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ON CONVERGENCE OF BOX DIMENSIONS 
OF FRACTAL INTERPOLATION STOCHASTIC PROCESSES 

Abstract . We introduce fractal interpolation processes determined by n-dimensional 
random vectors. We examine convergence of their box dimensions and trajectories. We 
prove, in particular, that box dimensions and trajectories of fractal interpolations of a -
fractional Brownian motion converge to those of the interpolated process. 

1. Introduction 
During last years there has been great interest in modelling real phe-

nomena using self-similar processes (for instance see [15] for applications 
to economy and analysis of stock market behaviour). Estimation of frac-
tal properties and simulation of trajectories from a given set of sample 
points has attracted considerable attention. The literature with short re-
views of methods of estimating fractal dimension include [7] ,[13]. For sim-
ulation of trajectories see [25], [6]. We focus on simulation of self-similar 
processes based on fractal interpolation. Fractal interpolations were intro-
duced by Barnsley ([1]) and investigated in by others (see [3], [4], [5], [9],[10], 
[11],[18],[19], [20]). Fractal interpolation is a continuous function which in-
terpolates a data. The graph of fractal interpolation is the attractor of a 
finite family of affine transformations in R2 each of which has a free pa-
rameter which controls vertical scaling. Strahle ([23]) proposed a method 
which generates a unique fractal interpolation for a given set of data, by 
seting free parameters to ensure that fractal interpolation has the correct 
values at the midpoints. This method was extended by Chao and Leu in [8]. 
We apply fractal interpolations to stochastic processes. In our method, like 
in Strahle one, vertical scaling factors are uniquely defined by n-tuples of 
equally spaced sample points and determine a unique fractal interpolation. 

Key words and phrases: fractal interpolation, interpolation dimension, box dimension, 
stochastic process, fractional Brownian motion, stationary increments, self-similar. 
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We prove that for some class of a - self similar processes which includes 
a-fractional Brownian motions (a-ffim's) trajectories of such fractal inter-
polations converge to a trajectory of the interpolated process. Moreover we 
show that the respective sequence of box dimensions of graphs of fractal 
interpolations converge to 2-a i.e. the box dimension of a typical trajectory 
of a - self similar process (for the relationship between the index a of self-
similarity and the dimension of trajectory for a. - self similar processes see 
[24] and [27]). Since the formula for box dimension is very simple in case of 
fractal interpolation, we get in this way a very simple estimator of index a 
for a - fBm or more general for some a. - self similar processes. 

A set of data is a set of points {(xj, yi) E R2 : i = 0 , 1 , . . . , n}, where xo < 
X\... <C x^. Let Wi : R2 —> R2, i = 1, 2 , . . . , n, be affine transformations 
defined as follows. For every (x, y) in R2 

Wi 
ai 
Ci 

where 
_ X j - Xj-i _Vi~ Vi-i A Vn-yo 

a^ — , a — di J 
x n Xo xn Xo xn Xo 

_ xnxj-i - xpxj _ xnyj-i - XQyj xnyp - XQyn 
— > Ji — "i Xfi xo Xji xo XJI xo 

According to [2, section 6.2, Theorem 2] we get 

1.1. If the vertical scaling factors di obey 0 < di < 1, then the attractor of 
a family {wi : i = 1 , 2 , . . . , n} exists and is the graph of a continuous real 
function defined on [xo,xn]. 

The function defined by 1.1 interpolates the set of data {(Xi,yi) € R2 : 
i = 0 , 1 , . . . , n}. We call it a fractal interpolation with scaling factors 
and denote by F({(xi,yi) : i = 0 , 1 , . . . , n}; (di)™=1). 

The graph of a fractal interpolation has box dimension dimg determined 
by the vertical scaling factors di (comp. [3] and [10, Example 11.4]). For 
equally spaced interpolated points the formula for the box dimension of 
fractal interpolation is of the following form. 

