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ON MULTIDIMENSIONAL DETERMINATE
MOMENT SEQUENCES

Abstract. Let X be a vector subspace of RN, where 1 < N <ooandlet A; >0bea
strictly positive sequence. It is proved that if two random vectors n = (n;} and £ = (£;), on
N N
PR YILT 2 A1l
a finite dimensional X, satisfy Ee/=1 < oo and Eel=! < oo, and distributions
of 7 and & are continuous, then they are the same if and only if

N N
o nN _jgl A3l _ g™ ny ‘gl A145!
MMy e =F§{* . EyTe
holds eventually for all large multiindices (n1,n2,...,ny). Finally we characterize those
finite signed measures p on X so that

J - mnl,...,ni_l,j,ni+1,...,nk
- T Ajlzyl
_ ny nz2 o T—-1_ 5, T4l Tk i=1
—S% Zy Ti—1 TiTiya T,e du(z)

is eventually constant or periodic. Analogous results are obtained for N = oo.

1. Introduction
It has been recently proved by G.D. Lin and Y.H. Too (see [LT]) that if
o0
(1) S g(z)z"e **dz = const,
a
for all n > ng, and if g is integrable, then ¢ = 0 almost everywhere on
(a,00). Following [Fu] we say that eventually constant moment sequences
are determinate in the class of densities g(z)e™**, where g € L(a, 00). Our
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main goal is to extend results of [LT] to a multidimensional case and on
some infinite dimensional Banach spaces.

Let (X, p) be a Polish metric space (i.e. separable and complete). By
M(X) we denote the Banach lattice of all real, signed, finite, o additive
and Borel measures y on X. The set of all continuous measures is denoted
by M.(X). If X is a subset of a finite dimensional Euclidean space then
M,.(X) stands for all absolutely continuous signed (with respect to the
Lebesgue measure) measures concentrated on X. The following generalizes
the notion of complete sequences (see [LT]).

DEFINITION 1. Let £ be a subset of M(X) and m = (m,),>0 be a sequence
of real numbers (m = (Mn,,... ny)n,;>0 be a multisequence m : NJ — R).
A sequence F of Borel functions f, : X — R (an indexed family F =
{fr1,..nny 1 mj € No} of Borel functions) is said to be m-complete on £ if
there exists a unique v € £ such that every measure p € £ satisfying the
system of equations

(2) S fadp =mg,
X
(3) ( S frtynn @i = Mn, oy reSpectively)
X

has the representation yu = pg+ v, where ug € M(X) is concentrated on the
set

Zr={zeX:f(z)=0 forall feF}

We say that F is strictly m-complete if Zr is the empty set (in particular
the system of identities (2) has a unique solution in £).

The following two problems are addressed in this paper:

e Given a family M of real sequences m and a class £ C M(X) find
a sequence (indexed family) of Borel functions on X which is m—
complete on £ for every m € M.

ee Given a class £ C M (X) and a m—complete family of Borel functions
on X, where m is an element of a fixed family M of real sequences,
find the formula

M>3m— vy, €L

The result by Lin and Too, mentioned in the beginning of the paper, may
be formulated as follows

THEOREM 1. (see [LT]) Let X = (a,b), where —00 < a < b < 400, and
L(a,b) be the class of all Lebesgue integrable functions on (a,b). For every
no € Ny and A > 0 the family Fxn, = {:z:"e"’\z :n > ng} is c—complete on
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L(a,b), where c is a constant sequence c, = c. Moreover, if it holds, then
¢ =0 and (2) has a unique solution vy = 0.

REMARK 1. It has been actually proved in [LT] that § », is c-complete on
the class M.(a,b).

REMARK 2. Our restriction to study m-completeness, only for some specified

classes M and £, is essential in the light of Boas’s theorem (see [C] Theorem

6.3, page 74), which asserts that given any sequence of real numbers m,, there
. . o0

exists a signed measure g, such that §~ z" du(z) = my,.

2. One dimensional case

In this section we generalize and simplify the proof of Theorem 1 from
[LT]. The idea of studying behaviour of derivatives of the transform of mea-
sures is also inherited from [LT]. We discuss eventually periodic sequences m,
instead of constants. We say that a sequence m = (my,)n>1 of real numbers
is eventually d periodic, if there exists a positive L, such that mp4q = m,
holds for all n > L. We begin with the following commonly known fact (see
Proposition 43.1 in [P]). For the sake of completeness of the paper and the
conveninence of the reader a detailed proof is included.

