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ON CONVERGENCE OF BOX DIMENSIONS
OF FRACTAL INTERPOLATION STOCHASTIC PROCESSES

Abstract. We introduce fractal interpolation processes determined by n-dimensional
random vectors. We examine convergence of their box dimensions and trajectories. We
prove, in particular, that box dimensions and trajectories of fractal interpolations of a-
fractional Brownian motion converge to those of the interpolated process.

1. Introduction

During last years there has been great interest in modelling real phe-
nomena using self-similar processes (for instance see [15] for applications
to economy and analysis of stock market behaviour). Estimation of frac-
tal properties and simulation of trajectories from a given set of sample
points has attracted considerable attention. The literature with short re-
views of methods of estimating fractal dimension include [7],[13]. For sim-
ulation of trajectories see [25], [6]. We focus on simulation of self-similar
processes based on fractal interpolation. Fractal interpolations were intro-
duced by Barnsley ([1]) and investigated in by others (see [3], [4], [5], [9],[10],
(11],[18],[19], [20]). Fractal interpolation is a continuous function which in-
terpolates a data. The graph of fractal interpolation is the attractor of a
finite family of affine transformations in R? each of which has a free pa-
rameter which controls vertical scaling. Strahle ([23]) proposed a method
which generates a unique fractal interpolation for a given set of data, by
seting free parameters to ensure that fractal interpolation has the correct
values at the midpoints. This method was extended by Chao and Leu in [8§].
We apply fractal interpolations to stochastic processes. In our method, like
in Strahle one, vertical scaling factors are uniquely defined by n-tuples of
equally spaced sample points and determine a unique fractal interpolation.

Key words and phrases: fractal interpolation, interpolation dimension, box dimension,
stochastic process, fractional Brownian motion, stationary increments, self-similar.
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We prove that for some class of o - self similar processes which includes
a-fractional Brownian motions (a-fBm’s) trajectories of such fractal inter-
polations converge to a trajectory of the interpolated process. Moreover we
show that the respective sequence of box dimensions of graphs of fractal
interpolations converge to 2-« i.e. the box dimension of a typical trajectory
of a - self similar process (for the relationship between the index a of self-
similarity and the dimension of trajectory for « - self similar processes see
[24] and [27]). Since the formula for box dimension is very simple in case of
fractal interpolation, we get in this way a very simple estimator of index «
for a-fBm or more general for some « - self similar processes.

A set of data is a set of points {(z;,y;) € R? :i=0,1,...,n}, where zg <
Ty...< Z,. Let w; : R2 — R?, i =1,2,...,n, be affine transformations
defined as follows. For every (z,y) in R?

(-2 0)(2)

where
Ty — Tj-1 Yi — Yi—1 d Yn — Yo
4= —, Ci = — g )
Tn — Tg Tn — Tp Tn — Zp
_ TnpTi-1 — 2%y _ ZTn¥Yi-1 — TolYi d TnY0o — ToYn
j= e 0 fi= —d; -
In — Zo Tn — L0 In — T0

According to [2, section 6.2, Theorem 2| we get

1.1. If the vertical scaling factors d; obey 0 < d; < 1, then the attractor of
a family {w; : 1 = 1,2,...,n} exists and is the graph of a continuous real
function defined on [zo, zp).

The function defined by 1.1 interpolates the set of data {(zi,v;) € R? :
i=0,1,...,n}. We call it a fractal interpolation with scaling factors (d;)*_,
and denote by F({(z;,y:):¢=0,1,...,n};(di)i=).

The graph of a fractal interpolation has box dimension dimg determined
by the vertical scaling factors d; (comp. [3] and [10, Example 11.4]). For
equally spaced interpolated points the formula for the box dimension of
fractal interpolation is of the following form.

1.2. If a; = % for1 <i<mn,0<d; <1 and}j-;di > 1, then the boz
dimension D of the graph of fractel interpolation satisfies
D=1+ Ind iy di di.

