A. DVUREČENSKIJ: Commutative BCK-algebras with product	1–19
J. DZIOK: Classes of p -valent analytic functions with fixed argument of coefficients	55–63
B. FISHER, Z. LIU, J. D. NICHOLAS: The convolution of functions and distributions	835–841
S. FITZPATRICK, S. S. DRAGOMIR: see S. S. DRAGOMIR, S. FITZPATRICK	
C. GHERGHE: Harmonicity on nearly trans-Sasaki manifolds	151–157
Ö. GÖK: Dual reflexivity theorem in C^* -modules	131–133
J. S. GOLAN: Semiring-valued Korczyński nets	21–28
Z. GRODZKI: Relationship between some classes of nondeterministic \vec{k} -nets of parallel controlled shift-registers	195–211
R. HALAŠ, I. CHAJDA, J. RACHÚNEK: see I. CHAJDA, R. HALAŠ, J. RACHÚNEK	
H. HAMADA, G. KOHR, P. LICZBERSKI: On some sufficient conditions for univalence in complex Banach spaces	289–294
H. HAMADA, G. KOHR, P. LICZBERSKI: General partial differential subordinations for holomorphic mappings in complex Banach spaces	481–487
I. HERBURT, R. MAŁYSZ: On convergence of box dimensions of fractal interpolation stochastic processes	873–888
G. HERZOG, R. LEMMERT: Nonlinear fundamental systems for linear differential equations in Fréchet spaces	313–318
H. M. HOSSEN: Quasi-Hadamard product of certain p -valent functions	277–281
Y. HUANG: Notes on BCK-algebras with condition (S)	453–457
H. G. INCE: Cesáro conull FK-spaces	109–121
JIAN-GUO SI: Analytic solutions of a nonlinear functional differential equation with proportional delays	747–752
S.-M. JUNG, P. K. SAHOO: On the stability of a mean value type functional equation	793–796
J. KALETÀ: On ideals, filters and weak distributivity in generalized Boolean quasirings	231–241
A. KAMIŃSKI, D. PERIŠIĆ, S. PILIPOVIĆ: On various integral transformations of tempered ultradistributions	641–655
M. A. KHAN: Some conditions under which nearrings are rings	255–260
S. KIEŁTYKA, SZ. RABSZTYN: On definitions of trace class operators on Hilbert spaces	373–378

