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Co-SEMIGROUPS W I T H W E A K SINGULARITY 
A N D ITS APPLICATIONS 

Abstract. In this paper we define the Co - semigroup with weak singularity and we 
give a characterization of its generator. We prove an analogue of the Hille-Yosida theorem. 

1. Introduction 
It is known that the theory of semigroups of linear operators in Banach 

space has applications in many branches of analysis. In the present paper 
we will restrict our attention to applications which are related to the solu-
tion of some initial value problems for partial differential equations. In the 
applications of the abstract theory, it is usually shown that a given differen-
tial operator A is the infinitesimal generator of a Co-semigroup in a certain 
concrete Banach function space X (cf. [5]). 

There are differential operators generating the semigroups which are not 
of class Co- K. Taira in [7] has given an example of the boundary value 
problem for partial differential equation of the second order such that the 
associated with this problem operator A acting in the space L,2(fl) generates 
a semigroup U(z) on L,2{fi) which is analytic in the sector 

7r 

At = {z : | a rgz | < - - e, z^ 0} 

and 

( I ) \\U(z)\\ < J ^ , M £ > 0 , ZEA£,0<9<1. 
In this example the singularity of the semigroup is connected with the 
boundary conditions (for details see, [6]). 

On the other hand, it has been shown by Kielhdfer [4] and von Wahl [10], 
[II] that, in the space of Holder continuous functions, an operator corre-
sponding to a strongly elliptic differential operator with Dirichlet boundary 
conditions doesn't generate a Co-semigroup (see also [12]). 
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2. Co-semigroup with singularity 
Let X be a Banach space and let A : JsT —> X be a closed linear operator 

with domain D(A) c X, where D(A) = X. 
Basing on the theory of analytic semigroups with weak singularity (cf. 

for example [9], [7]), we have the following definition. 

DEFINITION 1. A family of bounded linear operators U(t) : X —> X de-
pending on a parameter t 6 (0, +oo) is said to be a semigroup with weak 
singularity for t = 0 if 

U(t +s) = U(t)U(s) for t, s E (0, +oo) 

and 

(2) A f > 0, 0 < 0 < 1, t > 0. 

DEFINITION 2. The semigroup {U(t), t > 0 } defined above is said to be the 
Co-semigroup with weak singularity if the mapping (0,+oo) 3 t —> U(t)x 
is continuous for x £ X. 

DEFINITION 3. We say that an operator A : X —> X with domain D(A) 
generates the Co-semigroup with weak singularity if 

(i) D{A) := {x G X : dU(t)x/dt exists for i > 0}, 

(ii) ^XpZ - AU{t)x, t> 0,xe D(A). 

We shall prove the following 

THEOREM 1. A necessary and sufficient condition that a closed linear and 
densely defined in X operator A generates a Co-semigroup with weak sin-
gularity is that the resolvent set p(A) D (uj,oo), uj > 0 and there exists a 
constant M > 0 such that 

(3) \\R{X,An = ||(A — A)~n\\ < { x _ ^ n - 1 + e r % \ \ y 6 ) 

for A > UJ, and all positive integers n. 

P r o o f . (Sufficiency). First we assume that u> = 0. We denote 

(4) V n ( t ) := ( l - ^ , ¿ > 0 , 7 1 = 1 , 2 , . . . 

(cf. [l,Ch. IX]). 
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Since Vn(t) = ,A)n and (3), we have 

IIKWII < t 
n M r { n - 1 + e) 

= M 

t j (2)n-i+fl (n — 1)! 

n \ ~ e r ( n - l + 6) 

t j (n — 1)! 
M n1'6 M 

because — 1 + 9) < 1. Hence 

(5) \\vnm < 
M 

t > 0. 

From this follows that the sequence {V^i(i)}, defined by (4), is uniformly 
bounded in each interval [a, 6] C (0, oo). 

Analogously we get 

l a - ^ r - ' i i - Ì T 

n + l 

R r T A 

n+l 

< + M r(n + 9) M_ 

- ' t i n! i1-« nln0"1 ~ t1'6 ' 

Therefore 

(6 ) 1 - —A 
n 

- 7 1 - 1 
M 

— TT^ ' M > 0, i > 0, ne N. 