Inn

We shall generalize the notion of fractal interpolation to stochastic pro-
cesses. Let (Q, F, P) be some probability space and let T be a subset of R.
We call X a stochastic process from T to R if X (t) is a random variable for
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each t € T. The value X (¢)(w) will be denoted by X (¢,w). Let Xy, : @ — R
be random variables for g < 3 < ... < i, and let d; : 2 — R be measur-
able functions for 1 = 1,2,...,n. Let Q' C Q be defined as follows

we® & 0<di(w)<lfori=1,2,...,n.
By 1.1, if w € €, then F ({(t;, Xt,(w)) : 1 =0,1,...,n}; (di(w))ir,) exists.
A fractal interpolation of (X, ..., Xy, ) with scaling factors (d1, ... ,dn)
is a ’partial’ process F(x, )(4,) [to,tn] — R, depending on sequences (Xj,)
and (d;), such that

Fix, )@ (b w) = F ({(t, X, (w)) :1=0,1,...,n}; (di(w))i) (2)
for every w € )’ and t € [to, tn]-
1.3 Lemma. F(Xti)(di)(t’ -) is a measurable function for every t.

Proof. For every w € ' let the graph of F(Xti)(di)(t’ w) be the attractor of a
family {w1(w),...,wn(w)} of affine transformations. Set I;(¢,w): = a;(w)t +
e;(w) and fi(t, z)(w) = ci(w)t + di(w)z + fi(w). Let Ty:= {l;; ol 0---0
lik (to): il,iz, SN ,in € {1, 2, SR ,n}}. Denote lil o li2 O+«++0 lik (to) by til...ik-
Take t = ti;...i,, € Tie. Then Fix, ya,)(t,w) = fiy owi, 0. owiy (to, X (to,w))
so F(x, )()(t,") is measurable. If ¢ is an arbitrary point in [to,%n], then
there is a sequence (Zx), such that ¢ = limg_, o tx and tx € Tj. In that case
Fix, )(a;)(t,-) is a pointwise limit of measurable functions Fx, ;) (t, ) s
also is measurable. ]

The function D(g,y : @ — [0, 2] given by

InS2 . d; L
1+M ide,’(w)>0
Dgy(w) = Inn i=1
1 the otherwise.

is the interpolation dimension with scaling factors (d;). Let us note that
D4,y is defined independently of the existence of fractal interpolation. For
equally spaced random variables (X;,) and w € ' we have simply

D(di)(w) = dimB gl‘a.phF(Xti)(di) (w)

We shall define now a fractal interpolation fully determined by a set

of data. For a sequence (X, X4,,...,Xt,) of random variables we define
scaling factors dy,dy ...,d, by
X — X,
d; = Xt — Xe,| for i=1,...,n.

* T max{X;, : 0<k<n}-min{X,, :0<k<n}
It is obvious that 0 < d; <land Y0 ;d; > 1.
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If there exists a fractal interpolation that corresponds to scaling factors
di,dy...,dy defined above, it depends only on the sequence (Xi,) and is
called fractal interpolation of (X;,). The corresponding interpolation dimen-
sion will be referred to as the interpolation dimension of (X¢y, X4y, .-, Xt,.)
and will be denoted by Dx, ).

We shall consider sequences of fractal interpolation processes in two
cases.

CasE 1 (time series). For a given stochastic process {Xt}sc(o,o0) 2nd Q25 C Q
we take fractal interpolations Fy, of (X; :4=0,...,n), n € N, with some
scaling factors (dz(")).

Case 2. For a given stochastic process {Xi}icp,y) and 2 C Q we take
fractal interpolations Fy, of (X;/, :4=0,...,n), n € N, with some scaling
factors (dl(.")).

In both cases interpolated random variables are equally spaced, thus
the box dimension of F,, depends only on the sequence (dz(")) of scaling
factors (1 < ¢ < n). We shall denote it by Dn(dz(-n)). For the interpolation
dimension with scaling factors determined by a process {X;}, more strictly,
by sequences (X;)oci<n in case 1, and (Xj/p)o<i<n in case 2, we use the
notation D,(X;) or D,(X:), respectively. For a fixed process we write it
simply D,, when no confusion can arise. In the paper we shall only deal with
the case limp 00 P(Qy) = 1.