A. A. KILBAS, B. BONILLA, J. J. TRUJILLO: Existence and uniqueness theorems for nonlinear fractional differential equations	583–602
A. A. KILBAS, M. SAIGO: Modified H -transforms in $\mathfrak{L}_{\nu,r}$ -spaces	603–625
J. KLOUDA, A. VANŽUROVÁ: On a general construction of diagonal algebras	223–230
M. A. KŁOPOTEK: On a deficiency of the FCI algorithm learning Bayesian networks from data	181–194
M. A. KŁOPOTEK: Fast restricted causal inference	419–442
G. KOHR, H. HAMADA, P. LICZBERSKI: see H. HAMADA, G. KOHR, P. LICZBERSKI	
T. KONIK: On the sets of the classes $\tilde{M}_{p,k}$	407–417
V. KVARATSKHELIA, V. TARIELADZE: The structure of summable sequences and p -summing operators	379–387
S. LAVRENYUK, L. ZAREBA: The initial-boundary value problem for the first order degenerated hyperbolic system	75–82
A. LECKO: On certain differential subordination for sectors	741–746
R. LEMMERT, G. HERZOG: see G. HERZOG, R. LEMMERT	
P. LICZBERSKI, H. HAMADA, G. KOHR: see H. HAMADA, G. KOHR, P. LICZBERSKI	
Z. LIU, B. FISHER, J. D. NICHOLAS: see B. FISHER, Z. LIU, J. D. NICHOLAS	
N. T. LONG, D. T. T. BINH: see D. T. T. BINH, N. T. LONG	
O. MACEDOŃSKA, B. BAJORSKA: see B. BAJORSKA, O. MACEDOŃSKA	
Gy. MAKSA, Z. DARÓCZY, Zs. PÁLES: see Z. DARÓCZY, Gy. MAKSA, Zs. PÁLES	
R. MAŁYSZ, I. HERBURT: see I. HERBURT, R. MAŁYSZ	
N. MATZAKOS, N. S. PAPAGEORGIOU: Existence of periodic solutions for quasilinear ordinary differential equations with discontinuities	753–770
M. MEDVEĎ: Nonlinear singular difference inequalities suitable for discretizations of parabolic equations	517–525
A. MUSIELAK: Some inequalities for coefficients of multiple Fourier series .	333–341
J. D. NICHOLAS, B. FISHER, Z. LIU: see B. FISHER, Z. LIU, J. D. NICHOLAS	
NOORI F. A. AL-MAYAHI: On infinite dimensional generalization of Yan's theorem	831–834
T. NOIRI, V. POPA: see V. POPA, T. NOIRI	
Z. OLSZAK, K. SŁUKA: On the existence of affine connections with recurrent projective curvature	171–179
G. OMIECIŃSKA: Dual sufficient optimality condition for control problem with partial differential equations	389–406
Zs. PÁLES, Z. DARÓCZY, Gy. MAKSA: see Z. DARÓCZY, Gy. MAKSA, Zs. PÁLES	
N. S. PAPAGEORGIOU, N. MATZAKOS: see N. MATZAKOS, N. S. PAPAGEORGIOU	
W. PEIGUANG, G. WEIGAO: Oscillation properties for certain hyperbolic equations with distributed arguments	83–89
D. PERIŠIĆ, A. KAMIŃSKI, S. PILIPOVIĆ: see A. KAMIŃSKI, D. PERIŠIĆ, S. PILIPOVIĆ	
V. PESCAR: New criteria for univalence of certain integral operators	51–54

S. PILIPOVIĆ, A. KAMIŃSKI, D. PERIŠIĆ: see A. KAMIŃSKI, D. PERIŠIĆ, S. PILIPOVIĆ	
K. PIÓRO: A few notes on subalgebra lattices, part I	695–706
A. PISKOREK, A. SZYMANIEC: Local in time existence of solution to the Dirichlet initial-boundary value problem in nonlinear hypoelasticity	503–515
E. PŁONKA: Some remarks on endomorphisms of universal n -algebras	29–34
I. POP: On tensor products in concrete categories	707–718
V. POPA: A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation	159–164
V. POPA, T. NOIRI: On s -precontinuous multifunctions	679–687
SZ. RABSZTYN, S. KIEŁTYKA: see S. KIEŁTYKA, SZ. RABSZTYN	
J. RACHŮNEK, I. CHAJDA, R. HALAŠ: see I. CHAJDA, R. HALAŠ, J. RACHŮNEK	
Z. RIEČANOVÁ: Archimedean and block-finite lattice effect algebras	443–452
C. ROM: Remarks on decomposable sets	567–570
J. ROUMELIOTIS, P. CERONE, S. S. DRAGOMIR, J. ŠUNDE: see P. CERONE, S. S. DRAGOMIR, J. ROUMELIOTIS, J. ŠUNDE	
B. SAĞIR: On functions with Fourier transforms in $W(B, Y)$	355–363
P. K. SAHOO, S.-M. JUNG: see S.-M. JUNG, P. K. SAHOO	
M. SAIGO, A. A. KILBAS: see A. A. KILBAS, M. SAIGO	
E. SAVAŞ: On sequence spaces and \widehat{S} -convergence	165–170
CH. SCHMOEGER: On a class of generalized Fredholm operators, VII	123–130
J. SIKORSKA: Orthogonal stability of the Cauchy equation on balls	527–546
N. SINGH, V. K. BHARDWAJ: see V. K. BHARDWAJ, N. SINGH	
U. SKÓRNICKI: Elements of $D'_{L^q}(\mathbb{R})$ as boundary values of holomorphic func- tions	657–663
M. SKRZYŃSKI: On \mathcal{GL}_n -invariant cones of matrices with small stable ranks	243–254
J. ŚLAPAL: Another cartesian closed category of partial algebras	689–694
K. ŚLUKA, Z. OLSZAK: see Z. OLSZAK, K. ŚLUKA	
G. S. SRIVASTAVA, H. S. BEHNAM: see H. S. BEHNAM, G. S. SRIVASTAVA	
S. STOIŃSKI: An application of modular spaces to approximation problems, VII	805–814
J. ŠUNDE, P. CERONE, S. S. DRAGOMIR, J. ROUMELIOTIS: see P. CERONE, S. S. DRAGOMIR, J. ROUMELIOTIS, J. ŠUNDE	
SUYALATU: On some generalization of local uniform smoothness and dual concepts	101–108
S. SZABÓ: An extension of a result of A. D. Sands	459–465
A. SZADKOWSKA: The Cauchy problem for certain generalized differential equations of second order with singularity	771–781
A. SZYMANIEC, A. PISKOREK: see A. PISKOREK, A. SZYMANIEC	
W. A. ŚLĘZAK: Superpositional measurability in the presence of both \mathcal{E} -semicontinuities of X -sections	265–276
V. TARIELADZE, V. KVARATSKHELIA: see V. KVARATSKHELIA, V. TARIELADZE	
J. J. TRUJILLO, A. A. KILBAS, B. BONILLA: see A. A. KILBAS, B. BONILLA, J. J. TRUJILLO	
A. VANŽUROVÁ, J. KLOUDA: see J. KLOUDA, A. VANŽUROVÁ	
E. WACHNICKI: Une variante du théorème de Cauchy de la valeur moyenne	737–740

