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ON A W E A K FORM OF ALMOST 
WEAKLY C O N T I N U O U S F U N C T I O N S 

Abstract. A weak form of almost weak continuity, called subalmost weak continuity, 
is introduced. It is shown that subalmost weak continuity is strictly weaker than both 
almost weak continuity and subweak continuity. Subalmost weak continuity is used to 
improve a result in the literature concerning the graph of an almost weakly continuous 
function. Additional properties of these functions are also investigated. 

1. Introduction 
Jankovic [2] introduced the notion of almost weak continuity as a weak 

form of both weak continuity developed by Levine [4] and almost continuity 
introduced by Husain [1], Recently the almost continuity due to Husain has 
been referred to as precontinuity. Almost weakly continuous functions were 
developed further by Popa and Noiri [11]. They were investigated recently 
by Paul and Bhattacharyya [10] under the name of quasi-precontinuity. 
Rose [12] introduced the concept of subweak continuity and showed that 
this condition is strictly weaker than weak continuity. The purpose of this 
note is to introduce the concept of subalmost weak continuity. We show 
that this condition is strictly weaker than both almost weak continuity 
and subweak continuity. We also establish that the graph of a subalmost 
weakly continuous function with a Hausdorff codomain is preclosed. This 
extends the corresponding result for almost weakly continuous functions in 
Popa and Noiri [11]. Finally we establish additional properties of subalmost 
weak continuity. For example, we show that the restriction of a subalmost 
weakly continuous function to a semi-open set is subalmost weakly contin-
uous. 
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2. Preliminaries 
The symbols X and Y denote topological spaces with no separation 

axioms assumed unless explicitly stated. All sets are considered to be subsets 
of topological spaces.The closure and interior of a set A are signified by 
Cl(yl) and Int(A), respectively. A set A is preopen (a-open, semi-open) 
provided that A C Int(Cl(j4)) (A C Int(Cl(Int(A))), A C Cl(Int(i4))). A set 
A is preclosed (a-closed, semi-closed) if its complement is preopen (a-open, 
semi-open). Obviously A is preclosed if and only if Cl(Int(A)) C A. The 
preclosure of A, denoted by pCl(^l), is the intersection of all preclosed sets 
containing A and it can be shown that pCl(A) = A U Cl(Int(.A)). Finally, if 
an operator is used with respect to a proper subspace, then a subscript will 
be added to the operator. Otherwise it is assumed that the operator refers 
to the space X or Y. 

DEFINITION 1. Levine [4], A function / : X —> Y is said to be weakly 
continuous if, for every x G X and every neighborhood V of f(x), there is a 
neighborhood U of x such that f(U) C C1(V). 

DEFINITION 2. Jankovic [2]. A function / : X —> Y is said to be almost 
weakly continuous if f~1(V) C Int(Cl(/ - 1(Cl(V)))) for every open subset 
V of Y. 

DEFINITION 3 . Rose [12]. A function / : X —> Y is said to be subweakly 
continuous if there is an open base B for the topology on Y such that 
CI( / _ 1 (V)) C f-\C1(F)) for every V e B. 

DEFINITION 4 . A function / : X —> Y is said to be precontinuous (Mashhour 
et al. [6]) (semi-continuous (Levine [5]), a-continuous (Popa and Noiri [11])) 
if / _ 1 ( F ) is preopen (semi-open, a-open) for every open subset V of Y. 

3. Subalmost weakly continuous functions 
Popa and Noiri [11] established the following characterization of almost 

weak continuity. 

THEOREM 1. Popa and Noiri [11]. A function f : X —> Y is almost weakly 
continuous if and only if pC l ( / - 1 (V) ) C /_ 1(C1(V)) for every open subset 
V ofY. 

We define a function / : X —> Y to be subalmost weakly continuous (or 
briefly s.a.w.c.) provided there is an open base B for the topology on Y for 
which p C l ( f ' ^ V ) ) C /-*(C1(V)) for every V € B. Obviously almost weak 
continuity implies s.a.w.c. The following example shows that the concepts 
are not equivalent. 
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E X A M P L E 1. Let X be a nondiscrete Ti-space and let Y = X have the 
discrete topology. The identity mapping / : X —> Y is s.a.w.c. with respect 
to the base B consisting of the singleton subsets of Y. However, since X is 
nondiscrete Ti, X has a subset V that is open but not closed. Then we see 
that /-1(C1(V)) = = but pCl(/-1(Vr)) = C1(V) % V and hence 
/ is not almost weakly continuous. 

Since pCl(j4) C C1(j4) for every set A, obviously subweakly continuous 
implies s.a.w.c. The next example shows that the converse implication does 
not hold. 

