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Co-SEMIGROUPS WITH WEAK SINGULARITY
AND ITS APPLICATIONS

Abstract. In this paper we define the Cp - semigroup with weak singularity and we
give a characterization of its generator. We prove an analogue of the Hille-Yosida theorem.

1. Introduction

It is known that the theory of semigroups of linear operators in Banach
space has applications in many branches of analysis. In the present paper
we will restrict our attention to applications which are related to the solu-
tion of some initial value problems for partial differential equations. In the
applications of the abstract theory, it is usually shown that a given differen-
tial operator A is the infinitesimal generator of a Cyp-semigroup in a certain
concrete Banach function space X (cf. [5]).

There are differential operators generating the semigroups which are not
of class Cp. K. Taira in [7] has given an example of the boundary value
problem for partial differential equation of the second order such that the
associated with this problem operator A acting in the space L({2) generates
a semigroup U(z) on Lo(f2) which is analytic in the sector

Agz{z:largz|<g—s, z # 0}
and

(1) ||U(z)||g|;|‘%,Me>o, 2EA0<0<1.
In this example the singularity of the semigroup is connected with the
boundary conditions (for details see, [6]).

On the other hand, it has been shown by Kielhofer [4] and von Wahl [10],
[11] that, in the space of Holder continuous functions, an operator corre-
sponding to a strongly elliptic differential operator with Dirichlet boundary
conditions doesn’t generate a Co-semigroup (see also [12]).
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2. Cy-semigroup with singularity
Let X be a Banach space and let A : X — X be a closed linear operator

with domain D(A) C X, where D(A) = X.
Basing on the theory of analytic semigroups with weak singularity (cf.
for example [9], [7]), we have the following definition.

DEFINITION 1. A family of bounded linear operators U(t) : X — X de-
pending on a parameter ¢ € (0,+400) is said to be a semigroup with weak
singularity for ¢ = 0 if

Ut+s)=U@)U(s) fort,s e (0,+00)

and

M
(2) U< =5 M>0,0<6<1, t>0.

DEFINITION 2. The semigroup {U(t), t > 0} defined above is said to be the
Cop-semigroup with weak singularity if the mapping (0,4+00) 3 t — U(t)z
is continuous for z € X. '

DEFINITION 3. We say that an operator A : X — X with domain D(A)
generates the Cy-semigroup with weak singularity if
(i) D(A) := {z € X : dU(¢t)z/dt exists for ¢ > 0},

(i) &2 — AU (t)z, t > 0, € D(A).

We shall prove the following

THEOREM 1. A necessary and sufficient condition that a closed linear and
densely defined in X operator A generates a Cy-semigroup with weak sin-
gularity is that the resolvent set p(A) D (w,00), w > 0 and there erists a
constant M > 0 such that

M T(n-1+6)
A —w)r~ 148 (n-1)!

(3) 2 A= [[(A = A7 <

for A > w, and all positive integers n.

Proof. (Sufficiency). First we assume that w = 0. We denote
t -n
(4) Va(t) == (1—514) , t>0, n=1,2,...

(cf. [1,Ch. IX]).
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Since V,,(t) = (3)"R(%,A)"™ and (3), we have
n\" M I'n-1+80)
Ve < (3) o —

% n—1+6 (n_l)!
(™ 1"61"(n—1-{—6’)
- t (n—1)!
M nf M
i ol O <5

because %F(n —1+46) <1. Hence

(5) Vo)l < 2, £>0.

8’

From this follows that the sequence {V,(¢)}, defined by (4), is uniformly
bounded in each interval [a,b] C (0, c0).

()"

Analogously we get

1 Ly = (g)

<m(™ T I'(n+6) MF(n+0)< M
= ? n! T 1-0 plpf-1 — ¢1-6°
Therefore
—-n—1
(6) ”(l—iA) S—M—, M>0,t>0, neN.
n -9

Furthermore, the mapping (0, )3t — V,(t)z is holomorphic, for z€ X,
since the mapping (0,00) 2 A — (A — A)~!z is holomorphic for z € X.
In particular we have

dVa(t)z t "
(7) 5 _A(l—EA) z, t>0zelX.
From (6) and (7) we obtain
—-n—1
(8) H (1 - ) Az 710 —||Az| for z € D(A).