1.2. If ai = i for l < i < n , 0<di<l and di > 1, then the box 
dimension D of the graph of fractal interpolation satisfies 

In E ? = i * D = 1 + 
Inn 

We shall generalize the notion of fractal interpolation to stochastic pro-
cesses. Let (ii,^7 , P) be some probability space and let T be a subset of R. 
We call X a stochastic process from T to R if X(t) is a random variable for 
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each t G T. The value X(t)(u) will be denoted by X(t,u). Let Xti : ii —> R 
be random variables for to < < ... < tn and let d{ : U — > R be measur-
able functions for i = 1 , 2 , . . . , n. Let f2' C 0, be defined as follows 

B y 1.1, if w e ft', then F ( { ( i* , Xh(u)) : i = 0 , 1 n } ; exists. 
A fractal interpolation of (Xt0,..., Xtn) with scaling factors (di,..., dn) 

is a 'partial' process F(xt)(di) '• [to,tn] — • R, depending on sequences ( X t j 
and (di), such that 

for every u> G il' and t G [io, tn]. 

1.3 Lemma. F(Xt.){di)(ti') a measurable function for every t. 

P r o o f . For every u G ii ' let the graph of F ( X t ){di) ( t , b e the a t t rac tor of a 
family { u ; i ( a ; ) , . . . , w n (u ; ) } of affine transformations. Set /¿(i, u ) : = a i ( u ) t + 
ei(u) and fi(t,x)(u) := Ci(u)t + di(u)x + /¿(w). Let Tk: = { /¿ 1 o li2 o • • • o 

(toY 11)121 • • • i^n G { 1 , 2 , . . . , n } } . Denote lix o li2 o • • • o lik(t0) by fa...^. 
Take t = t^...^ G Tk. Then F(Xti)(di)(t, w) = fa owi2 o . . . o wik(t0,X(t0,uj)) 
so F(x t . ) (di ) ( t i ' ) i s measurable. If t is an arbitrary point in [io,in], then 
there is a sequence (tk), such that t = l i m ^ o o tk and tk G In that case 
F { x t )(di)(ti") is a pointwise limit of measurable functions F(X t . ) (d t)(tk, •) so 
also is measurable. • 

The function D : f2 — > [0, 2] given by 

is the interpolation dimension with scaling factors (di). Let us note that 
D(d .) is defined independently of the existence of fractal interpolation. For 
equally spaced random variables ( X a n d lj G ii ' we have simply 

We shall define now a fractal interpolation fully determined by a set 
of data. For a sequence ( X t 0 , Xtl,..., Xtn) of random variables we define 
scaling factors di, <¿2 • • •, dn by 

uj G CI' 0 < di(u) < 1 for i = 1 , 2 , . . . , n . 

F(xti)(di)(t,u) = F {{(ti,Xu(u)) : t = 0 , 1 , . . . , n } ; ( d i M ) ? = 1 ) (t) 

D(di)(u) = d i m s g r a p h F ( X i i ) K ) ( a ; ) . 

di — I Xu-Xu-i\ for i = 1 , . . . , n. 
m a x { X t f c : 0 < k < n} — min{Xt f c : 0 < k < n } 

It is obvious that 0 < di < 1 and Y a = i d i > 1. 
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If there exists a fractal interpolation that corresponds to scaling factors 
di,d,2 • • • ,dn defined above, it depends only on the sequence (Xtt) and is 
called fractal interpolation of {Xti). The corresponding interpolation dimen-
sion will be referred to as the interpolation dimension of (XtQ , Xtl,..., Xtn) 
and will be denoted by D(Xt )-

We shall consider sequences of fractal interpolation processes in two 
cases. 
C a s e 1 (time series). For a given stochastic process {Xi} i e [ 0 ,oo) and c i1 
we take fractal interpolations Fn of (X{ : i = 0 , . . . , n), n G N, with some 
scaling factors (d\n^). 
C a s e 2. For a given stochastic process { X f } t e [ 0 ) i ] and i ) n C fi we take 
fractal interpolations Fn of (-X"j/n : i = 0 , . . . , n), n € N, with some scaling 

factors 
In both cases interpolated random variables are equally spaced, thus 

the box dimension of Fn depends only on the sequence (d^) of scaling 
factors (1 < i < n). We shall denote it by Dn(d[n^). For the interpolation 
dimension with scaling factors determined by a process more strictly, 
by sequences (Xj)o<i<n in case 1, and (Xj/n)o<i<n in case 2, we use the 
notation Dn(Xi) or Dn(X±), respectively. For a fixed process we write it 

n 
simply Dn when no confusion can arise. In the paper we shall only deal with 
the case lin^^oo P(fln) = 1-

It is clear that if we interpolate points of a process with known box 
dimension a then we can easily find scaling factors to obtain fractal inter-
polations with box dimensions convergent to a . 