It is clear that if we interpolate points of a process with known box
dimension o then we can easily find scaling factors to obtain fractal inter-
polations with box dimensions convergent to a.

1.4. Let 1 < a < 2. If an interpolation F,, is given by equally spaced random
variables and constant (with probability 1) identical scaling factors d§") =
1/n?~%, fori=1,2...,n and every n € N, then Dn(dgn)) converges to «
with probability 1.

Proof. Notice that factors dE") satisfy assumptions of 1.1 an 1.2. The con-
vergence of Dn(dgn)) to a is obvious. "

Let us remind shortly (see {22]) that a process (X (t))is self-similar with
indez o (a-ss) if for any a > 0, the finite dimensional distributions of (X (at))
are the same as those of a®X (t). The process is a — sssi if it is self-similar
with index a and has stationary increments.

A Gaussian a-sssi process, 0 < a < 1, is called a-fractional Brownian
motion (a-fBm). Fractional Brownian motion is symmetric and has contin-
uous trajectories with probability 1. The increments of fractional Brownian
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motion make a stationary and ergodic process. The (1/2)-fBm process is
called Brownian motion.

We say that a sequence (X,) of random variables satisfies the law of
large numbers if with probability 1

n

X,
lim ==L = B(X)).

—00 n
In particular, if (X,) is stationary and ergodic then (X,) and (| X,|) satisfy
the law of large numbers ([21]).
In section 2 we examine convergence of interpolation dimensions and in
section 3 we prove the convergence of trajectories of fractal interpolations
of processes with continuous trajectories.

2. Convergence of interpolation dimensions
Let {Xt}eo,00) De a stochastic process. We assume that

Plw: Xn: [Xi(w) = Xima(w)] > 0} = 1.
=1

We shall examine convergence of D, (X;) for processes with stationary incre-
ments. For self-similar processes it will give also convergence of Dy, (X;/y)-

LetX,(r@x—max{XizogiSn}andX( ") =min{X;:0 <i<n}.

min

2.1 Theorem. If the sequence (| X; — X;-1|) satisfies the law of large num-

(n) _ y(n)
bers and lim,_, o %‘f’—xﬂuﬂl = | with probability 1 (in probability), then

limp 00 Dn(X5) = 2 — 1 with probability 1 (in probability).
Proof. By the assumptions,

n—0o0 n

converges to a positive constant with probability 1. Thus, with probability
1 (in probability),

n

> 1Xi — Xl
In =L
hm D=1+ lim Ximae = Xmin =
n—0o0 Inn
1 M n n
2+ lim — n — pim 2 ae = Xiin) _ o .
n—oo Inn n—oo Inn

For processes which satisfy some kind of iterated logarithmic law we have
the following result.
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2.2 Collorary. Let {X,} be a symmetric process for which the sequence
(I1Xi—X;-1|) satisfies the law of large numbers. If there exz’st functions fi for
t = 1,2 such that lim,_,o In fi(n)/Inn = 0, limsup,,_, x{, (n®f1(n)) =
c1, and liminf, Xé:?x/(nafg(n)) = co, with probability 1, for some posi-
tive constants ¢1, ¢z and 0 < a < 1, then lim,_,oo Dp = 2 — & with probabil-
ity 1.

Proof. By Theorem 2.1 it is enough to prove that lim, X mas=Xpin)

Inn
a with probability 1. By the assumptions
9 x (™)

In(Xx{, - x™ In ;7785 + Inn® fi(n)
lim sup n(Xmaz min) = lim sup — f =a
n—oo Inn n—00 lnn

. - . .. In(x{, —x™ . .
with probability 1. Similarly liminf, e ——"§——=" = o with probabil-

ity 1. n
Since fractional Brownian motions satisfy the assumptions of Collorary
2.2 we have the following result.

2.3 Collorary. The n-th interpolation dimension D, of an a— f Bm process
tends with probability 1 to 2 — a (i.e. to the box dimension of a typical
trajectory).