Furthermore, the mapping (0, oo) 3t —»Vn(t)x is holomorphic, for xEX, 
since the mapping (0, oo) 3 A —» (A — A) _ 1 x is holomorphic for x £ X. 

In particular we have 

(7) = 1 _ i A y n ' 1
X t t > 0 x e X . 

dt \ n 

From (6) and (7) we obtain 

(8) 
dVn(t)x 

dt 
1 - U 

n 

—n—1 
Ax < ^ | | A e | | for x e D ( A ) . 

By integration of the equality (7) and using inequality (8) we have 

(9) Vn(t)x - l i m Vn(s)x = 1 ( 1 - - A ) Axds f o r a; € D(A). 
e • () + * TÌ. I 

-n-1 
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Because the improper Riemann integral on the right hand of (9) exists, then 
from (9) it follows that for x E D ( A ) lim t_0+ V n ( t ) x is an element of X . 

We prove that 

(10) 

Indeed, we have 

l i m V n ( t ) x = x f o r x € D ( A ) . 
t—>0+ 

1 A ) x - x 
n 

1 _ ^ ) i A x 
n J n 

^ J ^ = 5 ' i • H^l l f o r * 6 

Hence, we get 

(11) 

- l 
lim 1 A x — x for x 6 D ( A ) . 

t-o+ V n ' 

Similary, for x € D(A), and k £ N we have 

1 - — A 
n 

- k 

1 - - A 
n 

1 - k 

t t 
1 - - A ) - A x 

n ) n 

- ( 1 ) ^ n" " ( f c _ i ) . 
e 

< M | - ) \\Ax\\ 0 when t -> 0 + . 

From this we obtain 

| | V n ( t ) x - x \ 

< 

1 A 
n 

I - I A 
n 

+ 

+ 

1 - - A 
n 

x — x 

x — 

1 - 7 1 

1 A 
n 

l—n 

x - ( 1 - - A 
n 

x 

2—n 

+ 
- 1 

1 A ] x — x 
n 

< n M ^ \ \ A x | | = n 1 ' 6 M \ \ A x \ \ t e 0 when t 0 + . 
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Therefore by (9) and (10) we obtain 

t - n - l 
(12 ) V n { t ) x - x = \ A ( l - ^ A ) " xds f o r x E D(A). 

Now we shall prove that, for x € X, the sequence {Vn(t)x} converges uni-
formly with respect to t in any interval [a, 6] C (0, oo) as n —» oo. For this 
purpose let x E D(A) and let t € [a, 6]. We estime Vn(t)x — Vm(t)x. 

For this we note, in virtue of (10), that 

4 d 
( 1 3 ) Vn(t)x - Vm(t)x = J ¿¡{Vmit - s)Vn{s)x]ds. 

0 

To estime (13) we assume that x E D(A2). Since the resolvent of A commutes 
with A, then (13) and (5) give 

IIVn(t)x - Vm(t)x|| < M2\\A2x\\ \ ( - + — ) se~Ht - s)6'1 ds 
J0\n m J 

= M2\\A2X\\ ( - + - ) \(t - S)e"V ds. 
\ n m j J 

From this it follows that 

( 1 4 ) | | V n { t ) x - Vm{t)x|| 

which implies the Cauchy condition for uniform convergence in [a, 6] of the 
sequencce Vn(t)x, provided that x E D(A2). Since D(A2) is dense in X 
and the sequence {V n ( t )x} is norm bounded in [a, 6], then in view of the 
Banach-Steinhaus theorem, it follows that l i m ^ o o Vn(t)x exists for x E X. 

We define 

( 1 5 ) U{t)x : = l i m Vn(t)x f o r x E X a n d t > 0 . 
n—>oo 

Since Vn(t)x —> U(t)x as n —> oo uniformly in t in any finite interval [a, b] C 
(0,oo) and the mapping (0,oo) 9 t —> Vn(t)x is continuous, then U(t)x is 
continuous in t E (0, oo). In other words, U(t) is strongly continuous for 
t > 0. Furthermore 

( 1 6 ) \ \ U ( t ) \ \ < ^ , t > 0 
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and 

(17) lim U ( t ) x = x for x € D ( A ) , 
t—>0+ 

by (5) and (10). 
Let us remark that 

t - n - l 1 - l 
(18) j ( l - - A ) x d s = \ V n { s ) ( l - - A ) x d s for x € D ( A ) . 

o n o 71 

It follows from (11) that l im n_ 0 0 ( l — ^ A ) ~ 1 x = x for x € D ( A ) uniformly 
in s in [a, b]. 