1.4. Let 1 < a <2. If an interpolation Fn is given by equally spaced random 
variables and constant (with probability 1) identical scaling factors = 
1 /n2~a, for i = 1, 2... ,n and every n 6 N, then Dn(d\n^) converges to a 
with probability 1. 

P r o o f . Notice that factors d\n^ satisfy assumptions of 1.1 an 1.2. The con-
vergence of Dn{d\n)) to a is obvious. • 

Let us remind shortly (see [22]) that a process (X(i))is self-similar with 
index a (a-ss) if for any a > 0, the finite dimensional distributions of ( X ( a t ) ) 
are the same as those of aaX(t). The process is a — sssi if it is self-similar 
with index a and has stationary increments. 

A Gaussian a-sssi process, 0 < a < 1, is called a-fractional Brownian 
motion (a-fBm). Fractional Brownian motion is symmetric and has contin-
uous trajectories with probability 1. The increments of fractional Brownian 
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motion make a stationary and ergodic process. The ( l /2)-fBm process is 
called Brownian motion. 

We say that a sequence ( X n ) of random variables satisfies the law of 
large numbers if with probability 1 

Y-
l i m = E f X y 

n—>oo n 

In particular, if ( X n ) is stationary and ergodic then (Xn) and ( |X n | ) satisfy 
the law of large numbers ([21]). 

In section 2 we examine convergence of interpolation dimensions and in 
section 3 we prove the convergence of trajectories of fractal interpolations 
of processes with continuous trajectories. 

2. Convergence of interpolat ion dimensions 
Let {-X"t}ie[o,oo) be a stochastic process. We assume that 

n 
P{u : Y , - lMI > 0} = 1. 

¿=1 

We shall examine convergence of Dn(Xi) for processes with stationary incre-
ments. For self-similar processes it will give also convergence of D n (X i / n ) . 

Let = max{Xj : 0 < i < n} and x j ^ = min{Xj : 0 < i < n}. 

2.1 Theorem. If the sequence — -X"* 11) satisfies the law of large num-

bers and limn_,oo min = I with probability 1 (in probability), then 
linin—>oo Dn(Xi) = 2 — 1 with probability 1 (in probability). 

P r o o f . By the assumptions, 

E L i \Xi - Xi-1| lim n->oo n 
converges to a positive constant with probability 1. Thus, with probability 
1 (in probability), 

n 

y . i Xi—x^ ii 
1« »=1 

X n — Yn 

lim Dn = 1 + lim — = n-»oo n—too |n n 

l n E L i H i Z ^ i z i l l n ( X " - X n ) 
2 + lim lim ^ m i n } = 2 - 1 . m 

r w oo i n n n—>oo I n n 

For processes which satisfy some kind of iterated logarithmic law we have 
the following result. 
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2.2 Collorary. Let {Xn} be a symmetric process for which the sequence 
(|Xj —Xj_i|) satisfies the law of large numbers. If there exist functions fi for 
i = 1,2 such that l im^oo In/¿(n)/Inn = 0, l i m s u p ^ ^ XmL/(na fi(n)) = 
Ci, and liminfn_>OD = C2, with probability 1, for some posi-
tive constants c\, c2 and 0 < a < 1, then l im, ! -^ Dn = 2 — a with probabil-
ity 1. 

P r o o f . By Theorem 2.1 it is enough to prove that limn^oo m°*n m = 

a with probability 1. By the assumptions 

l i m s u p _ U m s u p + W _ a 
n—too Inn n—>oo Inn 

with probability 1. Similarly liminfn^oo "inn m = a probabil-
ity 1. • 

Since fractional Brownian motions satisfy the assumptions of Collorary 
2.2 we have the following result. 

2.3 Collorary. The n-th interpolation dimension Dn of an a — fBm process 
tends with probability 1 to 2 — a (i.e. to the box dimension of a typical 
trajectory). 