E x a m p l e 2. Let X be an indiscrete space with at least two elements and let 
Y = X have the discrete topology. Since pCl({x}) = {x} for every x G X, 
the identity mapping / : X —> Y is s.a.w.c. with respect to the base of all 
singleton subsets of Y. However, since every singleton set in X is dense, / 
is not subweakly continuous. 

Since pCl(-A) = A U Cl(Int(A)) for every set A, we have the following 
characterization of s.a.w.c. functions. 

THEOREM 2. A function f : X —> Y is s.a.w.c. if and only if there is an open 
base B for Y for which Cl( Int ( /~ 1 (y) ) ) C / ^ ( C l ^ ) ) for every V G B. 

Paul and Bhattacharyya [10] proved that an almost weakly continuous, 
semi-continuous function is weakly continuous. (They use the name quasi-
precontinuous for almost weakly continuous.) In the following theorem we 
show that the analogous result holds for s.a.w.c. functions. The proof follows 
from that of Paul and Bhattacharyya. 

T h e o r e m 3. If f : X —> Y is s.a.w.c. and semi-continuous, then f is 
subweakly continuous. 

P r o o f . Let B be an open base for Y such that p C l £ /_ 1(C1(V)) 
for every V € B. Then for V G B, it follows from Theorem 2 that 
ClClntC/ - 1^») C C1(V)). Since / is semi-continuous, i s semi-
open and hence C I = C K l n t ^ - ^ y ) ) ) . Therefore C I C 
/_ 1(C1(F)) and hence / is subweakly continuous. • 

4. Graph related properties 
By the graph of a function / : X —> Y we mean the set G(f) = {(x, y) : 

xeX,y = f(x)}. 
Popa and Noiri [11] proved that the graph of an almost weakly continuous 

function with a Hausdorff codomain is preclosed. We show that almost weak 
continuity can be replaced with s.a.w.c. in this result. 
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THEOREM 4 . If f : X —> Y is s.a.w.c. and Y is Hausdorff, then the graph 
of f , G(f), is preclosed in 1 x 7 . 

P r o o f . Let (x ,y) € X x Y - G(f). Then y ± f(x). Let B be an open 
base for the topology on Y for which pCl(/ _ 1 (F)) C /_1(C1(V)) for every 
V G B. Since Y is Hausdorff, there exist disjoint open subsets V and W 
in Y with y G V, f{x) G W, and V G B. Then f(x) £ C1(F) and hence 
x i Cl(y)). Because / is s.a.w.c., pC 1(/_ 1(V)) C /~1(C1(V)) and 
hence x pCl(/ _ 1 (F)) . Then we see that (x,y) G (X-pCl(f~1(V)))xV C 
X x Y — G(f). Since X — pCl (/ - 1 (F ) ) is preopen and V is open, it follows 
from Nasef and Noiri [8] (Lemma 3.1) that (X-pCl(f~1(V)))xV is preopen 
and hence G(f) is preclosed. • 

COROLLARY 1. Popa and Noiri [11]. If f : X —>Y is almost weakly contin-
uous and Y is Hausdorff, then G(f) is preclosed. 

For a function / : X —> Y, the graph function of / is the function 
g : X —> X x Y given by g(x) ~ (x, f(x)) for every x G X. 

THEOREM 5 . If f : X —• Y is s.a.w.c., then the graph function g : X —> 
X x Y is s.a.w.c. 

P r o o f . Let B be an open base for Y for which pCl(/"1(V)) C C1(F)) 
for every V G B. Then C = {U xV : U C X is open and V G B} is an open 
base for the product topology o n l x F . For UxV E C, we have pCl(p_1 (U x 
v)) = pCi ( (7n/- 1 (F ) ) c pCi(?7)npCi(/-1(F)) = c i ( c / ) n P c l i r K v ) ) c 
CI(U) n /-* (Cl (F) ) = ^-1(C1(17) x Cl(y)) = 5_1(C1({/ x V)). Thus the 
graph function g is s.a.w.c. • 

THEOREM 6 . Let f : (X,T) —> Y be a function and g : X —> X x Y its 
graph function. Let B be an open base for Y. If g is s.a.w.c. with respect to 
the base T x B for X x Y, then f is s.a.w.c. 

P r o o f . For V G B, pCl(/ _ 1 (F)) = p C l ^ - 1 ^ x V)) C g~l(C1(X x V)) = 
g^iX x C1(V)) = / - ^ C l i V ) ) and hence / is s.a.w.c. • 

5. Additional properties 
The following generalizations of T\- and T2-spaces will be required. 

DEFINITION 5. Kar and Bhattacharyya [3]. A space X is said to be pre-Ti 
provided that for each pair of distinct points x, y there exists a pair of 
preopen sets, one containing x but not y and the other containing y but 
not x. 
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DEFINITION 6 . Kar and Bhattacharyya [3]. A space X is said to be Pre-T2 
provided that for each pair of distinct points x, y there exists a pair of 
disjoint preopen sets, one containing x and the other containing y. 

