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ON INFINITE DIMENSIONAL GENERALIZATION
OF YAN’S THEOREM

1. Introduction

Let (£2,F,P) be any probability space and denote by B, the set of
nonnegative bounded random variables. Classical theorem of Yan (1980)
state that, for any convex subset K in L(2, F, P) such that 0 € K, the
following three conditions are equivalent:

(a) for each f € LY (2,F,P), f # 0, there exists ¢ > 0 such that
cf ¢ K- B+,

(b) for each A € F such that P(A) > 0, there exists ¢ > 0 such that
cIs¢ K —B,,

(c) there exists a bounded random variable Z € L* ({2, F, P) such that
Z >0 a. e and Supycg E[ZY] < +00.

In the proof of this theorem there is only one serious difficulty to over-
come: to show that (b) implies (c), This is done by the use of ‘second sep-
aration theorem‘(Schaefer 1971 page 65): Let A, B be non-empty, disjoint
convex subsets of a locally convx space X such that A is closed and B is
compact.There exists a closed real hyperplane in X strictly separating A
and B. This theorem is used with A = K — B, and B = {cl4}.

A rather simple theorem of Yan is interesting because of applications.
We only mention the followimg reasoning which gives the existence of a
martingale measure. We use an L?(§2, F, P) version of Yan’s theorem.Let
1,8, ... € L?(2, F, P) be a random process adapted to the filtration Fy C
F1 C ... With Fo = {0, £2}. Take the following linear subspace

K =lin{ls&; Ae Fio1, i=1,2,...}.
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Then the assumption that, for any A € F, P(A) > 0, there exists ¢ > 0
such that cI4 ¢ K — By (the bar denotes the closure in L?), implies the
existence of density function Z € L? which is positive with probability one
and &1,&s, ... are martingale increment for probability @, % =2Z.

An equivalent martingale measure is proved to be an important tool in
applied probability (Musiela, Rutkowski 1997). In particular, d-dimensional
generalization of Yan’s theorem was used in (Pham, Touzi Theorem 3.1).
On the other hand, it is natural to discribe some complicated data by ran-
dom process taking values in infinite dimensional spaces. In particular, in a
Hilbert space. Theory of distribution of infinite dimensional random vector is
one of the most classical toppics in probability (Vakhania 1981, Parthasathy
1967, Bryc 1995, Janson 1997, Fellah, Pardoux 1992).

In this paper some natural genralization of Yan’s theorem, for random
variables taking values in a Hilbert space equiped with an orthonormal basis,
is given. For simplicity, we use £2 with the natural orthonormal basis. (e, ),
em = (0,0,...,1,0,...).

2. Notations and results

By £ we denote the “positive cone” of £%;i.e. £3 = {z € £*: (z,¢;) > 0
for i = 1,2,...} where (e,,) is the natural orthonormal basis in £2.

An £2-valued random variable (defined on (§2, F, P) is a measurable func-
tion f : 2 — £2 where £2 is equipped with its Borel o-field 8(£2), in £2 the
norm topology is always taken. Denote by L°(¢2) = L°(02, F, P;¢%) the
space of all £2-valued random variables with the topology of convergence in
probability. By LS (¢2) = L3(£2, F, P;¢?), we denote the positive cone of
L%(¢?). Namely f € L% (¢?) & f(w) € ¢4 for almost all w € 2. We also
use the standard notation LP(¢?) = LP(2,F,P;¢?), for 1 < p < oo, and
LR (62) = LP(2) N LY. (£?), 1 < p < 00, By = L>®(2) n LY (£%).

As the main theorem of this paper, we prove.

THEOREM 2.1. Let K be a convex subset of L*(£2) such that 0 € K. Then
the following three conditions are equivalent:

(a) For each f € LY(£?), f # 0, there exist A > 0 such that \f ¢
K -B.,

(b) For each A € F, P(A) > 0, and for each i = 1,2,..., there exists
A > 0 such that Al se; ¢ K — By,

(c) there exists a Z € L*™(£?) such that P{w : (Z(w),e;) > 0} =1 for
eachi=1,2,... and Supyc g E[(Z,Y)] < 400.

Proof. The implication (a) implies (b) is obvious. We prove that (b) implies

(c)-
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Let A € F be such that P(A) > 0, by condition (b) for eachi=1,2,...,
there exists A > 0 such that A 4e; ¢ K — B,. Since K — B is convex and
L>®(£?) is the dual of L(£2), by separation theorem, there exists g € L>(¢2)
such that

Sup E((g,Y—n)) < AE(g, I 4e;).
YeK,neBy

Replacing 7 by an where a € Ry and taking Y = 0 we have aE({(g, —7)) <
AE(g, I 4e;) for any a € Ry If n = I{u.(g(w),es) <0} then

A
E({(g, =1 {w:(g(w),eq)<0})) < E]E<9>IA61'>'
Taking a — oo, we obtain

E({g, 1 {u:(g(w),esy<0})) = 0
which implies that g > 0 a.e. By putting n = 0, we get that

Sup (E(g,Y)) < E({g, I 4€i)) < +o00.
YeK

Now, let G = {g € LY (£?) : Supyx E({(g9,Y)) < +oc}. From the above
arguments, G # 0.

Let G be the family of all subsets of {2 being the supports of the el-
ements g of G. Note that G is closed under countable union, as for a se-
quence (gn)n>1 € G we may find strictly positive scalars (A,)n>1 such that
> 1 Angn € G.

Hence there is Z € G such that for Ag = {w : (Z(w),e;) > 0 for i =
1,2,...} we have P(Ap) = Sup{P(4) : A € G} for example,

Z= Z2n

for some g, € G with P{w : (gn(w),€;) > 0} > P(Ag) — %.

We shall show that P(Ag) = 1, thus that Z > 0 a.s. supposing that
P(Ao) < 1, we can find Zp € G such that E((Zo, I\ 4.€i)) > 0 and hence
Zo+ Z € G with P{w : ((Zy+2Z)(w),e;) > 0} > P(Ap). This gives a
contradiction.

||gnHL°°(e2) In

To prove that (c) implies (a) by contradiction, Suppose that there exists
fEL(Ez)f;éOandforeachnwehavenfeK B,.Sonf=Y,—
hn — &, where Y, € K, hn € By, ||6n||11(e2) < . If Z is bounded ¢2-valued
random variable, say [IZ || <1, such that Z > 0 a. e. we have that

B(Z,Y ) 2 nB(Z, f) - -

and hence
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Sup E(Z,Y) = +o0.
YeK
This gives a contradiction. m»

COROLLARY 2.2. Let K be a conver subset of L'(¢2) such that 0 € K, and
let for every € > 0 and for each i = 1,2,... there erists A > 0 such that
P{w: (Y (w),e;) > A} <€ for each Y € K. Then each one of conditions in
theorem 2.1 holds.

Proof. We have to show that condition (b) of theorem 2.1.1 holds. Let
A € F besuch that P(A) > 0, and take ¢ = $ P(A), then foreachi =1,2,...
there exists A > 0 such that

Plw: (Y(w),e) > A} < %P(A)

which implies that for each ¢ = 1,2,... We have Al4e; ¢ K — B4. By
assuming that 0 € K the condition (b) of Theorem 2.1.1 holds. m
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