Thus by (18) we have 

( 1 9 ) J — — x d s —• ^ U ( s ) x d s a s n —• o o . 

o n o 

On the other hand from (12) for x 6 D(A) we get 

t - n - l 
( 2 0 ) A \ ( l - ^ a ) " x d s = V n ( t ) x - X - + U ( t ) x - x . 

Because A is closed and because of (19) and (20) U ( s ) x d s € D ( A ) for 
x € D(A). Moreover 

t 

( 2 1 ) U ( t ) x - x = A \ U ( s ) x d s . 

o 

Using again the closedness of A, from (21) we obtain 

t 

( 2 2 ) U { t ) x - x = \ A U ( s ) x d s . 

o 

From (20) we have 

t - n - l 

( 2 3 ) V n ( t ) x - x = A \ ( l - - a ) " x d s 

o n 

t - n - l 
= 5 ( l - " A x d s f o r x € D ( A ) . 

o n 

It follows from (23), as n —» oo, that 
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t t t 

(24) U{t)x - X = A \ U(s)x ds = \ AU{s)x ds = \ U(s)Ax ds 
0 0 0 

for x € D(A). 
Since U(s)Ax is continuous in s, then (24) shows that U{t)x is differen-

tiable in t for x 6 D(A) and 

(25) dXJ^)x = u ^ A x = A U ( Q X t t > Q j x e D ( A y 
dt 

In order to prove that {U(t), t > 0} is a semigroup we observe that, by (25), 
we have that 

(26) u(t) = U{t)u0 for t > 0 

is a solution of the differential equation 

(27) ^ = Au(t), t > 0 

with the initial condition 

(28) lim u(t) = u0, 
t-> o+ 

provided the initial value Uq G D(A). We prove that the problem (27), (28) 
has the unique solution. In fact, let u be a solution of (27), (28), where by-
solution of (27), (28) we mean a function u € C([0, +oo)) fl C1(0, +oo) such 
that u{t) e D(A) for t > 0 and (27), (28) hold true. Then 

(29) 4-U(t - s)u(s) = -U'(t - s)u(s) + U(t - s)u'(s) 
ds 

= —U(t - s)Au(s) + U(t - s)Au(s) = 0, 0 < s < t, 

because of (27). Thus the mapping (0,i) 3 s - » U(t — s)u(s) is constant, for 
each t > 0. Since 

(30) lim U(t - s)u(s) = u(t) and lim U(t - s)u(s) = U(t)x0, 
s - » t - S - + 0 + 

then, by (17), (28) and strong continuity of U(t), for t > 0, we have 

(31) u(t) = U(t - s)u(s) = U(t)x o for 0 <s <t. 

The equality (31) implies 

U(t)xo = U(t - s)u{s) = U(t - s)U{s)x0, 

which is true for all xq G D(A). From this, by density D(A) in X, we have 
U(t) = U(t — s)U(s). This may be written as 

(32) U(t + s) = U(t)U(s), s,t> 0. 
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The latter means that { i / ( i ) , t > 0 } is a semigroup. The sufficiency is 
proved. 

Finally we shall show the necessity. To do it we will use the following 
formula expressing the resolvent R(A, A) of the operator A in terms of U{t). 
We have 

oo 
(33) R(\, A)x = \ e~X iU(t)xdt, A > 0, x € X, 

o 

which shows that the resolvent R(X,A) is the Laplace transform of the 
semigroup U(t) with weak singularity. Note that the integral on the right 
hand side of (33) is an improper Riemann integral defined as the limit 

r 
(34) lim lim \e~XtU(t)x dt. 

T—>00 £—»0+ J 

£ 

The existence of this limit follows from inequality (2) and the continuity of 
the integrand function of t € ( 0 , + o o ) . 

