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COMMON FIXED POINT THEOREMS
BY ALTERING THE DISTANCES BETWEEN THE POINTS
IN BOUNDED COMPLETE METRIC SPACES

Abstract. The aim of this note is to prove some common fixed point theorems in
bounded complete metric spaces for self-maps verifying generalized contractive conditions
obtained by altering the distances between the points.

1. Introduction

In the paper [4], the authors gave some fixed point theorems generalizing
and unifying many fixed point theorems obtained by Delbosco in [1], Skof
in [8], Rakotch in [5], Reich in [7], and Fisher in [3]. Precisely in [4] the
following theorem was established:

1.1. THEOREM. Let T be a self-map of a complete metric space (X,d) and
let ¢ be a function verifying:
(P1) ¢:[0,00[— [0, 00[ is continuous and increasing in [0, 00|, and
(P2) o(t)=0<«<=t=0.
We suppose that T satisfies the following condition:

(K) ¢(d(T=z,Ty)) < a(d(z,y))d(d(z,y))
+ b(d(z, y))[¢(d(z, Tz)) + ¢(d(y, Ty))]
+ c(d(z, y)) min{¢(d(z, Ty)), #(d(y, Tz))}
Ve, y € X with © # vy,

where a,b, c are three decreasing functions from 0, 00[ into (0,1] such that
a(t) + 2b(t) + c(t) < 1, for everyt > 0. Then T has a unique point.
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In this note we work in a bounded complete metric space (X,d). In
the second section we prove some common fixed point theorems for sets
of self-mappings verifying contractive conditions close to the relation (K)
but using only continuous functions ¢ satisfying (P,). Thus, in this case
the assumption “¢ is increasing” becomes superfluous and can be removed.
Furthermore, our main theorem is an improvement upon some other fixed
point theorems (see [3], [5], [6], [7]). In section 3, we establish a common
fixed point theorem in compact metric spaces generalizing Theorem 4 of the
paper [4] which itself was considered by the authors as a generalization of a
theorem given by B. Fisher in [3].

2. Main result

Many authors (see the references) were interested by fixed point theorems
by altering the distances between the points with the use of functions. The
purpose of this section is to contribute in this field of investigations. We
start by our first main result.

2.1. THEOREM. Let (X,d) be a bounded complete metric space. Let ¢ :
[0,00[ — [0,00] be a continuous function verifying property (Pp). Let S,T
be two self-maps of (X, d) such that

(4)  ¢(d(Sz,Ty)) < ald(z,y))¢(d(z,y)) + b(d(z, y))¢(d(z, Sz))
+ c(d(z,y))d(d(y, Ty))
+ e(d(z,y)) min{$(d(z, Ty)), $(d(y, Sz))}
Ve, y € X with x £ vy,
where a, b, ¢, e are four decreasing functions from |0, +oo into [0, 1] such that
a(t) +~[b(t) +c(t)]) +e(t) < 1, for everyt > 0, where v is a fized constant in

]1,+00[. Then S and T have a unique common fized point z € X. Moreover
Fiz(S) = Fiz(T) = {z}.

Proof. (I) We shall prove that the pair {S,T} has a common fixed point.
Let zg be some point in X. We define
:I:zn:Sa:gn_l, TL=1,2,...

T2n4-1 =Tz, n=0,12,...

We put ¢y, := d(zn, n41) for all integer n. (I) is proved if ¢t,, = 0 for some
integer ng. Therefore, we may assume that ¢, > 0 for all integer n. We see
that for an even integer n, we have

d(tn) = ¢(d(STn-1,T2s)) < V1 + V3 + V3 + Yy,
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where
¥ = a(d(zn-1,%n))P(d(Tn-1,Z4)),
Wz = b(d(.’L‘n_l, $n))¢(d($n_1, S:cn_l)),
U3 = c(d(Zn-1,2Zn))0(d(Zn, Tzy)),
Uy = e(d(Zn-1,Zn))P(d(zn, STn-1)).
So

¢(tn) S a(tn—1)¢(tn—1) + b(tn—1)¢(tn—1) + C(tn~1)¢(tn)~

Hence we get

(1) ¢(tn) S a(tn_l) + b(tn_l)

1-— C(tn_l)
In a similar manner, one can prove, (for the same even integer) that

a(tn—-Z) + c(tn—Z)

1—b(tn—2)
The inequalities (1) and (1’) show that the sequence (¢(t,))n is decreasing.
Let 6 be the limit of (¢(t,))n. Let us suppose that § > 0. Since (X,d) is
bounded there exists a subsequence (t,(x))x converging to some element t.
By the continuity of ¢, we have ¢(¢t) = 6 > 0. By the property (P2) of ¢, we
must have ¢ > 0. In this case, since a, b, ¢ are decreasing on |0, co[, then by
using (1) and (1’), we get

P(tn-1) < d(tn-1)-

(1) ¢(tn-1) < G(tn-2) < D(tn2)-

P(tn(k)) < max { alt) +b(t) alt) + elt) } P(tn(ry-1)-

1—c(t) ' 1-b(t)

Now, by letting £k — oo, and using the continuity of ¢, we obtain

o(0) < max { 20420 SOLEI Y 45) < o0,

which is a contradiction. Hence £ = 8 = 0. Now, from the considerations
made above, we may deduce that the whole sequence (¢, ), is converging to
zero.