Proof. Let {X¢};c[0,00) be a fractional Brownian motion with index c. The
sequence |X; — X;_1| of increments is stationary and ergodic thus satisfies
the law of large numbers . Moreover (X,) is symmetric and satisfies the

iterated logarithmic law so also (X,S?gm) does and we take f1(n) = VInlnn
(compare [12],{14]) . Finally, by [26], there exists a positive constant ¢ such

that
(n)

liminf ——> = ¢
n—oo n%(Inln(n))~—«
with probability 1. Thus we can define fa(n) = (Inln(n))~. "

All the above results were obtained for stochastic time series. As could be
expected, for self-similar processes the convergence of D,(X;) is equivalent
to the convergence of D,(X ;). The next theorem clarifies this dependence.

2.4 Theorem. Let a process { X }1c(0,00) be self-similar and let o € R. Then
Dy (Xi)—a in probability 1 <= Dp(X;/n)— in probability 1.

Proof. Let o be the index of self-similarity. Since for all a > 0, the finite
dimensional distributions of {X (at)} are identical to the finite dimensional
distributions of {a®X(¢)} we have

d
(Xl/na,Xg/na,. . ,Xn/na) = (Xl/n7X2/na' . -1Xn/'n,)-
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Fig. 1. Mean interpolation dimensions

This implies
-Dn(xi) g Dn(Xifn)‘

The convergence in distribution to a contant o implies the convergence in
probability. .

We are mainly interested in interpolating self-similar processes with con-
tinuous trajectories. Nevertheless, we can apply the notion of interpolation
dimension to other processes and even to sequences of independent random
variables. As an example we calculate interpolation dimension for Gaussian
white noise and for the Poisson process.

2.5 Collorary. Let X1, Xo,... be a sequence of independent Gaussian ran-
dom variables with expectation 0 and variance 1. Then limy, o Dn(X;) = 2
in probability.

Proof. Since X, Xs,... are symmetric, by Theorem 2.1, it is enough to
prove that
(n)
In(X,
lim _Il(_mz_) = 0 in probability.

n—oo  Inn
Take an £ > 0.

In(X5,
P T>E SP(X:L>'n5)+P(X2>n£)+---+P(Xn>n5):
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Fig. 2. Density of interpolation dimension of the Brownian motion

e —z? o —z2 —z2 nl€
nP(X;>nf)=nl{e7T dz=n S e ced dz<ne " Tc
n: ﬂ‘
for some constant c. Thus
(n)
lim P (”—m >5) —o. y
n—00 Inn

2.6 Collorary. If {X.} is the Poisson process then lim, oo Dn(X;) =1 in
probability.

Proof. Since (X,) is an increasing sequence and Xo = 0 with probability
1, by Theorem 2.1 and Chebyshev’s inequality, we get

() _ y(n)
i p (X))
n—od

Inn
X
Jim P(X,, > nf+1) < lim B} 0.

n=oo pEtl

1

We shall compare the above theoretical results with the results of the
experiment consisting in measuring mean interpolation dimensions:

We generate sample points Xg, X1, ..., X, of a process, for every fixed
n being a power of 2 between 22 and 2!°. We repeat the experiment (22°/n)
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Fig. 3. Density of interpolation dimension of the white noise

times and calculate the arithmetic mean of interpolation dimensions ob-
tained in the series.

The results for Brownian motion and the Gauss distribution (white
noise), are shown in Figure 1.