LEMMA 1. Let —o0 < a < b < +00 and F : (a,b) — R satisfies

(4) 0 < |F(z)| < Ae~*l"
for some A,e > 0. Then the only signed measure y € M(a,b) satisfying
(5) | 2"F(z)dpz) =0

(a,b)
for all n > 0 is the zero measure.
If instead of (4) we assume the weaker condition
(6) 0 <|F(z)| < Ae~el*!
then a measure p satisfies (5) if and only if it is concentrated on the set
{z € (a,b) : F(z) = 0}.
Proof. We define
U(z)= | €°F(z)du(x).
(a,b)
By (4) the function ¥ is well defined and analytic on the complex halfplane
E ={z € C:Im(z) > —¢}, containing R. Clearly its nth derivative is given
by
¥ (z) =" | €7z F(z)du(z).
(a,b)
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Using the Lebesgue dominated convergence theorem (which is applicable
because of (4)) we obtain

M lek
=1" Z S " F(z) du(z) = 0
= (a,b)

for all z = if3, where 8 € (—¢,¢). This implies ¥(z) = const = ¥(0) = 0 on
the halfplane E. In particular

()= | e F(z)du(z)=0

(a.d)

for all t € R. This implies that F(z)du ( ) is the zero measure. If we assume

(4) then obviously p = 0 as F(z) # 0. If (6) holds we only get supp(u) C
{z:F(z)=0}. =

Immediately we obtain
COROLLARY 1. Let a,b and F' be as in Lemma 1. If u € M(a,b) satisfies
(7) | z"F(z)du(z) =0
(a,b)

for n > ng, where ng nonnegative, then p = téy for some scalar t. If only
(6) is assumed, then supp(p) C {z: F(z) = 0} U {0}.

Proof. It is enough to substitute in Lemma 1 the measure z"°du(z) instead
of y and adjust constants A and €. =
The following is the main result of this chapter.

THEOREM 2. Let —00 < a < b < 400 and F : (a,b) — R satisfies the
property (4) on X. Suppose that m 1is eventually d periodic and a signed
measure p € M(a,b) satisfies

(8) S z"F(z)du(z) =m, forall n > ny.
(avb)
Then the following hold:

(i) If d is even then u is concentrated on {—1,0,1} N (a,b).
Ifa < -1 and b > 1 then mpy2 = my, for alln > 1 (hence d = 2)

and
m2 _ m3 mO _ Mma—mg3 __ mo-m3 m2 + m3
=Vpm = -——6_ 6 6 .
R=Vm=2pC) ot F(0) AT T
If -1<athenmy=my=... andd =1 s actually odd.

(ii) If d is odd then d = 1 and p is concentrated on {0,1} N (a,bd), and
m;=mg =....
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If {0,1} C (a,b) then

mg — T m

H=vm =~y S0+ Fayte
If{0,1} N (a,b) = {0} then 0 =m; =my = ... and
= Uy = 0§,
H=Vm =Ty
If{0,1} N (a,b) = {1} then mg =my = ...
= Uy = 2§
B=Vm=TFm)t
If{0,1} N (a,b) =0 then 0 =mo =m; = ... and p = 0.

Proof. Applying Corollary 1 we obtain z™°(1 — z¢)F(z)du(z) = 0. Since
F(z) # 0 on (a,b) thus p is concentrated on {-1,0,1} N (a,b) if d is even,
or it is concentrated on {0,1} N (a,b) if d is odd. Moreover, if d is even then
M2 = | o"*?F(z)du(z)
(a,b)

= (-1)"(-1)*F(-1)u({-1}) + 1"**F(1)u({1})

= (-D)"F(-1u({-1}) + 1"F(D)u({1}) = m,
hold for all n > 1. This means that d = 2 or d = 1. For an arbitrary nonzero

n we obtain

©) {m2n+1 = -F(=Du({-1}) + F(1)u{1})
Man = F(=1)u({-1}) + F(1)p({1}).