P r o o f . Let {-Xt}te[o,oo) be a fractional Brownian motion with index a. The 
sequence \Xi — i| of increments is stationary and ergodic thus satisfies 
the law of large numbers . Moreover (Xn) is symmetric and satisfies the 
iterated logarithmic law so also (Xmax) does and we take fi(n) = \/lnInn 
(compare [12],[14]) . Finally, by [26], there exists a positive constant c such 
that 

v(n) 
,. . r -'»-max limini — . . . . . . — - c n-Kx> n a ( ln ln(n) ) _ a 

with probability 1. Thus we can define f2(n) = (lnln(n))~a . • 

All the above results were obtained for stochastic time series. As could be 
expected, for self-similar processes the convergence of Dn(Xi) is equivalent 
to the convergence of Dn(X±). The next theorem clarifies this dependence. 

n 

2.4 Theorem. Let a process {^Q}te[o,oo) be self-similar and let a £ R. Then 

Dn(Xi)—>a in probability 1 Dn(Xi/n)—>a in probability 1. 

P r o o f . Let a be the index of self-similarity. Since for all a > 0, the finite 
dimensional distributions of ( X ( a i ) } are identical to the finite dimensional 
distributions of { a Q X ( i ) } we have 

(Xi/na, X2/na,..., Xn/na) £ (X1/n, X2/n,..., Xn/n). 



Convergence of dimensions 879 

Number of points 

Fig. 1. Mean interpolation dimensions 

This implies 
Dn(Xi) = Dn(Xi/n). 

The convergence in distribution to a contant a implies the convergence in 
probability. • 

We are mainly interested in interpolating self-similar processes with con-
tinuous trajectories. Nevertheless, we can apply the notion of interpolation 
dimension to other processes and even to sequences of independent random 
variables. As an example we calculate interpolation dimension for Gaussian 
white noise and for the Poisson process. 

2.5 Collorary. Let Xi,X2, • • • be a sequence of independent Gaussian ran-
dom variables with expectation 0 and variance 1. Then limn_>oo Dn(Xi) = 2 
in probability. 

P r o o f . Since X i , X 2 , . . . are symmetric, by Theorem 2.1, it is enough to 
prove that 

lim —^ m o x ) = 0 in probability. 
n-*oo In n 

Take an e > 0. 

P > e) < P{Xi > n£) + P(X2 > n£) + • • • + P(Xn > ne) = 
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Fig. 2. Density of interpolation dimension of the Brownian motion 

OO 2 OO _x2 _x2 
nP(Xi > ne) = n \ e~ dx — n J • e~ dx < 

-nil ne " c 

for some constant c. Thus 

lim = 0. 
n->oo \ I n n J 

2.6 Collorary. / / {X(} is the Poisson process then limn_>oo Dn{Xi) = 1 in 
probability. 
P r o o f . Since (Xn) is an increasing sequence and Xq = 0 with probability 
1, by Theorem 2.1 and Chebyshev's inequality, we get 

lim P 
n—>oo 

ln(Xm a x — Xmin) _ 
In n 

>e = 

lim P(Xn > n e + 1 ) < lim ^ ^ = 0. )—«vi v n—• oo n + n—too 
We shall compare the above theoretical results with the results of the 

experiment consisting in measuring mean interpolation dimensions: 
We generate sample points Xq,Xi, ... ,Xn of a process, for every fixed 

n being a power of 2 between 22 and 215. We repeat the experiment (22 0/n) 
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Fig. 3. Density of interpolation dimension of the white noise 

times and calculate the arithmetic mean of interpolation dimensions ob-
tained in the series. 

The results for Brownian motion and the Gauss distribution (white 
noise), are shown in Figure 1. 

To illustrate better the convergence of interpolation dimensions, we have 
also found experimentally the density functions of interpolation dimensions: 
(Figures 2-3). 