To illustrate better the convergence of interpolation dimensions, we have
also found experimentally the density functions of interpolation dimensions:
(Figures 2-3). :

We divide the interval I = [1,2] into 32 subintervals Iy, ..., I32 of equal
length. For every fixed number n being a power of 2 between 22 and 2'°, we
generate points Xy, X,..., X, of a process and calculate the interpolation
dimension D,. We repeat the experiment (220/n) times for every n and
measure the number k; of occurrences of D, in the interval I; for 1 <1 < 32.
In three dimensional coordinate system we mark on the x-axis numbers s
between 2 and 15, where n = 2¢ is the number of generated sample points.
On the y-axis there are midpoints of intervals I;, and on the z-axis we mark
numbers k;/n for i = 1,2...,32 and n = 4,8, 16,...,2!%. The density lines
are linear interpolations of all points graphed in each of the the s-series,
2<s<15.
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3. Convergence of trajectories

Fractal interpolations of processes with continuous trajectories have ad-
ditional great advantage. Under some, not very restrictive assumptions, their
trajectories converge uniformly to trajectories of the initial process. Thus
fractal interpolations can be used to approximate processes.

In order to prove the convergence of trajectories of fractal interpolation
processes we first show a technical theorem about fractal interpolations.

3.1 Theorem. Let Ey = {(i/n,X;/,) : 0 < 4 < n} be a set of data. Let
max;{ Xj/n} — mini{X,/,} # 0. If F is a fractal interpolation of Ey with

scaling factors d; = maxllﬁ’(/l’/‘;})g;n'l;i/{’i/n} and max;{d;} < 1/2, then for

everyi € {1,...,n}
3max;{|X;/n — X(i—1y/ml}

su F(t) — inf F
(i—l)/né)tgi/n ®) (i—-1)/n<t<i/n - 1 — 2max;{d;}

Proof. Let A:= max;{|X;/m — X(i—1)/nl}, Mo:= max{X;/,} and mo =
min;{X;/n}. The interpolation F is determined by a family of affine trans-
formations, say w; : R? — R%, 1< i < n. For (¢,z) € R?,

_(t)_(l/nO)(t>+<(i~1)/n>
Yi\e) T ¢ di) \ =z fi ’

¢i = Xim — X(i-1)/m — &i(X1 — Xo),
fi= X—1)/m — diXo

where

and
X = X1yl
B My — mg '

d;
Let W be the Hutchinson operator defined on the set of subsets of R? by

n
W(E) = U w;(E) for an arbitrary E C R?.
i=1

Denote the composition W o W --- o W by WF. Since the graph of F' is the
k—times

attractor for {w;}, it follows that graphF = limg W*(Ejp), where limp is

the Hausdorff limit. Let Ej, = Wk(E,). Write

My = max{z : (t,z) € Ex}, my = min{z : (¢,z) € Ex},

MO = max{z : (t,z) € By, (i — 1)/n < t < i/n}
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and
mg) =min{z : (¢,z) € Eg,(t —1)/n <t <i/n}.

Notice at first that for every i € {0,...,n} and k € N
(1) M;Ei) - mff) <2\ Xi/m — X(i—1)/nl + di(Mg_1 — myg_1).

To show (1) we shall consider four cases.
CAsE 1. Xi/n - X(i-—l)/n >0and X; — Xy > 0.

Then ¢; > 0 and, since

MY <ci l+di My + fi
and
m{ > ¢+ 0+ di - myp_1 + fi

we obtain

M}Ei) — mg) <ci+di(Mg—y —mg_1) =

= X;/n — X(i—1)/n — di(X1 — Xo) + di( M1 — mg-1)
Xifn — X(i-1)/n

Mo —mg

< | Xifn — X(i—1y/ml| + di( Mg_1 — mg_1).
CASE 2. Xi/n — X(i—l)/n >0and X; — Xp <0.

Then ¢; > 0, as above, and

M,ﬁ") - ms) Sci+di (My_y —myp_y) =
Xifn — X(i-1)/n — di(X1 ~ Xo) + di - (Mg—1 — mg-1) <
2| X/ — X(i—1)/nl + di(Mg—1 — mg_1).

CASE 3. Xi/n — X(i-1)/n <0 and X; — Xp < 0. It is symmetric to Case 1.
CASE 4. X/ — X(i—1)/n < 0 and X3 — Xp > 0. It is symmetric to case 2.