It follows from (9) that if —1 & (a,b) or 1 ¢ (a,b), then the sequence m is

eventually constant. Hence it is eventually 1-periodic. Assuming that both
—1 and 1 belong to (a,b) we can easily evaluate

_ mo — My
and
_ ma2+my
Now it easily follows from mg = u({—1}) + u({0}) + u({1}) that
_ _mg—m3 mo—ﬂu—zﬂ—m—%—ﬂa ™ma + ms3
W=vm=Spn ot F(0) b0t =Fm) -

In the case (ii), when d is odd, for every n > 1 we have

My = S 2" F(z) du(z) = F(1)u({1}) = const,
(a,b)
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whenever 1 € (a,b), or m, = 0if 1 & (a,b). Similarly we obtain that
mo = | F(z)du(z) = F(0)u({0}) + F(1)u({1})
(a,b)
if both 0 and 1 belong to (a, b). After elementary transformations we obtain:

do +

-y = mo — My my
FTRTTRO T FD
The reader finds the remaining cases easy to verify. =

01.

REMARK 3. Some cases discussed in the above theorem are included only
for the sake of completeness. If —co < a and b < oo, then much stronger
results are well known (see [B], Chapter 12 or [S], pages 400-403).

The next result is an easy application of our theorem and, which is
a further generalization of Theorem 1 from [LT], as absolutely continuous
distributions are continuous measures. We have:

COROLLARY 2. Let —00 < a < b < 400 and F : (a,b) — R satisfies the
property (4). Suppose that m is eventually d periodic and a signed measure
€ M(a,b) satisfies

(10) S z"F(z)dp(z) =m, for all n > no.
(a,b)
If u is continuous, then p = 0.

In the sequel we will need the following extension of Theorem 2. Its proof
is omitted as it is a modification of the previous proof.

COROLLARY 3. Let —00 < a < b < +00 and F : (a,b) — R be a function
satisfying (4). If for a signed measure p € M((a, b)) the sequence of moments

| 2"F(z)du(z) = mn
(a,b)
is eventually periodic, then the measure p is concentrated on the set ({z :
F(z) =0}U{-1,0,1}) N (a,b). Moreover, if m, =0 for all n > ng, then p
is concentrated on ({z : F(z) = 0} U {0}) N (a,b).

The functions Fy o(z) = e~ *I%, where A > 0 and o > 1, satisfy (4).
We note that if a > —oo, then for every A > 0 the function Fy(z) =
e~*® again satisfies (4) on (a, +0c0). In particular, the sequence of functions
{z"e=**} (considered in [LT]) forms a complete family. Sequences of func-
tions {2"F) o(z)} or {z"Fx(z)} may be substituted in Theorem 2 as well.
We obtain an extension of Theorems 4 and 5 from [LT].

THEOREM 3. Let n and € be two random variables defined on the same
probability space (2, A, Prob ), such that for some A > 0 and o > 1 the
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sequence
(11) E(nre " _gre= M"Yy =, n>0
becomes eventually periodic. Then

(12) Prob(n € A) = Prob (£ € A)

holds for every Borel A C R\ {-1,0,1}. If my, = 0 for all n large enough,
or if n and £ have continuous distributions, then 1 and & have the same
distributions.

Proof. We define p = p, — p¢ to be a signed measure, where p, and g
are distributions of n and & respectively. The condition (11) is equivalent to
(8). Applying Theorem 2 we obtain (12). If both 1 and £ have continuous
distributions, then p is continuous. Therefore (1) can be extended to all
Borel A CR.

Now suppose that m, = 0 for all n > ng. It follows from Corollary
3 that Prob(n € A) = Prob(¢ € A), for all Borel A not containing 0. But
Prob(n = 0) = 1—Prob(n € R\ {1}) = 1-Prob(¢ € R\ {1}) = Prob(£ = 0).
Hence 1 and € have the same distributions. =

To complete this section we briefly mention completeness on LP(a,b),
where p > 1. Assume that for some f € L?(a,b) the sequence

(13) My = S z"F(z)f(z)dx
(a,b)

is eventually periodic, where F satisfies (4). By the Hoélder inequality
f(z)e"%1®1 € L'(a,b) and e31®| F(z) satisfies (4), with the coefficient /2
instead of €. It follows from Corollary 1 that f(z)e~%!*l = 0 a.e., hence
f(z)=0ae.

