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THE CONVOLUTION OF FUNCTIONS 
AND DISTRIBUTIONS 

A b s t r a c t . The non-commutative convolution product f*g of two distributions / and 
g in T>' is defined to be the limit of the sequence { ( / r n ) * g}, provided the limit exists, 
where { r n } is a certain sequence of functions r n in 2? converging to 1. 

In the following, V denotes the space of infinitely differentiate functions 
with compact support and V denotes the space of distributions defined 
on V. 

The convolution product of certain pairs of distributions in V is usually 
defined as follows, see for example Gel'fand and Shilov [4]. 
DEFINITION 1. Let / and g be distributions in V satisfying either of the 
following conditions: 

(a) either f or g has bounded support, 
(b) the supports of / and g are bounded on the same side. 

Then the convolution product f * g is defined by the equation 
(1) ((/ * g)(x)M*)) = (<?(*), ( / M M * +*)» 

for arbitrary test function <p in V. 
The classical definition of the convolution product is as follows : 

DEFINITION 2 . If / and g are locally summable functions then the convolu-
tion product f * g is defined by 

oo oo 
(2) (f*g)(x)= 5 f(t)g(x-t)dt= 5 f(x — t)g(t) dt 

—oo —oo 

for all x for which the integrals exist. 
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Note that if / and g are locally summable functions satisfying either of 
the conditions (a) or (b) in Definition 1, then Definition 1 is in agreement 
with Definition 2. 

It follows that if the convolution product / * g exists by Definitions 1 or 
2 then the following equations hold: 

(3) f *9 = 9* f , 
(4) ( f * 9 y = f*g' = f'*g. 

Definition 1 is rather restrictive and so a neutrix convolution product 
was introduced in [2]. In order to define the neutrix convolution product, we 
first of all let r be a function in V satisfying the following conditions: 

(i) T(X) = r(-x), 
(ii) 0 < r ( s ) < 1, 

(iii) T(X) = 1, |x| < 
(iv) T(X) = 0, jxj > 1. 

The function r n is now defined by 

{1, |x| < n, 

r{nnx — n"+1), x > n, 
r ( n " x + n " + 1 ) , x <-n. 

D E F I N I T I O N 3 . Let / and g be distributions in V and let fn = frn for 
n = 1 , 2 , . . . . Then the neutrix convolution product f 0 g is defined to be 
the neutrix limit of the sequence { f n * g}, provided the limit h exists in the 
sense that N - l i m (fn*9,tp) = {h,(p) n—*oo 

for all ip in V, where N is the neutrix, see van der Corput [1], having domain 
N' = {1, 2 , . . . , n , . . . } and range the real numbers with negligible functions 
finite linear sums of the functions 

nx l n r _ 1 n, lnr n (A > 0, r = 1, 2 , . . . ) 

and all functions which converge to zero as n tends to infinity. 
Note that the convolution product fn * g in this definition is in the sense 

of Definition 1, the support of fn being bounded. Note also that the neutrix 
convolution product in this definition, is in general non-commutative. 

It was proved in [2] that if the convolution product / * g exists by Defi-
nition 1, then the neutrix convolution product / © g exists and 

f * 9 = f®9, 

showing that Definition 3 is a generalization of Definition 1. 
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We now give a definition of the convolution product which generalizes 
both Definitions 1 and 2 but is a particular case of Definition 3. 

DEFINITION 4 . Let f , f i , g and g\ be distributions in V and let / „ = f r n 

and /i i 7 l = f\Tn for n = 1 , 2 , . . . . Then the convolution product f * g is 
defined to be the limit of the sequence { / „ * g}, provided the limit h exists 
in the sense that 

l i m ( f n *g,<p) = (h, <p) 
n—>oo 

for all <p in V. 

Further, if / * g and f\ * g\ do not exist, but 

l i m ( f n * g + fl,n * 51» <p) = (h, <p) 
n—too 

for all ip in T>, we will say that the sum f * g + / i * gi of the convolution 

products f * g and / i * 51 exists and is equal to h. 