By integration of the equality (7) and using inequality (8) we have

s—0t

t —n-1
(9)  Val®)z— lim Va(s)z = <1 - fA) Azds for z € D(A).
n
0
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Because the improper Riemann integral on the right hand of (9) exists, then
from (9) it follows that for z € D(A) lim;_,o+ V5(t)z is an element of X.
We prove that

(10) 111(1)1+ Vo(t)x =2z for z € D(A).

t—
Indeed, we have

-1 -1

-20) -4 2
n n n
M t
< B o |Az|| for z € D(A).
Hence, we get
AN
(11) lim (1 - —A) z=1z for z € D(A).
t—0+t n

Similary, for z € D(A), and k € N we have

M t I'k—1+6)
< W : ;IIAwIIW

7
5A4<3> |Az|| — 0 when ¢ — 0.

n

From this we obtain

‘ (1 — —t—A) T—T
n
—n l1-n
< H (1_1A> - <1_EA> .
n n
1-n 2—n
+H(1—3A) z—(1-3A)
) 7
. -1
+ ” (1 - —A) -
n

6
<nM (%) |Az|| = n' =9 M||Az|[t® -0 whent — 07,

[Va(t)z — =] =

8
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Therefore by (9) and (10) we obtain

¢
—-n-—1
(12) Valt)z —z = SA (1 - %A) zds for x € D(A).
0
Now we shall prove that, for z € X, the sequence {V,(t)z} converges uni-
formly with respect to ¢ in any interval [a,b] C (0,00) as n — oo. For this
purpose let z € D(A) and let ¢ € [a,b]. We estime V,,(t)z — V, (¢)z.
For this we note, in virtue of (10), that
¢ d
(13) Va(t)z — Vin(t)z = | T [Vm(t = 8)V(s)zlds.
0
To estime (13) we assume that € D(A?2). Since the resolvent of A commutes

with A, then (13) and (5) give
-1 -1
t— d
(n + ) "7t —s) s
1
n

1\t
+ —) S —5)f7 150 ds,
™7

IVa(t)z — Vm(t)z|l < M?||A%|

From this it follows that
(14)  [Va(®)z — Vi (t)z||

r@+0re (1 1
S M2”A2.’E“bzem (-T—L + E) y te [a, b],

which implies the Cauchy condition for uniform convergence in [a, b] of the
sequencce V,,(t)z, provided that z € D(A?). Since D(A?) is dense in X
and the sequence {V,,(t)z} is norm bounded in [a,b], then in view of the
Banach-Steinhaus theorem, it follows that lim, . Vi, (t)z exists for z € X.

We define
(15) Ut)z:= lim V,(t)z forze X andt>0.

Since V,(t)z — U(t)z as n — oo uniformly in ¢ in any finite interval [a, b] C
(0,00) and the mapping (0,00) 3 ¢ — V,(t)z is continuous, then U(¢)z is
continuous in ¢ € (0,00). In other words, U(t) is strongly continuous for
t > 0. Furthermore

(16) o) < L,

—-—, t>0
t1-
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and

(17) lim U(t)z =z for z € D(A),

t—0+

by (5) and (10).
Let us remark that

t 5 o _t S "'i —IIE S or T
(18) §<1—;A> zds—gﬂx)(l nA) ds for z € D(A).