We also notice that an arbitrary sequence {wn(z)}n>1 of polynomials
such that

lin{w, : n > 1} =lin{z" : n > ng}

may be used to construct O—complete families. For instance {L,(z)e~!*! :
n =0, 1,...}, where L, denote the Laguerre polynomials, and the Her-
mite functions {ac”e_882 :n =0, 1,...} are O0—complete on LP(a,b). This
is however well known (see [B] Chapter 12, [P]| pages 214-217, or [S] pages
400-403).

3. A multidimensional moment problem

We begin this section with a brief introduction to conditional distribu-
tions. Most of the material we quote comes from [P] (see §45 and 46) and
if necessary the reader is referred to this book for more details. Let X and
X1 be Polish spaces with Borel c—algebras B and B respectively. Suppose
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that there is given a nonnegative measure P on (X, B) and a Borel mapping
II: X — X;. The image of P is denoted by Qpn = P oII"1. A regular
conditional distribution of Il is a mapping z; — P, such that:
» for each z; € X, P, is a measure on (X, B)
» there exists a set I € B; such that @pn(l) = 0 and for each z; €
X1\ I we have P, (X \ X;,) =0, where X;, = {z € X : lI(z) = 21}
» for every set A € B the mapping X; 3 z; — P,,(A) is By measurable
and

(14) P(4) = | P.,(4)dQpu(z:).
X1

It is well known that on Polish spaces regular conditional distributions do
exist (see Proposition 46.3, page 239 in [P]). The formula (14) can be easily
extended to

(15) | h(z)dP(z) = | | h(z)dP:,(z) dQpn(zy),
X X1 X
where h € L1(P).

If p is a signed measure on (X, B) then

dy
where EtlifT is the Radon Nikodym derivative. Without loss of generality we
will assume that dilll;—l(z) = K(z) for |u| almost all z € X, where K is a Borel
function on X such that |K(z)| =1 for all z € X. Now we set 7 = ITIII(L_;?—)

and |ple, = |p|(X)jiz, and finally
(16) ey (A) = | K(2) d|ulz, (<),
A

where A € B. Note that p,, is a signed Borel measure concentrated on X, .
We have

(17) | b2 (A)dQuuin(zr) = | § K (=) dluls, (2) dQju,n(21)
X1 X1 A
= | K(2)1a(2) dlul(z) = u(4).
X

Again (17) can be extended to

(18) | h(z)du(z) = | | h(z) dpe, (2) dQyun(z1),
X XX
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where h € L1(|u|). We write

(19) p=\ po; dQuu n(z1)-

X1
Now let us return to the finite dimensional moment problem and consider
RY, the N-dimensional (real) vector space with a fixed norm ||-|| y. Elements
of RY will be denoted by z = (z1,%3,...,zx). Let X be a subset of RV. In
the finite dimesional case condition (6) is naturally replaced by

(20) |F(z)| < Ae~clelv

where F': X — R, and A, € > 0 are some fixed constants. Now we are in a
position to formulate a finite dimensional version of Theorem 2. Namely we
have

THEOREM 4. Let X be a Borel subset of (RY,|-||n) and u be a finite Borel
signed measure on X . Let F be a Borel function on X satisfying (20). Given
natural numbers ny,...,ny we define

(21) Mpyng,...ny = S 'z 2 Fzy, ... zn) dpu(zy, T2, - .-, TN)-
X

(i) If there exists Ly such that for every1 < j < N

mnl)'-'7nj—11nvnj+l sy N T 0

Jorallm > Ly and all n1,...,n5_1,n541,...,nn > 0, then p is
concentrated on {z : F(z) = 0}U{(0,...,0)}. In particular, if F(z) #
0 for all z € X, then u = téy for some scalar t.

(i) If mny ny,...ny = 0 for all ny,ng,...,nn >0, and F(z) # 0 for all
z € X, then p is the zero measure.

(iii) If for everyl < j < N and all fized ny,ng, ..., nj_1,nj41,...,0N >
0 the sequence

(22) n— mn1,n2,-.-y"j—ly”,”j+1,---,nN

is eventually periodic, and F(z) # 0 for allz € X, then u is a discrete
measure concentrated on the finite set {—1,0,1}¥ N X.