To prove (33) fix x € D{A). Then 

dU(t)x/dt = U(t)Ax 

and 

(d/dt)e~MU(t)x = —e~X iU(t)(\ - A)x. 

Integration of this equality gives 
oo 

lim e~XEU(£)x- lim e~XTU(T)x = \ e~x tU(t){\ - A)x dt 
£—»0+ T—>00  J  

0 
and so 

oo 
(35) x= J e~x tU{t){\- A)xdt for x E D{A). 

o 

Put t ing v := (A — A)x in (35) we get 
oo 

(A - A)_1v = R(A, A)v = j e~XtU{t)vdt for v G X , 
o 

which proves the formula (33). 

Since the resolvent R(X, A)x is a holomorphic function for A > 0 then 
we get 

dX 

oo 
d R(X, A)x = 4- \ 'e~x tU(t)xdt = \ {-t)e~x tU{t)xdt. 

n.\ J J 
0 0 
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Proceeding by induction we obtain 

d 

dX7 
R(X, A)x = \(-l)ntne~MU(t)xdt. 

From this and by formula 
dn 

dXn 

we have 

R{X, A)x = (~l)nn\R(X,A)n+1x, 

(36) 
1 0 0 

R(X, A)nx = 7 \ t ^ e ^ U Î Û x d t . 
[n — 1)! J 

Using the inequality (2), from (36) we obtain 

7l/f 0 0 

(37) ||i2(A, A)nx|| < 7 — \ tn~2+ee~xt\\x\\dt, M > 0, A > 0. 
( n - 1)! J 

The inequality (37) implies (3) with UJ = 0. 

R E M A R K 1. Let be u > 0 in Theorem 1, i.e. let the semi-infinite interval 
(w,oo) C Then the operator A\ := A — u>I satisfies the assumptions 
of Theorem 1 with ui = 0, so A\ generates the semigroup Ui(t), t > 0 such 
that 

IICMOII < 

If we set U(t) :— eutUi(t), it can easily verified that U(t) has all the prop-
erties stated in Theorem 1, with the following modification of (2) 

( 3 8 ) \\U(t)\\ < ^ g e u t , M > 0 , 0 < 9 < 1 , t > 0 . 

3. The abstract Cauchy problem 
Let A be a linear operator satisfying the assumptions of Theorem 1 which 

generates a Co-semigroup {U(t),t > 0} with weak singularity for t = 0. We 
consider the following Cauchy problem 

(39) ^ = Au + f , t G (0, T], 

(40) u(0) = u0> 

where / : [0,T] —> X is continuously differentiate and no S D(A). 

DEFINITION 4. A function u : [0, T] —> X is said to be a (classical) solution 
of problem (39), (40) if: 

(i) u is continuous in [0,T], 
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(ii) u is of class C1 in (0,T], 
(iii) u satisfies equation (39) in (0, T] and u(0) = UQ-

We shall prove the following 
THEOREM 2. If the operator A, the function f and, UQ satisfy the above 
assumptions, then the problem (39), (40) has the unique classical solution u 
which is given by 

(41) 

where 

u(t) = U[t)u0 + \ U(t - s)f(s) ds, te [0, T], 

uo = u(0) := lim u(t). 
t—>0+ 

Proof . We know that the first term U(t)xo on the right hand side of (41) 
satisfies the homogeneous differential equation (39). i.e. f — 0, and the 
initial condition (40) (cf. (26)-(28)). Therefore it suffices to show that the 
second term of the right hand side of (41) satisfies (39) and has initial value 
zero. Denoting this term by v(t), we have 

t 
(42) v(t) = \U(t-s)f(s)ds. 

o 

Since / G C,1([0, T]) we get 
t 

(43) f(t) = /(0) + J f'(r)dr for t G [0, T]. 
o 

By (42) and (43) we have 

(44) ds >(t) = \U(t-s)[m + \f'(T)dT 
0 0 
t t t 

= \u(t- s)f(0)ds + 5 [ J U{t - s ) / ' ( r )ds 
0 O r 
t t t-T 

= \U(r)f(0)dr + \[ J U{r)f'(r) dr 

dr 

dr. 
o o 

But by (21) 

A \ U(s)x ds = U(t)x -x for x G D(A), t > 0. 
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This can be extended to an arbitrary x E X by choosing a sequence {xn} C 
D(A) such that xn —> x as n —» oo and going to the limit, for 

t t 
J U(s)xn ds —> ̂ U(s)x ds 
o o 

and 

U(t)xn — xn —y U(t)x — x. 