It follows from (11) that limy oo (1 — £A)7'z = z for z € D(A) uniformly
in s in [a, b].
Thus by (18) we have

t B t

(19) S(l—iA) :zds—»SU(s)zds as n — 00
0 n 0

On the other hand from (12) for £ € D(A) we get

(20) AS (1 - —A) zds=V,(t)x -z > U(t)z — 2.
3 n

Because A is closed and because of (19) and (20) SS U(s)zds € D(A) for
z € D(A). Moreover

(21) Ult)x—z = A§ U(s)zds.
0

Using again the closedness of A, from (21) we obtain

(22) Ult)r—z= §AU(s)x ds.
0
From (20) we have

(23) w@ﬁ—x=A§@—ﬁA) zds

t e
= S (1 - %A) ' Azds for z € D(A).
0

It follows from (23), as n — oo, that
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t ¢ t
(24) Ut)z—z = A\ U(s)zds = | AU (s)z ds = | U(s) Az ds
0 0 0
for € D(A).
Since U(s)Az is continuous in s, then (24) shows that U(t)z is differen-
tiable in ¢ for z € D(A) and
dU (t)z

(25) — = U(t)Az = AU(t)z, t>0, z€ D(A).

In order to prove that {U(t),t > 0} is a semigroup we observe that, by (25),
we have that

(26) u(t) =U(t)ug fort>0
is a solution of the differential equation
du
27 — = Auf(t t>0
(27) 7 u(t), t>
with the initial condition
(28) Jm u() = uo

provided the initial value up € D(A). We prove that the problem (27), (28)
has the unique solution. In fact, let u be a solution of (27), (28), where by
solution of (27), (28) we mean a function u € C([0, +00)) N C(0, +00) such
that u(t) € D(A) for ¢t > 0 and (27), (28) hold true. Then
d
(29) -d—sU(t —s)u(s) = =U'(t — s)u(s) + U(t — s)u'(s)
=-U(t—s)Au(s)+ U(t — s)Au(s) =0, 0 < s < t,

because of (27). Thus the mapping (0,t) 3 s — U(t — s)u(s) is constant, for
each t > 0. Since

(30) lim U(t - s)u(s) =u(t) and lim U(t — s)u(s) = U(t)zo,

s—t— s—0+

then, by (17), (28) and strong continuity of U(t), for ¢ > 0, we have
(31) uw(t) =U(t—s)u(s) =U(t)zg for0<s<t.
The equality (31) implies

U(t)zo = U(t — s)u(s) = U(t — s)U(s)zog,

which is true for all zg € D(A). From this, by density D(A) in X, we have
U(t) = U(t — s)U(s). This may be written as

(32) U(t+s)=U@)U(s), s,t>0.
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The latter means that {U(t), ¢ > 0} is a semigroup. The sufficiency is
proved.

Finally we shall show the necessity. To do it we will use the following
formula expressing the resolvent R(), A) of the operator A in terms of U (t).
We have

(33) RO\ A)z = | e MU(t)zdt, A>0, z€X,

0
which shows that the resolvent R(A,A) is the Laplace transform of the
semigroup U (t) with weak singularity. Note that the integral on the right
hand side of (33) is an improper Riemann integral defined as the limit

T

(34) lim lim {e"MU(t)zdt.

T—00 g—0t

The existence of this limit follows from inequality (2) and the continuity of
the integrand function of ¢t € (0, +00).
To prove (33) fix z € D(A). Then

dU(t)x/dt = U(t)Ax
and
(d/dt)e MU (t)z = —e MU (t) (A — A)z.

Integration of this equality gives

lim e~ **U(e)z — lim e U(1)z = S e MU@)(\ — A)zdt
0

e—0+ 500
and so
(35) T = Ta“U@)(A — A)zdt for z € D(A).
0
Putting v := (A — A)z in (35) we get
A—A) v =R\ Aw= oSoe_)‘tU(t)vdt forve X,
0

which proves the formula (33).

Since the resolvent R(A, A)z is a holomorphic function for A > 0 then
we get

d _doo-—)\t _Oo_ —At
RO Az = = (S)e U(t)z dt = (S)( t)e MU (t)x dt.
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Proceeding by induction we obtain

dr T

——=R(\, A)z = | (-1)"t"e MU (t)z dt.

dan 5
From this and by formula

d—%\;R(A,A)m = (=1)"n!R(\, A)" g,
we have

1 o0
A = n—1_—At .

(36) R\, Az T (5) e MU () dt

Using the inequality (2), from (36) we obtain

o0

th 20 M glldt, M >0, A>0.
—1y7 ) , ,
(n—1)! 3

The inequality (37) implies (3) with w = 0.