(IT) Now, we shall prove that {z,} is a Cauchy sequence. Since ¢t = 0 one
needs only to see that {2, } is a Cauchy sequence. To get a contradiction, let
us suppose that there is a number € > 0 and two sequences {2n(k)}, {2m(k)}
with 2k < 2m(k) < 2n(k), (k € N) verifying

(2) d(Zan(k), Tam(k)) > €

For each integer k, we shall denote 2n(k) the least even integer exceeding
2m(k) for which (2) holds. Then

d(Tam(k)> Tan(k)—2) < € and  d(Tam(k), Tan(k)) > €
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For each integer k, we shall put

Pk = d(m2m(k)a m2n(k))a Sk 1= d($2m(k)a -’1:2n(k)+1)’
@k = A(Tam(k)+1, Tan(k)+1), and 7% = A(Tam(k)+1) Tan(k)+2)s
then by using triangular inequalities, we obtain
€ <Pk < €+ tan(r)—2 + lank)-1
|sk —Pk| < t2n(k)’
(3)
|Qk - Skl < t2m(k))
Tk — 8k| < tan(k)+1-
Since the sequence {t,} converges to 0, we deduce from (3) that the se-
quences {px},{sk},{qx} and {ry} are converging to e. From (2) and
these facts, one can deduce that there exists an integer k¢ such that
A(ZTan(k)+1> T2m(ky) > 0, and § < pr — tor < d(Tan(k)+1, Tam(r)), for each
integer k > ko. Therefore, (for all £ > kq) we have
¢(rx) = A(d(T2n(k)+2> Tom(k)+1)) = H(A(STon(k)+1, TT2m(k)))
SN+ DI+ I34+Ty <G+ Gy + Gs + Gy,
where
I = a(d(Zan@k)+15 Tam(k)))P(A(Z2n (k) +1) Tam(k) )5

o
o

)
(A(Z2n(k)+1> T2m(k) ) B(A(T2n(k)+1) T2n(k)+2))s
I3 = c(d(Tan(k)+1) Tam(k)))B(A(T2m(k), T2m(k)+1))»
Iy = e(d(Zan(k)+1) Tam(k)))

x min { ¢(d(Zan(k)+1> L2m(k)+1))> DA Zam (k) Tan(k)+2)) }

and

G1 = a(pr — tan(r))d(sk);

G2 = d(tan(k)+1);

Gs = ¢(tamm));

G4 = e(pr — tan(k)) Har)-
We let & — oo, then by using the continuity of ¢ and the fact that a,b,c,e
are decreasing on |0, +o00o[, we obtain

60 < [a5) +e(5)] <ste

which is a contradiction. Hence {z,} is a Cauchy sequence in the complete
metric space (X, d), then one may find a point z = 2(S,T) € X such that
Tn — 2z a8 n — 00. Next, we shall prove that z is a common fixed point
for S and T.



Common fized point theorems 847

(III) Since ¢,, > 0 for all integer n, we see that both subsegences (z25)n
and (Zany1)n are not stationary. Therefore, we may find a subsequence
(ZTn(k))k such that Tonk)41 # z for every integer k. Let us suppose that
Tz # z. In this case we are allowed to apply the inequality (A) and obtain,
for all £ € N, the relations

(4) ¢(d(Z2n(k)+2, T2)) = ¢(d(STan(k)+1,T2))
< a(d(Zan (k) +15 2))(A(T2n(k)+15 2))
+ b(d(Z2n(k)+1, 2))B(tan(k)+1)
+ c(d(mZn(k)+l’ z))¢(d(z,Tz))
+ e(d(T2n(k)+1, 2))9(d(T2n(k)+2, 2)-
We deduce then that

(5) ¢(d(Tan(r)+2,T2)) < S(d(Z2n(k)+152))
+ ¢(tan(ry+1) + S(d(Tan(k)+2, 2) + %45(‘1(2, Tz)).

After letting k — o0, it gives

(6) #(d(2,T2)) < §¢<d<z,Tz>> < $(d(2,T2)),

which is a contradiction. Hence z = Tz, and in a similar way, it can be
shown that z = S=z.

(IV) Suppose that there exists another point £ # z fixed, for instance,
by S. Then by the property (A), we have

$(d(¢, 2)) = ¢(d(S¢, Tz))
< [a(d(€, 2)) + e(d(¢, 2))] #(d(€, 2)) < B(d(¢, 2))-
a contradiction. Therefore, we deduce that there exists a unique point z € X
such that Fiz(S) = {z} = Fiz(T) = Fiz({S,T}). This completes the proof
of our theorem. m

The following result is an easy consequence of our Theorem 2.1.