Z. WALCZAK: On certain modified Szász-Mirakyan operators for functions of two variables	91–100
Y. WANG: A criterion for nilpotency of finite groups	261–264
WEI NIAN LI: Oscillation for solutions of partial differential equations with delays	319–332
G. WEIGAO, W. PEIGUANG: see W. PEIGUANG, G. WEIGAO	
T. WINIARSKA, J. BOCHENEK: see J. BOCHENEK, T. WINIARSKA	
A. WIŚNIEWSKI: 0-1 law for product measures in product of groups	901–908
L. ZAREBA, S. LAVRENYUK: see S. LAVRENYUK, L. ZAREBA	

The following individuals have acted as referees of the articles published in this volume:

P. Antosik, W. Bartol, P. Biler, Z. Binderman, A. Borzymowski, M. Bożejko, K. Burnecki, T. Byczkowski, Tadeusz Dłotko, Tomasz Dłotko, J. Ewert, K. Głazek, L. Górniewicz, Z. Grande, J. Hauke, J. Herburt, H. Hudzik, Z. Jackowski, D. Jagiełło, A. Janik, J. Janikowski, J. Kacprzyk, Z. Kamont, M. Kisielewicz, W. Korczyński, J. Krempa, J. Kubarski, S. Kwapień, G. Kwiecińska, W. Marzantowicz, J. Matkowski, R. Mazur, S. Midura, A. Mrożek, J. Musielak, T. Noiri, B. Nowak, Cz. Olech, Z. Pasternak-Winiarski, A. Pełczyński, A. Pilitowska, E. Płonka, D. Przeworska-Rolewicz, P. Pych-Taberska, L. Rempulska, R. Rudnicki, M. Rutkowski A. Sands, D. Simson, A. Skowron, G. S. Srivastava, J. Stankiewicz, P. Szabłowski, B. Szafirska, S. Szufla, J. Szynal, J. Ślapal, B. Świtoniak, J. Tabor, Tadeusz Traczyk, P. Walczak, B. Wojdyło, J. Zając, W. Zajączkowski, J. Zemanek.

The editor expresses them his sincere thanks for their advice and collaboration.