Proof. We proceed with the induction for N. If N = 1 then (i), (ii), (iii)
hold by Theorem 2. Now let us assume that they hold for all N — 1 finite
dimensional vector spaces X (we notice that in our considerations the ge-
ometry of the norm on X does not play any role as long as X remains finite
dimensional). Let us denote the projection on the kB coordinate by 7. If
Mny ng,...nny = 0 for all ny,ng,...,ny > Ly then

S 27 Fr,. .o (21) dQ ) my (1) = 0,
R
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where

Fnz,...,nN(ml) =S . S:r;z o '$1]1(/NF($1,E21' . 'axN) d.u'zl(:c27' . ,$N),
RN -1

and Q|u,x,s Lz, come from the desintegration of u associated with the pro-

jection RN > (z1,z2,...,2n) — m1(21,22,...,Z8) = 1 € R The norm
N

| - I~ is equivalent to ||(z1,2Z2,...,2zn)|In,1 = D |z;]- In particular there
i=1

exists a constant v > 0 such that

|F((z1,22,...,zn))| < Ae~clEne2an)ly
< AC_E’Y”(131'132:--»,2N)||N.1

= Ae— (@2, zn)lIN-1,1 | g—evlm]
Since |ug, | < |1 it follows that

A" = sup AS . S 232 - - ahy e Enemliv-aa g1y (2, . 2N) < 400,

z1€R RN-1

Finally we obtain condition (20), i.e.
IF’nz,...,nN (x1)| S A/e_s’ﬂmll

holds for all z; € R. By Corollary 2 the measure @), ~, is concentrated
on {zy : Fn,,...ny(71) = 0} U {0}. Since neither Q) |, nor u;, depend on
n2,...,nN, thus Q. ~, is concentrated on D; U {0}, where

Di= (] {z1:Fn, ;n(z1) =0}
nz,..,nn>0 !
By the induction assumption, if z; € Dy, then pz, = 0. On the other hand,
if z; € Dy, then we get

ey =t,05,0,...,0)
——
N-1

From this we infer that the measure p = { jiz, dQ|u| ., (1) is concentrated
on the linear subspace R x {0} x ... x {0}. Repeating the above arguments
N-1

to other projections ng, where 2 < k < N, there exists a scalar ¢ such that
p = tbo,...,0)-

If (ii) holds, then t = mq, . o) = 0. Therefore, u is the zero measure. It
follows from the induction that (i) and (ii) hold for an arbitrary N.

(iii) As before, we begin the second step of the induction with the pro-
jection m;. By Corollary 2 the measure Q|| ~, is concentrated on the set
Dy u{-1,0,1}. If z; ¢ D, then it follows from the induction assumption
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that ., is concentrated on {—1,0,1}¥~1. If 2; € Dy, then simply s, = 0.
Therefore, for an arbitrary Borel set A C RV we have

w(A) = | o, (4)dQ) o, (1)
R

= S My (A)dQIuI,‘lrl (z1) + S Hzy (A)dQl#lﬂH (z1)

Di\{-1,0,1} {-1,0,1}
= Z ps(AN({s} x RN_I))QIM»M({S})‘
se{-1,0,1}

From the above it is easy to infer that y is concentrated on

{-1,0,1} x RV -1,
Applying the same arguments to other coordinates we obtain that u is con-
centrated on the set Sy = {—1,0,1}". =

If in the above theorem our conditions on m,,, . », are relaxed further,
then we obtain the following proposition which applies to continuous mea-
sures. Namely, we have:

PROPOSITION 1. Let X be a Borel subset of (RY,|| - ||n) and u be a signed
and finite Borel measure on X. Assume that a Borel funtion F(z) # 0, for
all z € X, and that (20) holds. If there exist L and j € {1,...,n} so that
whenever ny,...,nj_1,M41,...,nn = L then the sequence

n— mnl,...,nj_l,n,nj+1,...,nN

is eventually periodic, then u is concentrated on the set

N
Z={-1,0,1}"u(J{z e R :z;=0}.
1=1
In particular, if p € Moo(X), then u=0.
Proof. Consider the function F(z) = z&---z% - F((x1,...,zn)) instead
of F. Similarly as in the proof of Theorem 4 we obtain that the measure

Q|u|,x; is concentrated on the set {—1,0,1}. If z; ¢ {~1,0,1}, then pg, is
concentrated on the set

{z €X: S zt - ~:13;-1i‘11 m?_’,_*il R . F(z) du(z) = 0 for all nj > 0}.
X

Since F(z) # 0 on X it follows that
supp(pz;) S {z € X :xy =0forsome [ € {l,...,j-1,7+1,...,N}}.