2.2. THEOREM. Let (X,d) a bounded complete metric space, A a (finite or
infinite) set of self-maps of X and ¢ as in Theorem 2.1. We suppose that
for all S, T € A the following generalized contractive condition holds true
(B)  ¢(d(Sz,Ty)) < ald(z,y))d(d(z,y))
+ b(d(z, y)) min{g(d(z, Sz)), ¢(d(y, Ty))}
+ c(d(@,v)) min{g(d(z, Ty)), $(d(y, 52))}
Vz,y € X with z # vy,
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where a, b, c are three decreasing functions from |0, +o0[ into [0, 1] such that
a(t)+7b(t)+c(t) < 1, for everyt > 0, where v is a fized constant in |1, +o0|.
Then

(i) there ezists a unique point z € X such that z € Fiz(S) for all S € A.
(if) Fiz(S) = {z} for all S € A.
(iil) If A contains more than two elements, then (i) and (ii) are still valid
whenever (B) holds true only for all S,T € A, with S # T.

2.3. REMARKS.

(a) We point out that Theorems 2.1 and 2.2 are still valid when (X, d)
is not bounded under the assumptions (P;) and (P2) (of 1.1) upon the
function ¢.

(b) If we take b = ¢ in 2.1, then we obtain the result established by
R. A. Rashwan and A. M. Sadeek in [6].

(c) If we take b = c and S = T in 2.1, then we obtain one of the main
results established by M. S. Khan et al. in the paper [4].

(d) Ife =0, S = T and the functions a, b and c are constants then we get
the results obtained by D. Delbosco in [1] and by F. Skof in the paper [8].

(e) We give here an example discussing the validity of the assumptions
of Theorem 2.1. We take X = {1,2,3,4} and define a metric d on X by
setting d(1,2) = 1, and d(1,3) = d(1,4) = d(2,3) = d(2,4) = d(3,4) = 2.
We consider the maps S and T defined by, S1 =52=53=1, S4=2; and
T1=T2=T4=1,T3 =2. Forall t >0, we put a(t) = 2/5, b(t) = 1/20,
c(t) = 7/20, e(t) = 1/6, and ¢(t) = t2. Then all the conditions of Theorem
2.1 are satisfied and the maps S and T have 1 as unique common fixed point.

3. A fixed point theorem in compact metric spaces

The purpose of this section is to generalize Theorem 4 of the paper [4]
by the following

3.1. THEOREM. Let S, T be two self-maps of a compact metric space (X,d)
and let ¢ : [0, 0o[ — [0, 00[ be a continuous function verifying property (Ps).
We suppose that T,S oT are continuous and that S, T verify for all distinct
z,y i X the inequality

(C)  ¢(d(Sz,Ty)) < [1 —b—clg(d(z,y)) + bp(d(Sz, )) + ch(d(y, Ty))

where b,c € [0,1] are two fized constants such that b+ ¢ < 1. Then S and
T have a unique common fized point z € X. Moreover Fiz(S) = Fiz(T) =

{z}.
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Proof. Let zo be an element in X, and associate to it the sequence (z,),
given by
Ton = Szzn_l, n = 1, 2, .
x2n+1=T-T2n, n=0, 1,2,....
Without loss of generality, we may assume that t, # 0 for every integer
n. In this case, it is easy to see that the sequence (¢(t,)) is decreasing
and therefore it converges. Since X is compact, we may find a subsequence

(T2n(k))x converging to some element z € X. Then by using the continuity
of the map T and the function ¢, we get

(7) ¢(d(z’TZ)) = kEToo ¢(t2n(k)) = kEI-lI-loo ¢(t2n(k)+1)
= kl'}lfoo H(d(Zan(k)+1> Tan(k)+2))
= k-EToo ¢(d(Tm2n(k)> (S o T)x2n(k)))
= $(d(T2, (S 0 T)2)).
Suppose that z # Tz, then by applying the inequality (C) to £ = Tz and
y = z, and using (7), we obtain
(8)  ¢(d(z,T2)) = ¢(d(5(T'2), Tz))
< [1=b-c¢(d(Tz,2)) + bp(d(Tz,STz)) + cp(d(2,Tz))
< ¢(d(T'z, 2)).
This is a contradiction. Therefore we must have Tz = z. The relation (7)
will imply that Sz = 2. To end the proof, let us suppose that there exists a
point £ # z fixed, for instance, by S. Then by applying the inequality (C),
we get
(9)  ¢(d(¢,2)) = #(d(5¢,Tz)) < [1 - b—clp(d(§, 2)) < $(d(¢, 2)),

which is a contradiction. =
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