REMARK 1. Let be w > 0 in Theorem 1, i.e. let the semi-infinite interval
(w,00) C p(A). Then the operator A; := A — wI satisfies the assumptions
of Theorem 1 with w = 0, so A; generates the semigroup U;(¢), t > 0 such
that

G IR\ A) ]| <

M

o) < 255
If we set U(t) := e**U;(t), it can easily verified that U(t) has all the prop-
erties stated in Theorem 1, with the following modification of (2)

M
(38) U@ < e, M >0,0<6<1, ¢>0.

3. The abstract Cauchy problem
Let A be a linear operator satisfying the assumptions of Theorem 1 which
generates a Cop-semigroup {U(t),t > 0} with weak singularity for ¢ = 0. We
consider the following Cauchy problem
du

(39) —=dutf te(0,7T),

(40) u(0) = ug,
where f : [0,T] — X is continuously differentiable and ug € D(A4).

DEFINITION 4. A function u : [0,T] — X is said to be a (classical) solution
of problem (39), (40) if:

(i) u is continuous in [0, T,
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(i) u is of class C! in (0, T),
(iil) u satisfies equation (39) in (0, 7] and u(0) = uo.

We shall prove the following

THEOREM 2. If the operator A, the function f and ug satisfy the above
assumptions, then the problem (39), (40) has the unique classical solution u
which is given by

t
(41) u(t) = U(tyuo + \U(t — 5)f(s)ds, te0,T),

0

where

up = u(0) := t}_i’I(l)‘l+ u(t).

Proof. We know that the first term U(t)zo on the right hand side of (41)
satisfies the homogeneous differential equation (39). i.e. f = 0, and the
initial condition (40) (cf. (26)—(28)). Therefore it suffices to show that the
second term of the right hand side of (41) satisfies (39) and has initial value
zero. Denoting this term by v(¢), we have

i

(42) o(t) = Ut - 5)f(s) ds.
0

Since f € C'([0,T]) we get

(43) £(t)= £ +{f'(r)dr forte[0,T).
0

By (42) and (43) we have

(44) o(t) = Ut - s) [ FO + () dr] ds
0 0
= (U@ -s)f0)ds+] [g Ut —s)f'(r) ds] dr
0 0 T
={U(r)f(0)dr+] [ S U(r) f'(T)dr] dr.
0 0 0
But by (21)

t
AfU(s)zds =U(t)z —z for z € D(4), t > 0.
0
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This can be extended to an arbitrary £ € X by choosing a sequence {z,} C
D(A) such that z, — = as n — oo and going to the limit, for

S U(s)znds — S U(s)zds
0 0

and
Ut)zn —zn, = U(t)z — 2.
From this by the closedness of A we obtain Sf) U(s)zds € D(A) and

t
(45) ASU(s)rL' ds=U(t)z—z, forzeX, t>0.
0

It follows from (44) and (45) that v(¢

S

€ D(A) and

(46) Av(t) =U(2)f(0) — f(0) +

—

U(t-n)f'(r) = ()] dr

=U@®)f(0) - f(t) +\U(t - 7)f'(r) dr.

O e k() ey ok

On the other hand we have

0
and so
dv ;
(47) = (O =U®FO) +{U(s)f'(t - 5)ds
0
t
=Ut)f(0)+ Ut —7)f (r)dr
0
A comparison of (46) and (47) shows that
dv
) = Ave) + (2,
as we wished to prove. Also it is easy to show that
t1—1>I(I)1+ v(t) = 0.

The continuity of dv/dt follows from (47) by continuity of f' : [0,T] —» X
and this completes the proof of Theorem 2.
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EXAMPLE. Let X := C%({2) where {2 is a bounded region in R™ which the
boundary 912 is locally of class C™.
Let us consider the following mixed problem

( N2
Ot (z,t) = Az, Dyu(t,2) + f(t7), =€ 0<t<T,
(48) g %(t,w):o, la|<m/2-1, €8, 0<t<T,
ou
u(0, z) = uo(x), ?9?(0,:1:) =ui(z), =€,

\

where m is an even number, and

A(z,D) = > aa(z)D,

lal<m

is strongly elliptic differential operator.