Paul and Bhattacharyya [10] (Theorem 5.1) proved that, if / : X —• Y is 
almost weakly continuous (their term is quasi-precontinuous) and injective 
and Y is Urysohn, then X is pre-T2. The following example shows that 
almost weak continuity cannot be replaced by s.a.w.c. in this result. 

EXAMPLE 3. Let X = E U {xi ,x2} , where E is an infinite set and xi and 
X2 are distinct points not in E, have the topology T given by (i) U E. T if 
U C E and (ii) U G T if X\ or X2 £ U and X — U contains only a finite 
number of elements of E. Kar and Bhattacharyya [3] established that T is 
indeed a topology and that X is pre-Ti but not pre-T?. Let Y = X have the 
indiscrete topology and let / : X —> Y be the identity mapping. The space 
Y is obviously Urysohn. Since X is pre-Ti, the singleton subsets of X are 
preclosed (Kar and Bhattacharyya [3]). It then follows that / is s.a.w.c. with 
respect to the base for Y consisting of all singleton subsets. Therefore / is 
a s.a.w.c. injection with an Urysohn codomain and a non pre-T2 domain. 

We do, however, have the following weaker result for s.a.w.c. functions. 

THEOREM 7 . If f : X —> Y is s.a.w.c., injective, and Y is Hausdorff, then 
X is pre-Ti • 

Proof . Let x\ and X2 be distinct points in X . Since / is injective, /(xi) / 
f(x2). Let B be an open base for Y for which pC l (/ _ 1 0O) Q /_1(C1(^)) 
for every V G B. Since Y is Hausdorff, there exist disjoint open sets U and 
V such that /(xi) e U and f(x2) € V and V € B. Then /(xi) g C1(V) and 
hence xi £ /_1(C1(V)). Since / is s.a.w.c., it follows that X - pCl(/_1(V)) 
is a preopen set containing x\ but not X2. Therefore X is pre-Ti. • 

The function in Example 2 is s.a.w.c. and injective and has an indiscrete 
domain and a discrete codomain. Therefore the pre-Ti condition in Theorem 
7 cannot be replaced by T\. 

As we see in the following example, the restriction of a s.a.w.c. function 
may not be s.a.w.c. 

E X A M P L E 4 . Let X = {a,b,c,d} have the topology T = {X, 0, { 0 , 6 } } and 
let Y = X have the discrete topology. Since the singleton subsets of X are 
preclosed (Kar and Bhattacharyya [3]), the identity mapping / : X —> Y is 
s.a.w.c. with respect to the base for Y consisting of singleton sets. However, 
if A = {a, c}, then /\A • A —> Y fails to be s.a.w.c. 

Noiri [9] showed that the restriction of an almost weakly continuous 
function to an open set is almost weakly continuous. Later Popa and Noiri 
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[11] extended this result to semi-open sets. In what follows we show that the 
restriction of a s.a.w.c. function to a semi-open set is s.a.w.c. The following 
lemmas are required. 

LEMMA 1. Mashhour et al. [7]. IfU is preopen in X and A is semi-open in 
X, then U fl A is preopen in A. 

Combining Lemma 1 with the fact that, for every set A, x E pCl(A) if 
and only if every preopen set containing x intersects A nontrivially (Popa 
and Noiri [11]) yields an immediate proof of the next lemma. 

LEMMA 2. If B C A C X and A is semi-open inX, thenpClA(B) C pCl(B). 

THEOREM 8 . If f : X Y is s.a.w.c. and A is a semi-open subset of X, 
then f\A • A —• Y is s.a.w.c. 

P r o o f . Let B be an open base for Y for which p C l ( / _ 1 ( V ) ) C /-1(Cl(V r)) 
for every V G B. Then using Lemma 2 we have for V € B, pCl j 4 ( /|^ _ 1 (F) ) C 
. A n p C i ( / U - 1 ( V ) ) = A n p C l ( i 4 n / - 1 ( v ) ) c A n i p C i ^ n p C i i / - 1 ^ ) ) ) = 
AnpCl(f~1(V)) C AOf-^ Cl(F)) = / U _ 1 ( C 1 ( F ) ) . Therefore f\A:A^Y 
is s.a.w.c. • 

THEOREM 9 . If f : X —> Y is s.a.w.c. and A is an open subset of Y with 
f(X) C A, then f : X —> A is s.a.w.c. 

P r o o f . Let B be an open base for Y for which p C l ( / _ 1 ( V ) ) C C1(V)) 
for every V € B. Then C = {V fl A : V e B} is an open base for the relative 
topology on A. For V n A £ C, we have pCl(/~1(Vr n A)) = pC 1 ( / _ 1 ( F ) ) C 
/ _ 1 (C1(V) = / _ 1 (C1(V) n A). In what follows we show that C1(F) D AC 
ciA{vnA). 