We now prove our main theorem. 

T H E O R E M 1. The convolution product xx * x+x~T and the sum of the con-

volution products x* * and —x^. * exist and 

_ x _ r _ ( — l ) r ~ 1 ( v — 2 ) ! r ( A + 1 ) 

r(x + r) 
(5) xi * = v ; 

( - l ) - 1 7rcot (7rA ) r (A + l ) ( r _ 2 ) 

+ r(x + r) 6 [X)' 

a—1 u , -u-i n-v) r'(-x) (6) x_ * x+ — xt * x+ 

r ( - / x ) r ( - A ) 

+ 7r[cot(7rA) — cot(ir [i)]H (x) 

for A, n / 0, ± 1 , ± 2 , . . . and r = 2, 3 , . . . . 

P r o o f . We put ( z i ) n = a : ir„(x) . Then 

( x x ) n * x+x~r = (xx_)n * [x+x~rH{ 1 - x ) ] + [xx_H(x + 1 ) ] * [x+x~rH(x - 1 ) ] 

+ [(xx)nH(-x - 1)] * [x+x~TH(x - 1)], 

where H denotes Heaviside's function. The convolutions 

( 8 ) xx_*[x+x~rH( 1 - s ) ] , [xxH(x + l ) ] * [ x l x - r H ( x - l ) } 

exist by Definition 1 and 
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(9) lim (xx)n * [xlx-rH(l - x)l = xA * [xlx~rH( 1 - x)l, n—• oo 

since x + A _ r i i ( l — x) and x* i i ( x + 1) have compact supports. 
Further, (x^)nH(—x — 1) is a locally summable function with compact 

support and 

(10) [(xx_)nH(-x - 1)] * [xlx~rH{x - 1)] 
- l 

= J ( - i ) A ( x - t)-x'rH{x - t - l ) d t 
—n 

—n 
+ 5 Tn(t)(—t)X (x — t)~x~r dt. 

—n—n~™ 

If — n < x < 0, we have 
- l 
5 ( - i ) A ( x - t)-x~rH{x - t - l ) d t 

—n 
x-1 

= 5 (-t)x{x-t)-x~rdt 
—n 

x-1 
= ( - l ) r J t-\l-x/t)-x~rdt 

—n 
x-1 

= ( - l ) r J [ t - r + (A + r ) s t - p " 1 + . . . ]d i 
—n 

and it follows that 
- l 

(11) d.p. j {-t)X{x - t)~x'rH(x - t - l ) d t = 0, 
— 71 
- 1 

(12) d.p. J (~t)x(x - t ) - x - 1
J f f ( x - t - 1) dt = Inn, 

—n 

for x < 0, and r = 2 , 3 , . . . , where d.p. denotes the divergent part of the 
integral. 

If x > 0, we have 
- l - l 

5 {-t)x{x - t)~x~TH{x - t - l ) d t = \ (~t)x(x - t)~x~r dt 
—n —n 
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—X—1 -1 
= \ ( - t ) x ( x - t ) - x ~ r d t + \ (—t)x(x — t)~x~r dt 

—n —I—1 
-x-1 -1 

= ( - l ) r J [t-r + (A + r)xt~r-1 + ...] dt + j { - t ) x ( x - t ) - x ~ r d t 
—n —x—1 

and it follows that 
- l 

d . p . J ( - t ) x ( x - t)-x~TH{x - t - l ) d t = 0, 
—n 
-1 

d . p . \ ( - t ) x { x - i ) - A _ 1 f r ( x - i - 1) d i = I n n , 
—n 

for x > 0 and r = 2 ,3 , . . . . Equations (11) and (12) therefore hold for all x 
a n d r = 2,3,.... 