Prom this by the closedness of A we obtain U(s)xds E D{A) and 

t 
(45) A \ U(s)x ds = U(t)x - x, for x e X, t > 0. 

o 
It follows from (44) and (45) that v(t) E D{A) and 

t 
( 4 6 ) Av(t) = U ( t ) f ( 0 ) - / ( 0 ) + J [U(t - r ) / ' ( r ) - f'(r)] dr 

o 
t 

= U ( t ) f ( 0 ) - f ( t ) + J U(t - r ) f ' ( r ) dr. 
o 

On the other hand we have 
t 

v ( t ) = \ U ( s ) f { t - s ) ds 
0 

and so 

( 4 7 ) ^ ( t ) = U(t)f(0 ) + \ U ( s ) f ' ( t - s ) d s 
o 
t 

= U ( t ) f ( 0 ) + \ U ( t - T ) f ' ( r ) d T . 
0 

A comparison of (46) and (47) shows that 

± ( t ) = Av(t) + f ( t ) , 

as we wished to prove. Also it is easy to show that 

lim v(t) = 0. 
t-o+ 

The continuity of dv/dt follows from (47) by continuity of / ' : [0, T] —> X 
and this completes the proof of Theorem 2. 
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EXAMPLE . Let X := Ca(f2) where Q is a bounded region in Rn which the 
boundary dfi is locally of class Cm. 

Let us consider the following mixed problem 

(48) 

r ( p _ u 
dt-
dau 

-^¿(x,t) = A(x,D)u{t,x) + f(t,x), xeii, 0<t<T, 

(t, x) = 0, |a| < m/2 - 1, x e diì, 0 <t<T, 

Ou u(0,x) = u0(x), —(0,x) = ui(x), x € Ì2, 

where m is an even number, and 

A(x,D):= aa(x)Da, 
\a\<m 

is strongly elliptic differential operator. 
Under assumptions that the coefficients aa are the sufficiently regular 

the problem (48) may be consider as the abstract linear initial hyperbolic 
problem in the space X of the form 

d2u = Au + f , 0 <t<T, (49) 

where 

dt2 

u(0) = uq, w'(0) = u\, 

A : D{A) X 

D(A) := j u e Cm+a(T2) : x) _ = 0, |a| < m/2-1 dn 
and 

(Au)(t,x) := A{x,D)u{t,x), x e Q, 0 <t<T, 

f : [0, T] -v X , f(t)(x) := f(t, x), x € 77, 0 < t < T, 

uo := Uo(x), ui :— ui(x), x G Q. 

To solve the problem (49) we can reduce it to a first order Cauchy problem, 
of course under some assumptions on the operator A (for details see e. g. 
[2], [3], [8]). The problem (49) may be equivalent of the following first order 
Cauchy problem 

(50) (1I = BV + F in(0'T]' 
I V(0) = Vo, 
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where 

B :--
0 I 
A 0 

V := F := Vb : = 
u 0 

ui 

B : [D(B)] x X [ D ( B ) ] x X, 
where [D(B)] denotes the Banach space D(B) with graph norm : = 

||x|| + ||Sx||, and operator B : X —> X is such that B2 = A\ D{B) := 
D{A) x D(B). 

Using the results of the papers [4], [10], [11] we obtain 

(51) 
M 

< T î Z Â . for A > 0, 
A 

in norm of the space X = Ca(i1). 
From (51) similary as in [8], we can deduce that 

M 
(52) ||Ä(A,ß)|| = | | ( A - ß ) - 1 | | < 

which 6 = 1 - and so 0 < 0 < 1. 
From the inequality (52) it follows that the mixed problem (48) can be 

reduced to the abstract Cauchy problem with weak singularity, i.e. to the 
problem (39), (40). 
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