We have obtained that Z has Lebesgue measure 0. In particular, if p is
absolutely continuous then 4 =0. =
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Let F(z) # 0 for all z € X and p be as in Theorem 4. Similarly as in
Theorem 2, the system of moments mp, n,,... ny, Where ny,ng,...,ny > 0,
completely describes y. In order to restore i we only need to know some of
its moments. These are My, ;... ny, Where 0 < n; < 2. It remains to solve
the system of equations:

N
Z H s:iljF((sl’ oo sn)u({(s1,82,. -5 88)}) = Mnyna,..nn

(s1,82,..-,8N)ESN j=1
(according to the standard convention we assume that (_1)0 = 1). We have:

COROLLARY 4. Let X be a Borel subset of RY. Then for every function F
satisfying (20) and such that F(z) # 0 on X the family of functions

(23) {"E;Ll '33;2"'(137\}NF(($1,.'1}2,...,$N)) : OSnJ) 1<5< N}

is strictly m-complete on Mgc(X), where Mmp, n,,....ny i eventually constant
or periodic.

It is worth emphasizing that if we consider only strictly positive F' and
nonnegative measures pu, then the moment problem becomes trivial and
a smaller class than (23) is complete. This may be checked directly (i.e.
without the use of Theorem 4) that if for every 1 < j < N the sequence

n — S . .Sa:;‘F(asl, .o zn)du((z1, 22, ..., ZN))
is eventually periodic, then since even moments mgjn) are separated from 0
and oo, we obtain p({z € X : z; ¢ {-1,0,1}}) = 0.

4. Infinite dimensional moment problem
Now let X be a vector subspace of R*. As before, elements of X are
denoted by z = (z1,z2,...). Given a strictly positive sequence A; > 0, we

introduce on X the functional ||z||x = 3 |z;|A;. It will be always assumed
7=1

that || - || is finite on X; hence (X, || ||») becomes a separable Banach space.

The elements of its dual X*(= £*°) are denoted by z* = (z})$2;. Clearly the

[e.°]
dual action has the form < z,z* >= Y z;z;Aj. The norm on X* is denoted
i=1
by || - ||*. The projection onto the first N coordinates is denoted by Iy (i.e.
X5z - I{(z1,29,...) = (z1,22,...,z8) € RY) while the projection on

the kt! coordinate is denoted by 7.
If F : X — R is Borel, then condition (20) is replaced by

oo

(24 |F(z)| < Ae™ &= Ailesl



Multidimensional moment sequences 827

where X C X is Borel and 4, > 0 are some constants. The subspaces
Xy = {(z1,%2,...,ZN,0,0,...) : z; € R} are isomorphic to RY. Similarly
as in the finite dimensional case, functions defined by the integrals

FnN+1,---,nN+K (11;1, ce - "TN) = Sm;ﬁ:ll e m;:llr-}?F(ﬁ) d/“xl,--',-’BN (_:L‘_),

satisfy condition (20) on Xy = RY. Constants A and ¢ must be however
adjusted. The moments are again defined as

Mnyng,.ny = S 1t -z -z Fz) du(z),
x
where p is a finite signed Borel measure on X.
LEMMA 2. Let p be a signed measure on X C X. Suppose that F : X — R

satisfies (24). If mp, n,,...nn = 0 for all ny,mo, ..., nnN, then supp(p) C {z:
F(z) = 0}.
Proof. We define the characteristic function
U(z*) = | 22> F(z) du(z).
%

Applying the Lebesgue dominated convergence theorem we obtain

| <z,2">" F(z)du(z) = 0

X

where n > 0 and ||z*||* < 1. This implies that ¥(z*) = 0 for all such z*. In
particular, if we consider the measure (on Borel sets B C R)

ve-(B)= | F(z)du(z),
z*~}(B)

then {s™dv;.(s) = 0 for all n > 0, where ||z*||* < 1. It is easy to verify that
Se%“' d|ve+|(s) < co. Hence by Lemma 1 v+ is the zero measure on R. This
gives

