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ON MULTIDIMENSIONAL DETERMINATE 
MOMENT SEQUENCES 

Abstract. Let X be a vector subspace of R ^ , where 1 < N < oo and let Aj > 0 be a 
strictly positive sequence. It is proved that if two random vectors 77 = (rjj) and £ = ((j), on 

N N 
£ E Ajiiji 

a finite dimensional X, satisfy i?eJ—1 < 00 and < 00, and distributions 
of T) and £ are continuous, then they are the same if and only if 

N N 
- £ \ j i i j i - £ 

EV?...r1
n
N»e ¿=1 =ECl'...in

N
Ne ^ 

holds eventually for all large multiindices ( n i , n 2 , . . . ,njv). Finally we characterize those 
finite signed measures fi on X so that 

3 - > m n 1 , . . . , n i _ 1 , j , n i + 1 , . . . , n f c 

is eventually constant or periodic. Analogous results are obtained for N = 00. 
1. Introduction 

It has been recently proved by G . D . Lin and Y . H . Too (see [LT]) that if 
00 

( 1 ) ^ g{x)xne~Xxdx = const, 
a 

for all n > no, and if g is integrable, then g = 0 almost everywhere on 
(a, 00). Following [Fu] we say that eventually constant moment sequences 
are determinate in the class of densities g(x)e~Xx, where g 6 I/ 1 (a, 00). Our 
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main goal is to extend results of [LT] to a multidimensional case and on 
some infinite dimensional Banach spaces. 

Let (X,p) be a Polish metric space (i.e. separable and complete). By 
M(X) we denote the Banach lattice of all real, signed, finite, a additive 
and Borel measures fi on X . The set of all continuous measures is denoted 
by MC(X). If X is a subset of a finite dimensional Euclidean space then 
Mac(X) stands for all absolutely continuous signed (with respect to the 
Lebesgue measure) measures concentrated on X. The following generalizes 
the notion of complete sequences (see [LT]). 

DEFINITION 1. Let £ be a subset of M(X) and m = (mn)n>O be a sequence 
of real numbers (m = (?rin1,...,nA-)nj>o be a multisequence m : Nq —> K). 
A sequence F of Borel functions fn : X ]R (an indexed family T = 
{/ni njv : rij S No} of Borel functions) is said to be m-complete on £ if 
there exists a unique v E £ such that every measure fi E £ satisfying the 
system of equations 

(2) \ j f n d ( j , = mn, 
x 

(3) ( ^ fn1,...,nNdn = m„ l i... )„N respectively) 
x 

has the representation /z = no + v, where /¿o £ M(X) is concentrated on the 
set 

ZT = {x e X : f{x) = 0 for all f ^ T }. 

We say that F is strictly m-complete if Z? is the empty set (in particular 
the system of identities (2) has a unique solution in £). 

The following two problems are addressed in this paper: 
• Given a family M. of real sequences m and a class £ C M(X) find 

a sequence (indexed family) of Borel functions on X which is m-
complete on £ for every m E M . 

• • Given a class £ C M(X) and a m-complete family of Borel functions 
on X, where m is an element of a fixed family Á4 of real sequences, 
find the formula 

M B m — ) > Vm E £. 

The result by Lin and Too, mentioned in the beginning of the paper, may 
be formulated as follows 

THEOREM 1. (see [LT]) Let X = (a,b), where —oo < a < b < +oo, and 
L1(a, 6) be the class of all Lebesgue integrable functions on (a,b). For every 
no E No and, A > 0 the family $\ino = {xne~Xx : n > no} is c-complete on 
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L^a , 6), where c is a constant sequence cn = c. Moreover, if it holds, then 
c — 0 and (2) has a unique solution i/g = 0. 

R E M A R K 1 . It has been actually proved in [LT] that 3A,N0 is c-complete on 
the class Mc(a, b). 

R E M A R K 2 . Our restriction to study m-completeness, only for some specified 
classes M. and £, is essential in the light of Boas's theorem (see [C] Theorem 
6.3, page 74), which asserts that given any sequence of real numbers mn there 
exists a signed measure (i, such that xn dfi(x) = mn. 

2. One dimensional case 
In this section we generalize and simplify the proof of Theorem 1 from 

[LT]. The idea of studying behaviour of derivatives of the transform of mea-
sures is also inherited from [LT], We discuss eventually periodic sequences m, 
instead of constants. We say that a sequence m = (mn)n>i of real numbers 
is eventually d periodic, if there exists a positive L, such that mn+d = mn 

holds for all n > L. We begin with the following commonly known fact (see 
Proposition 43.1 in [P]). For the sake of completeness of the paper and the 
conveninence of the reader a detailed proof is included. 

L E M M A 1. Let —oo < a < b < +oo and F : (a, b) —» M satisfies 

(4) 0 < \F(x)\ < Ae~£W 

for some A, e > 0. Then the only signed measure ¡jl G M(a, b) satisfying 

(5) j xnF(x) dfi{x) = 0 
(a,6) 

for all n > 0 is the zero measure. 
If instead of (4) we assume the weaker condition 

(6) 0 < |F(x)| < Ae"£|x| 

then a measure fi satisfies (5) if and only if it is concentrated on the set 
{x E (a, b) : F(x) = 0}. 

Proof . We define 
J ei2XF(x)d/x(x). 