It is easily seen that 
—n 

(13 ) l i m \ Tn(t)(—t)x(x — t)~x~T dt = 0 
71—•OO J 

—n—n~n 

for all x and it now follows from equations (7) to (12) that 

d . p . ( x A ) „ *x+x~r = 0 , 

d . p . [(xx_)n * x ^ " 1 - ( a £ ) n * x ^ - 1 ] = 0 

and so 

(14 ) l i m ( x A ) n * x7X~r, 
n—>oo 

n—foo~ 

exist for A, fi ^ 0, ±1, ± 2 , . . . and r = 2,3, 
It was proved in [3] that 

(16) + 

( —l)T"~17TCQt(7rA)r(A + 1) f ( r - 2 ) / \ 

+ r(X + r) [X)> 

(17) xA © = - 7 - + 7rcot(7rA)ii(x) - In |x|, 

for A > —1, A ^ 0 ,1 ,2 , . . . and r = 2 ,3 , . . . , where 7 denotes Euler's con-
stant, and it was later proved in [4] that equations (16) and (17) held for 
A < - 1 , A / - 2 , - 3 , . . . and r = 2 ,3 , . . . . 

(15) lim [(xA )„ * x ^ " 1 - (x^)n * x ^ " 1 ] 
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It follows from (14) and (15) that 

ci)n * x + X ~ r = N-lim(xA ) n * x + A - r , 71—>00 
lim [ ( x " ) n * z + - ( z - U * ^ ] = N - l i m [ ( x l ) n * a ; 7 A - 1 - ( x ^ ) n * x 7 i 

n—>00 T T n—>oo 

a n d equations ( 5 ) a n d ( 6 ) follow f rom equations ( 1 6 ) and ( 1 7 ) for / 
0, ± 1 , ± 2 , . . . a n d r — 2,3,.... 

COROLLARY 1.1 . The convolution product x\ * xZX~r and the sum of the 
convolution products xA * x I A _ 1 and * xZexist and 

(18) X* * x " ^ - ( r ~ 2)!-T(A + 1) - r + l _ 7T COt(7TA)Jn(A + 1) c(r-2) / \ 
x+ x~ - r(X + r) r(X + r) d {x)' 

( 1 9 ) x A * x I A _ 1 - x £ * X Z * ~ X U | Ô  >X/ | 

r ( - / i ) r ' ( - A ) + 7r[cot(7rA) — cot(7r/i)]ii(—x) r(-M) r(-A) 
/or ±1 , ± 2 , . . . and r = 2 , 3 , . . . . 

P r o o f . Equations (18) and (19) follow immediately upon replacing x by 
—x in equations (5) and (6). 

COROLLARY 1.2. The convolution products |x|A * |x| _ A _ 2 r _ 1 , (sgnz.|x|A) * 
(sgnx.|x| _ A _ 2 r _ 1) , (sgnx.|x|A) * |x|_ A _ 2 r and |x|A * (sgnx.|x|_A_2r) exist 
and 

(20) | x l A * i a . i - A - 2 r . - i _ 2 ( 2 r - l ) ! r ( A + l) 2 r 

(21) (sgnx.|x|A) * (sgnx.|x|~A _ 2 r _ 1) = ^ ^ + ^ x ^ , 

(22) 

(23) |x|A * (sgnx.|x|_ A _ 2 r) = 

for X, # 0, ±1 , ± 2 , . . . and r = 1,2, 

P r o o f . The convolution products x\ * x + A - r and x i * xZX~r exist by 
Definition 1 and it is easily proved that 

(24) xA * = ( - l ) r ^ o s e c ( . A ) r ( A + l ) 6 ( r _ 2 ) ( x ) ; 
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(25) * z : * - = + 

for A ̂  0, ±1, ± 2 , . . . and r = 2 , 3 , . . . . 
Now 

(26) |x|A * | x | _ A _ r = xl * x+x~r + xx_* x+x~r + * xZX~r + xx * xZX~r 

and equation (20) follows from equations (5), (18), (24) and (25). 
Equations (21), (22) and (23) follow similarly. 
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