S el dyg. (s) =0

R
for all L > 0. We get

0= [ et 22> P(z) du(z) = | <=1 F(2) du(a) = ¥(La")
X X
for all |[z*||* < 1 and L > 0. In particular, the characteristic function of
F(z)du(z) is zero. Hence supp(u) C {z: F(z) =0}. m

Using Lemma 2 the following result can be proved similarly as Theorem
4. Therefore its proof is limited to a short sketch.
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THEOREM 5. Let X be a Borel subset of X, F satisfies (24) on X, and
w€ M(X). Then
(1) If My ng,...ny = 0 for all ny,na,...,ny > 0, and F(z) # 0 for all
z € X, then u=0.
(ii) If for every j there exists J; such that for all ny,...,mj_1,Mj41,...
...,ny >0, and k > J; we have

Mny,na,...mj—1,kn541,.nN = 0,
where F(z) # 0 for all z € X, then p = téy for some scalar t.
(iii) If for every fixed n1,...,nj_1,n541,...,nn > 0 the sequence

k— Mni,ng,.nj_1,km541, 0N

is eventually periodic, then u is concentrated on the set
oo
S =[]{-1,0,1}.
=1

The measure p is determined by low level moments mp, n,,.. ny, where
ni,Ne,...,ny € {0,1,2}. If in addition, for some projection Ily, the corre-
sponding measure Q)| n, 18 continuous, then u = 0.

Proof. (i) follows directly from Lemma 2. In order to obtain (ii) we apply
Theorem 4 (i) and get

supp(u) C ﬂ {z :21=0...2y =0} = {0}.
N=1

The proof of (iii) is essentially the same as Theorem 4 (iii). We simply con-
sider all projections m; and the corresponding desintegrations p =
§ iz, Q| r, (2;5). It follows that pg; = 0 for all z; ¢ {-1,0,1}. As a re-
sult supp(u) C S. Now, if we assume that for some natural N the measure
Q|u|,my is continuous, then g = §pz, . oy dQ)uuy ((z1,...,28)) =0. =

The next result follows directly from Theorem 5.

PROPOSITION 2. Let n = (1,72, ...) and & = (&1,€2,...) be random vectors
on X C R*®. If there exists a strictly positive vector A = (A1, A2,...) such
that for all ny,na,...,nn > 0 we have

ET]’{LI .. .ane_ ZjZlkjlnjl = E&?l . .&K’/Ne—ZjZI )\j|§j| < 00

’

then n and £ have the same distributions.

Proof. Let u = p, — p¢, where p, and e denote the distributions of 7 and
€ respectively. We get mp, n,,....ny = 0 for all ny,ng,...,ny > 0. We easily
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check that the function
%32 Fg) = Lo M
is strictly positive and satisfies (24). Now it remains to apply Theorem 5. =

The last result of the paper is another generalization of Theorems 4 and
5 from [LT]. It is a direct combination of Theorem 5 (iii) and Proposition 2.
Namely we have:

COROLLARY 5. If in the above Proposition 2, for some N we have .
Qlun—peliin € Mac(®Y),

then 1 and & have the same distributions if an only if the sequence

k— Mny,ng,.nj_1,kn541,.0nN

is eventually periodic, when ni,na,...,nj_1,n41,...,nN are large enough.

References

[B] R. P. Boas, (Jr), Entire Functions, Academic Press Inc., Publishers, New York,
1954.

[C] T.S.Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach,
New York, 1978.

[F] B. Fuglede, The multidimensional moment problem, Exposition Math. 1 (1983),
47-65.

[LT] G.D.Lin and Y-H. Too, A moment problem and its applications to characteriza-

tion of distribution, SEA Bull. Math. 18 No. 1 (1994), 85-88.

[P] K.R.Parthasarathy, Introduction to Probability and Measure, The Macmillan
Company of India Limited, 1980.

[S] G. Ye. Shilov, Mathematical Analysis (A Special Course), Pergamon Press (First
Edition), 1965.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH AFRICA

P.O. Box 392

PRETORIA 0003, SOUTH AFRICA,

FACULTY OF APPLIED MATHEMATICS AND PHYSICS
TECHNICAL UNIVERSITY OF GDANSK

ul. G. Narutowicza 11/12

80-952 GDANSK, POLAND

E-mail: bartowk@mifgate.mif.pg.gda.pl

Received November 18, 1999.