We divide the interval I — [1,2] into 32 subintervals • - • ,Iz2 of equal 
length. For every fixed number n being a power of 2 between 22 and 215, we 
generate points Xo, X \ , . . . , Xn of a process and calculate the interpolation 
dimension Dn. We repeat the experiment (22 0 /n) times for every n and 
measure the number ki of occurrences of Dn in the interval i j for 1 < i < 32. 
In three dimensional coordinate system we mark on the x-axis numbers s 
between 2 and 15, where n — 2s is the number of generated sample points. 
On the y-axis there are midpoints of intervals /¿, and on the z-axis we mark 
numbers ki/n for i = 1, 2 . . . , 32 and n = 4 ,8 ,16 , . . . , 215. The density lines 
are linear interpolations of all points graphed in each of the the s-series, 
2 < s < 15. 
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3. Convergence of trajectories 
Fractal interpolations of processes with continuous trajectories have ad-

ditional great advantage. Under some, not very restrictive assumptions, their 
trajectories converge uniformly to trajectories of the initial process. Thus 
fractal interpolations can be used to approximate processes. 

In order to prove the convergence of trajectories of fractal interpolation 
processes we first show a technical theorem about fractal interpolations. 

3.1 Theorem. Let E$ — {{i/n,X¿/n) : 0 < i < n} be a set of data. Let 
maXi{Xj/n} — minj{Xj/n} / 0. If F is a fractal interpolation of Eq with 
scaling factors di = a n d m a x»{ ( i i} < V2> t h e n for 

every i G {1 , . . . , n} 

sup F(t) - inf F(t) < j . 
(i—l)/n<t<i/n (i—l)/n<t<i/n 1 - 2 maXjjcti } 

P r o o f . Let A: = maxj{ |X i / n - X ( i _ 1 ) / n | } , M0: = maxj{X i / n } and m 0 = 
minj{Xj/n}. The interpolation F is determined by a family of affine trans-
formations, say Wi : R2 —> R2, 1 < i < n. For ( t ,x) G R2, 

where 

and 

= ^Q/n _ - di{X 1 - XQ), 

fi = X(i_iyn - diX0 

, _ IXj/n - X{i-l)/n\ 
di — M0 - mo 

Let W be the Hutchinson operator defined on the set of subsets of R2 by 
n 

W(E) = | J Wi(E) for an arbitrary E C R2. 
¿=1 

Denote the composition W o W • • • o W by Wk. Since the graph of F is the 
V 

k—times 
attractor for {wi}, it follows that graphF = limn Wk(Eo), where lim// is 
the Hausdorff limit. Let Ek = Wk(E0). Write 
Mfc — max{x : ( t ,x) 6 Ek}, mk = min{x : (t, x) G Ek}, 
M^ = max{x : (t, x) G Ek, (i - 1 )/n <t< i/n} 
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and 
mj^ = min{x : ( t ,x ) 6 Ek,(i — 1 )/n<t < i/n}. 

Notice at first that for every i 6 { 0 , . . . , n } and k € N 

(1) M « - mf < 2\Xi/n - X{i_l)/n\ + di{Mk.x - mfc-x). 

To show (1) we shall consider four cases. 
CASE 1. Xi/n - X ( i _ 1 ) / n > 0 and Xx - X0 > 0. 

Then Cj > 0 and, since 

<ci-l + di- Mfc_! + fi 

and 
m^ >Ci-0 + di- mfc_i + fi 

we obtain 

- mf <a + di(Mfc_i - mfc_i) = 
= Xi/n ~ X{i-l)/n ~ di(Xi - X0) + - 77lfc_i) 

= xi/n - x{i_1)/n - _ Xo) + di(Mfc_i _ mfc_i} 

' v " M 0 — TUq 
< \Xi/n - X(i—l)/n\ + di(Mk-i - mk-l). 

CASE 2. Xi/n - X{i_1)/n > 0 and Xx - XQ < 0. 
Then Cj > 0, as above, and 

M^ - mf <Ci + di • (Mfc_i - mfc_i) = 
xi/n - x(i-i)/n - di(X 1 - Xo) + di • (Mfc_ 1 - mfc_i) < 
2\Xi/n - X(i-l)/n\ + di(Mk-1 - mfc_i). 

CASE 3. X j / n — X^_iyn < 0 and X\ — Xq < 0. It is symmetric to Case 1. 
CASE 4. Xijn — X^_iyn < 0 and X\ — Xq > 0. It is symmetric to case 2. 