Next, we shall prove by induction that forallk > land 1 <i<n
Mlgz) _ mgcz) <

6.A? 3.2k-148  3A4(1—(24/(Mo —mo))¥)

At e T Oy ) T T 124/ (Mo —mo)
Let k =1. By (1)
M = m{) < 2|Xy/n — X(s_ay/ml + di(Mo = mo) = 3| Xiyn = X-1yym! < 34,

as required.
Assume that for k — 1 the inequality is satisfied. By the inductive as-
sumption,

= Xifn — X—1)/n — (X1 — Xo) + di(My_1 — my_1)

34 (1 — (24/(My - mo)k-l)
1— 24/ (Mo — mq)

Mg_1 < My +
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and

34 (1 - (24/(Mo — mo)) )
1-2A4/(My — myg)

Substracting the above inequalities and using once more (1) we obtain

Mg_1 2 Mo —

M,gi) . mg:) <

64 (1 - (24/(Mo — mo))*1)
1— 24/ (Mo — mo)

< 2[Xpm — X—1y/ml +di - (Mo —mg+

(
[Xim = Xgmyml 64 (1 — (24/ (Mo — mo))*~1)
My —mg 1— 24/ (Mo — mo)

34 (1 - (24/(Mo — mo))*?)
1-2A/(Mo — my)
34 (1 - (24/(Mo — mo)*)
1-2A4/(Mo — mo)
Therefore, for every 7 € {1,...,n}

= 3| Xi/n — X(i—1)/nl +

< 3A + 2A/(M0 — mo)

34 (1 - (24/(Mo — mo))*)
su F(t) — inf F(t) = lim
(i_l)/n;g/n ®) (i-1)/n<t<i/n ®) k—o0 1-2A/(Mp — mo)
3A
< .
— 1-2A/(My— myp)

Now we shall consider a stochastic process {X};c[o,1)- We assume that
{Xt}tefo,1) is nontrivial in the sense that

Plw: Xo(w) = Xy/n(w) =+ Xin(w) = - X1(w)} =5 0.
As an immediate consequence of Theorem 3.1 we obtain

3.2 Corollary. Let F' be a fractal interpolation of (X;/y)o<i<n with scaling

factors d; = maxjf}l{/l '/';})f(r’ni;i/{'sl{i/n}. If there exist constants H and c such that

max;{|X;/nl} < H and max;{d;} < c < 1/2 with probability 1, then F is a
bounded process, i.e.
AC P{w: sup |F(t,w)|<C)=1.

0<t<1

Proof. Let A = max;{|X;/m — X(i-1)/nl}, Mo = max;{Xj/n}, and mo =
min;{X;/,}. By Theorem 3.1 and the assumptions,
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3A 3H
sup F, <max(X;/,) + < H+
(i-1)n<i<ijm (Xijm) 1—-2A4/(Mo — mo) l-c
with probability 1. In the same way we prove that F' is bounded from below.

3.3 Theorem. Let {X;}c(o,1) be a stochastic process that has continuous
trajectories. Let Fy, be the fractal interpolation of (X;/, : i = 0,1,...,n)

| Xs/n—Xi—1)/nl
max; { X/, }—ming {X;/,}

with scaling factors dl(-") = If there is a constant c

such that
n—o00

Plw:maxd™(w) <ec<1/2} =% 1

then
sup (|Fn(t) — X(t)|)—0 in probability.
te(0,1]
Proof. Let I = [0,1] and I; = [(¢ — 1)/n,i/n], for i = 1,...,n. Let Q, =
{w € Q : max; dl(-n)(w) < c}. By 1.1, F,(w) exists for w € ©, and, by the
assumption, limp_,o P{Qy) = 1. Clearly, for every w € Q,
s;u?([Fn(t,w) —X(t,w)|)= sup sup(|FL(t,w)— X(tw)]) <
€

i€{1,2...,n} t€l;
— 1
sup sup ( F.(t,w)— X (E-———,w>D +
i€{1,2...,n} t€L; n

sup sup (‘X (l — 1,w> —X(t,w)D .

i€{1,2...,n} teL; n

We shall prove that both terms on the right side of the above inequality
tend to 0 in probability i.e.,

(*) Ve >0 P(w € Q: sup;eqr g ny SUDer, (| X (558, w) - X (t,w)| > €) =50
and
(¥%) Ve > 0 P(w € Q : sup;c(1a. n} SUPser, (|Fn(t,w) — X (53, w)]) > )

e .