Under assumptions that the coefficients a, are the sufficiently regular
the problem (48) may be consider as the abstract linear initial hyperbolic
problem in the space X of the form

d?u

Z - = <
(49) 72 Au+ f, 0<t < T,

u(0) = ug, v'(0) = uy,
where

A:DA) - X
— 0%u
= mta P = < -
D(A) {'u, e C™TYN?) py (t,z) . 0, o] <m/2 1}

and
(Au)(t,z) := A(z, D)u(t,z), z € 2, 0<t < T,
f:00,T) = X, f(t)(z):= ft,z), z€ N, 0 <t < T,
up = up(x), u :=ui(z), ¢ € §2.

To solve the problem (49) we can reduce it to a first order Cauchy problem,
of course under some assumptions on the operator A (for details see e. g.
[2], [3], [8]). The problem (49) may be equivalent of the following first order
Cauchy problem

{%zBV—{—F in (0,7,

V(0) = Vo,

(50)
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s=[5 4] v=[e] m= [ we ]

B:[D(B)]x X — [D(B)] x X,
where [D(B)] denotes the Banach space D(B) with graph norm ||z||g =
lz|| + ||Bz||, and operator B : X — X is such that B2 = A; D(B) :=

where

D(A) x D(B).
Using the results of the papers [4], {10], [11] we obtain
M
(51) IR, AN < 3=, for A >0,

in norm of the space X = C*(£2).
From (51) similary as in [8], we can deduce that

M

2) 1RO B)I = (0= B! < 755

whichf=1- > andso 0 <6 < 1.

From the inequality (52) it follows that the mixed problem (48) can be
reduced to the abstract Cauchy problem with weak singularity, i.e. to the
problem (39), (40).

References

[1] T.Kato, Perturbation Theory of Linear Operators, Grundlehren Math. Wiss. 132
(1980), Springer, New York.

[2] H.O.Fattorini, Ordinary differential equations in linear topological spaces, I, J.
Differentaial Equations 5 (1968), 72-105.

[3] H. O. Fattorini, Ordinary differential equations in linear topological spaces, II,
ibid. 6 (1969), 50-70.

[4] H. Kielhdfer, Halbgruppen und semilineare Anfangs-Randwertprobleme, Manu-
scripta Math., 12, (1974), 121-152.

[5] S.Krein, Linear Differential Equation in Banach Space, Amer. Math. Soc. (1972).

[6] K. Taira, Un théoréme d’ezistence et d’unicité des solutions pour des problémes
auz limites non-elliptiques, J. Funct. Anal., 43 (1981), 166-192.

[7] K. Taira, The theory of semigroups with weak singularity and its applications to
partial differential equations, Tsucuba J. Math. 13 no. 2 (1989), 513-562.

[8] C. Travis and G. Webb, Cosine families and abstract nonlinear second order
differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96.

[9] K.Umezu, On the Cauchy problem for analytic semigroups witch weak singularity,
Tsucuba J. Math. 15 no. 2 (1991), 275-292.

[10] W.von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische

Differentialgleichungen in Rdumen hélderstetiger Functionen, Nachr. Akad. Wiss
Géttingen Math. Phys. K1. II (1972), 231-258.



864 J. Bochenek, T. Winiarska

[11] W.von Wahl, Einige bemerkungen zu meiner orbeit, “Gebrochene Potenzen eines
elliptischen Operators und parabolische Differentialgleichungen in Rdumen hélder-
stetiger Functionen”, Manuscripta Math. 11 (1974), 199-201.

[12] A. Yagi, Parabolic evolution equations in which the coefficients are the generators
of infinitely differentiable semigroups, Funkcial. Ekvac. (1989), 107-124.

INSTITUTE OF MATHEMATICS

CRACOW UNIVERSITY OF TECHNOLOGY
Warszawska 24

31-155 CRACOW, POLAND

Received January 10, 2000.