Next, we shall prove by induction that for all k > 1 and 1 < i < n 

M f - mf < 

QA2 3 • 2 k ~ l A k ( l - (2A/(M0 - m0))k) 3 a J | . . . i — v L 
M o - m o (M0 - mo)*"1 1 - 2 A/(M0 - m0) 

Let k = 1. By (1) 

M[i] - m^ < 2\Xi/n - X{i_1)/n\ + ¿¿(Mo - m 0 ) = Z\Xi/n - X(i_1)/n| < 3A, 
as required. 

Assume that for A; — 1 the inequality is satisfied. By the inductive as-
sumption, 

SA ( l - {'IA¡{Mt, - mo)*" 1 ) 
Mfc-i < Mo + \ _ M / ( M o _ m o ) 
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and 
3A ( l - (2A/(M0 - mo))*" 1 ) 

^ ^ m° 1 — 2A/{MQ — mo) " 

Substracting the above inequalities and using once more (1) we obtain 

< 2\Xi/n - X{i_1)/n\ + cfc • ( m 0 - m 0 + 2 .4 / (^0 - mo) 

- , i v v | , \Xl/n-X{l_1)/n\eA(l-(2A/(M0-m0))^) 
- 3\Xi/n - X{i_l)/n\ + _ — ! _ 2A/(Mo - mo) 

3A (l - (2A/(M0 - mo))*"1) 
< 3A + 2A/(Mo - m 0 ) \_2A/{Mo_mo) 1 

_ 3A (l - (2A/{M0 - m0)k) 

1 - 2A/(M0 - m0) ' 

Therefore, for every i 6 { 1 , . . . , n } 

3A (l-{2A/(Mo-mo))k) 
sup F(t) - inf F(t) = lim —77777 : < 

(i—l)/n<t<i/n (i—l)/n<t<i/n k->oo 1 - 2 A/{M0 - m0) 
3A 

1 — 2A/(MQ — mo) ' 

Now we shall consider a stochastic process {-^t}te[o,i]- We assume that 
{-Xi} ie[0)i] is nontrivial in the sense that 

P{u : X0(u) = X1/n(u) = • • -Xi/n(u) = • ••Xl(u)} 0. 

As an immediate consequence of Theorem 3.1 we obtain 

3.2 Corollary. Let F be a fractal interpolation of (^¿/n)o<i<n with scaling 

factors di = •. —r. If there exist constants H and c such that 
maxj{|X¿//n|} < H and max¿{di} < c < 1/2 with probability 1, then F is a 
bounded process, i.e. 

3CP{{u: sup \F(t, u>)\ < C) = I. 
0 < t < l 

P r o o f . Let A = max¿{|Xj/n - X( i_ 1 ) /n|}, M0 — max¿{X i / n } , and m0 = 
min¿{X¿/„}. By Theorem 3.1 and the assumptions, 
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<H + 
3 H 

(i—l)/n<t<i/n 1 ' 1 - 2A/(M 0 - m 0 ) 1 - c 

with probability 1. In the same way we prove that F is bounded from below. 

3.3 Theorem. Let {-Xt}te[o,i] be a stochastic process that has continuous 
trajectories. Let Fn be the fractal interpolation of (Xj / n : i — 0 , 1 , . . . , n ) 

with scaling factors d^ = l-5»/n — //• ¿/¿ere {s a constant c * J 1 maxi{Ai/n}-mini{Xi/n} J 

such that 

then 

P{u> : maxdjn )(a;) < c < 1/2} 

sup (|-Fn(i) — —>0 probability, 
te [o,i] 

P r o o f . Let I = [0,1] and I{ = [(i — 1 )/n,i/n], for i = 1 , . . . , n. Let Qn — 
{u> € fi : max, d[n\cj) < c}. By 1.1, Fn(u) exists for uj E f l n and, by the 
assumption, limn^oo P(Qn) = 1. Clearly, for every oj 6 Qn 

s u p ( | F n ( t , c j ) - X ( t , u ) \ ) = s u p sup(\Fn(t,u)-X(t,u)\) < 
tei i e { i , 2 . . . , n } teh 

sup sup 
ie{i,2...,n} teli 

sup sup 
¿e{i,2...,n} teli 

Fn(t,u) - X [ l — 
n 

X [ ^ . w ) - X ( t , u ) 

+ 

We shall prove that both terms on the right side of the above inequality 
tend to 0 in probability i.e., 