Proof of (*): With probability 1, the trajectories X (-,w) are uniformly con-
tinuous on [0, 1], hence we obtain easily that

1 .
P(w: sup sup (’X (Z ,w) _X(t’w)D =% ) = 1,
i€{1,2...,n} t€l; n

which implies convergence in probability.
Proof of (xx): Let

An(w) = max;{| X, /n(w) — X(i—1)/n (@)1},
M () = maxi{ X/ ()},
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and (

mf () = min{ Xy/n(w)}.

By Theorem 3.1 applied to F;, and the fact that lim,_,o, P(£2,) =1 we
infer that for all § > 0 and n large enough, the set of w satisfying

sup sup(|Fp(t,w) — X((i — 1)/n,w)|) <
ie{1,2...,n} tek;

su su E,(t,w) — inf F,(t,w) <
i€{1,2?.,n}(i—1)/n£t§i/n n(t) (i-1)/n<t<i/n n(he)
34 (w) < 3An(w)

H

1 - 24n(w)/ (M7 (@) - m{P () © 1€
is of probability greater than 1 — 8. Therefore, for every ¢ > 0 and § > 0

P{w: sup sup(|Fn(t,w)— X((—1)/n,w)| > ¢}
i€{1,2...,n} tel;
3An(w)
l1-c¢

SP{w: >€}+6

for n large enough. Thus, by (*)

1 -
P{w: sup sup(|Fp(t,w)—X (l—,w) | >er =3 0. "
i€{1,2..,n} tl; n

3.4 Corrollary. Let {X:}4e(o,1) be an a-fractional Brownian motion and let
Fy, be the fractal interpolation of (X;/, 14 =0,1,...,n), for everyn € N.
Then

sup (|Fa(t) — X(t)]) == 0

t€(0,1]
in probability.

)

Proof. We have to prove that scaling factors dz(-n satisfy the condition

P{w: max{d™(w)} < c < 1/2} =51
2
for some constant c.

By [17, Theorem 7 ] for a-fBm we have the following uniform Holder
condition

- | Xy (w) ~ Xi(w)|
Plw: lim sup =1}=1.
{ ft—t/|=h—00<tt'<1  h*y/In 1/h }
Therefore
P{w : 3ng¥n > ng max | X 41/ — Xi/nl < 2(1/n)*VInn} = 1.

Let Ar be a subset of Q satisfying the above condition for ng = k£ and
k=1,2... . Therefore P(Uj2; Ax) = landsince Ay CAy C--- C A, C -
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we get limy_, o0 P(Ak) = 1. Let By = {w : maXOSiSk{IX(,;+1)/k - Xz/kl} <
2(1/k)*vInk}. Since Ay C By we obtain limg_,o, P(Bg) = 1.
Moreover, by [26], there is a positive constant ¢ such that
_ o . -
(2) 012%)%{X,/k}(1n In k)*——c¢ in probability.
Let Cr = {w: ¢/2 < maxo<i<k{ Xi/x }(InInk)*}. By (2), limy_o0 P(Cy) = 1.
If w € BN C;, then

m?x{dg’“)(w)} < 4(1/k)*vVInklnln k)*/c.

Since the right side of the above inequality tends to 0 when k& — oo and
limg_, oo P(Ag N Bg) = 1 we get the claim. .

4. Final remarks

As we have seen, fractal interpolation dimension can be used to identify
a process in the class of fractional Brownian motions. Our results are even
more general and they can be applied also to other classes of processes.

For a process for which we can experimentally verify that box and iner-
polation dimensions are (almost) the same, the fractal interpolation deter-
mined by a set of data is likely to be a good approximation and can be used
to extend the process beyond a given set of sample points. From computa-
tional point of view, the formula for fractal interpolation dimension is very
easy to be handle with and is of linear complexity.
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