Assume y £ C1(V) fl A. Let W C A be open in the relative topology on 
A with y € W. Since A is open in Y, W is open in Y. Because y € C1(F), 
y n W ^ 0. Then W n (V n A) = W n V + 0 and hence y e ClA(V n A). 
Thus C1(V) n A C C\A(V n A) and it then follows that p C l ( / _ 1 ( V n A)) C 
/ _ 1 (C1(V) n A) C f~l(C\A(V n A)) and hence / : X -» A is s.a.w.c. • 

Paul and Bhattacharyya [10] defined an almost weakly continuous retrac-
tion (their term is quasi-precontinuous retraction) to be an almost weakly 
continuous mapping / : X —>• A, where A C X and is the identity map-
ping on A. It is then proved (Theorem 5.5) that, if / : X —> A is an almost 
weakly continuous retraction and X is Hausdorff, then A is preclosed. We 
prove the following comparable result for s.a.w.c. functions. 

THEOREM 10. Let f : X —> X be s.a.w.c. and let A C X such that f(X) C A 
and f\A is the identity on A. Then, if X is Hausdorff, A is preclosed. 
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P r o o f . Assume A is not preclosed. Let x E pCl(j4) — A. Let B be an open 
base for X for which pC\{f-\V)) C / - * (C1(V)) for every V E B. Since 
x A, f(x) x. Since X is Hausdorff, there exist disjoint open sets V and 
W with x E V, f(x) E W, and V E B. Let U be any preopen subset of X 
with x E U. Then x EUC\V which is preopen (Mashhour et al. [6]). Because 
x E pCl(A), it follows from Popa and Noiri [11] that (U D V) D A f 0. Let 
y E (U fl V) n A. Since y E A, f(y) = y E V and hence y E 
Thus y E U n f'^V) and therefore U D f~1(V) + 0 and we have that 
x G p C l ( / _ 1 ( F ) ) . However, f(x) E W which is open and disjoint from 
V. So f{x) £ C1(V) or, that is, x £ / - 1 ( C 1 ( F ) ) , which contradicts the 
assumption that / is s.a.w.c. Therefore A is preclosed. • 

THEOREM 11. If fl : X —> Y is a-continuous, fi : X Y is s.a.w.c., and 
Y is Hausdorff, then the set A = {x E X : fi(x) = f2(x)} is preclosed. 

P r o o f . Let x E X — A. Then fi(x) ^ fiix). Let B be an open base for 
Y for which p C l ( / 2 _ 1 ( y ) ) C / 2 - 1 ( C l ( y ) ) for every V E B. Since Y is 
Hausdorff, there exist disjoint open sets V and W in Y with fi(x) E V, 
f2(x) E W, and V E B. Then f2(x) # C1(F) and hence x 0 f2~1(C\(V)). 
Then, since / 2 is s.a.w.c., x E X — /2_1(Cl(V)) C I - P C 1 ( / 2 _ 1 ( F ) ) . Thus 
x e n (X - p C l ( / 2 _ 1 ( F ) ) ) C X - A . Since / i _ 1 ( V ) is a-open and 
X — pCl(/ 2 _ 1 (V r ) ) is preopen, the intersection is preopen (Popa and Noiri 
[11], Lemma 4.1). It then follows that A is preclosed. • 

COROLLARY 2. Assume that f i : X ^ > Y i s a-continuous, f2 • X —> Y is 
s.a.w.c., and Y is Hausdorff. If f\ and f2 agree on an open dense set, then 
/ l = /2-

P r o o f . Let A = {x E X : / i (x ) = f2(x)} and let D be an open dense 
subset of X on which fx and / 2 agree. Then, since D C A, we see that 
X = CI (D) = pCl(D) C pCl(i4) = A. It follows that fx = f2. • 

THEOREM 12. If fa : X —> Ya is s.a.w.c. for every a E A, then f : X —> 
riae^^a given by f(x) = {fa(x)) is s.a.w.c. 

P r o o f . For each a E A, let Ba be an open base for Ya for which 
P C \ { f a - \ V a ) ) C fa-\Cl(ya)) for every Va E Ba. Then B = {]!aeAVa : 
Va — Ya for all but finitely many coordinates and, if Va^Ya, then Va E Ba} 
is an open base for the product topology on I l a e ^ ^ - F o r I l a e ^ Va E 

B, p C K r ^ r i a ^ K ) ) = p C ¡ ( r w / c - 1 ^ ) ) c n Q e ^ P c i ( / a _ 1 ( y Q ) ) c 
naeAfa~\Cl(ya)) = / - H n a ^ C K K ) ) = / " H C l d l a ^ ^ ) ) . Thus / is 
s.a.w.c. • 

The author gratefully acknowledges the assistance of the referee. 
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