(*) v £ > 0 P(u e n : s u p < e { l i 2 . . . > n } s u p i e 7 i ( | X ( ^ i , W ) - X ( i , W ) | > e) 0 

and 

(**) Ve > 0 P{u € ii : sup ie{1>2... in} sup t 6 / j ( |F n ( t , w) - > e) 
n—<oo Q 

Proof of (*): With probability 1, the trajectories X(-,oj) are uniformly con-
tinuous on [0,1], hence we obtain easily that 

P(u : sup sup 
¿e{i,2...,n} teh n 

which implies convergence in probability. 
Proof of (**): Let 

An(u) = max i { |X i / n (w) - X ( i_1 ) / n(u;) |} , 

= m a x i { I t / n ( W ) } 1 
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and 
mjn)(w) = mini{X i / n(w)}. 
By Theorem 3.1 applied to Fn and the fact that l i m n - ^ P(Cln) = 1 we 

infer that for all <5 > 0 and n large enough, the set of u satisfying 
sup sup(|Fn(i,u>) — X((i — l ) /n ,w) | ) < 

te{l,2...,n} t&Ii 
sup sup Fn(t,u) — inf Fn(t,oj) < 

ie{l,2...,n} (i-l)/n<t<i/n (i-l)/n<t<i/n 

3An{iu) < 3An(u) 
l-2An(u;)/(Mt\u;)-m^(u)) 1-c ' 

is of probability greater than 1 — 5. Therefore, for every e > 0 and «5 > 0 

P{u: sup sup(|Fn(i ,w) - X((i - l)/n,u>)\ > e} 
i£{l,2...,n} te/i 

for n large enough. Thus, by (*) 

p \ u : sup sup(|F„(i,a/) - X ( — | > e l 0. -
{ ¿e{i,2...,n} teh \ n J J 

3.4 Corrol lary. Let {^¿}te[o,i] be an a-fractional Brownian motion and let 
Fn be the fractal interpolation of (Xj/n : i = 0 , 1 , . . . , n), for every n G N. 
Then 

sup ( | F n ( i ) - X ( i ) | ) n - ^ 0 
te[o, i ] 

in probability. 
(n) P r o o f . We have to prove that scaling factors d\ satisfy the condition 

P{uj : max{4 n )(w)} < c < 1/2} 1 
% 

for some constant c. 
By [17, Theorem 7 ] for a-fBm we have the following uniform Holder 

condition 

P W : l i m s u p = 1 } = t , 
|i-t'|=/i-»o,o<t,i'<i hay/lnl/h 

Therefore 

P{UJ : 3n0Vn > n0 max |X ( i + 1 ) / n - XI/N\ < 2 ( l / n ) a \ / h i n } = 1. 

Let Af. be a subset of ÎÎ satisfying the above condition for no = k and 
k = 1 , 2 . . . . Therefore P(UfcLi Ak) = 1 and since Ai C A2 C • • • C Ak C • • • 
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we get linifc-.oo P(Ak) = 1. Let Bk = {u : max0<i<fc{|X(i+1)/fc - X i / k \ ] < 

Since Ak C Bk we obtain l im^oo P(Bk) = 1. 
Moreover, by [26], there is a positive constant c such that 

(2) jnax {Xj/fe}(lnln k)a—>c in probability. 

Let Ck = {u/: c/2 < max0<i<fc{Xi/fc}(lnln fc)a}. By (2), l i m ^ P(Ck) = 1. 
If w G Bk n Ck then 

max {cij ' (u/)} < 4(l/fc)a-\/lnfcl nln k ) a / c . i 

Since the right side of the above inequality tends to 0 when k —»• oo and 
limfc^oo P(Ak fl Bk) = 1 we get the claim. • 

4. Final remarks 
As we have seen, fractal interpolation dimension can be used to identify 

a process in the class of fractional Brownian motions. Our results are even 
more general and they can be applied also to other classes of processes. 

For a process for which we can experimentally verify that box and iner-
polation dimensions are (almost) the same, the fractal interpolation deter-
mined by a set of data is likely to be a good approximation and can be used 
to extend the process beyond a given set of sample points. From computa-
tional point of view, the formula for fractal interpolation dimension is very 
easy to be handle with and is of linear complexity. 
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