(a,6) 
By (4) the function ^ is well defined and analytic on the complex halfplane 
E = {z € C : Im(z) > —e}, containing M. Clearly its n ^ derivative is given 
by 

&n\z) = in 5 eizxxnF(x)dfi(x). 
(a,b) 
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Using the Lebesgue dominated convergence theorem (which is applicable 
because of (4)) we obtain 

OO , \ ̂  rtfc 

fc=0 ' (a,6) 
for all z = i/3, where f3 6 (—e,e). This implies — const = $(0) — 0 on 
the halfplane E. In particular 

*{t)= ^ eitxF(x)dn(x) = 0 
(a, b) 

for all t e R . This implies that F(x)d/j,(x) is the zero measure. If we assume 
(4) then obviously ¡x — 0 as F(x) ^ 0. If (6) holds we only get supp(/x) C 
{x : F(x) = 0}. • 

Immediately we obtain 

COROLLARY 1. Let a,b and F be as in Lemma 1. If /X 6 M(a,b) satisfies 

(7) j xnF(x) dn{x) = 0 
(a,6) 

for n > no, where no nonnegative, then fi = t6o for some scalar t. If only 
(6) is assumed, then supp(fi) C {x : F(x) — 0} U {0}. 

P r o o f. It is enough to substitute in Lemma 1 the measure instead 
of ¡j, and adjust constants A and e. • 

The following is the main result of this chapter. 

THEOREM 2. Let —oo < a < b < +oo and F : (a, b) —> R satisfies the 
property (4) on X. Suppose that m is eventually d periodic and a signed 
measure fi 6 M(o, b) satisfies 

(8) ^ xnF(x) dfi(x) = mn for all n > no. 
(•a,b) 

Then the following hold: 

(i) If d is even then /J, is concentrated on { — 1,0,1} fl (a, b). 
If a < — 1 and b > 1 then mn+2 = fnn for all n > 1 (hence d = 2) 
and 

m2-m3f: im2 + m3. 
» = "2FFI ) " < 5 - 1 + m ° + ~ 2 F W V 

If — 1 < a then mi = = ... and d = 1 is actually odd. 
(ii) If d is odd then d = 1 and fi is concentrated on {0,1} fl (a,b), and 

m\ = m2 = . . . . 
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If { 0 , 1 } C ( a , b) then 

m 0 - m i mi 

If { 0 , 1 } f l ( a , b) - { 0 } then 0 = m i = m,2 = . . . a n d 

m0 £ 

If { 0 , 1 } f l ( a , b) = { 1 } then m 0 = m x = . . . 
mi 

If { 0 , 1 } D ( a , b) = 0 then 0 = m o = m\ = . . . and fi = 0 . 

P r o o f . Applying Corollary 1 we obtain x n°( l — xd)F(x)dfi(x) = 0. Since 
F(x) ^ 0 on (a,b) thus fj, is concentrated on {—1,0,1} fl (a, b) if d is even, 
or it is concentrated on {0,1} fl (a, b) if d is odd. Moreover, if d is even then 

mn+2= \ xn+2F(x)dn(x) 

(a,6) 
= ( - 1 ) " ( - 1 ) 2 F ( _ 1 ) m ( { _ 1 } ) + 1»+'F(1)M({1}) 
= ( _ l ) « F ( - l ) / i ( { - l » + l n F ( l M { l } ) = mn 

hold for all n > 1. This means that d = 2 or d = 1. For an arbitrary nonzero 
n we obtain 

, , ( m2n+l = -F(- 1)M(-1}) + F(1)H({1}) 
U 1 m 2 n = F ( - l ) / x({ - l } ) + F(l)M{l})-
It follows from (9) that if — 1 ^ (a, b) or 1 0 (a, 6), then the sequence m is 
eventually constant. Hence it is eventually 1-periodic. Assuming that both 
—1 and 1 belong to (a, 6) we can easily evaluate 

7712 - mi 

2F(—1) 

and 
m2 + mi 

M ( - i } ) = 

Mi l}) = 2F(1) ' 
Now it easily follows from mo = 1}) + ^({0}) + /¿({l}) that 

m 2 - m 3 . , m , , - ! ! ^ - ^ m2 + m 3 . 
^=v— ~ m ^ T ) 8 - 1 + T(o) + - m T T 1 -

In the case (ii), when d is odd, for every n > 1 we have 

mn = \ xnF{x) d^i(x) = F(1)^({1}) = const, 
(a,6) 
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whenever 1 6 (a, b), or mn = 0 if 1 0 (a, b). Similarly we obtain that 

mQ= J F ( x ) d / i ( a ; ) = F ( 0 H { 0 } ) + f ( l ) M { l } ) 

(a,6) 

if both 0 and 1 belong to (o, b). After elementary transformations we obtain: 
mo-mi mi 

The reader finds the remaining cases easy to verify. • 

R E M A R K 3. Some cases discussed in the above theorem are included only 
for the sake of completeness. If —oo < a and b < oo, then much stronger 
results are well known (see [B], Chapter 12 or [S], pages 4 0 0 - 4 0 3 ) . 

The next result is an easy application of our theorem and, which is 
a further generalization of Theorem 1 from [LT], as absolutely continuous 
distributions are continuous measures. We have: 

COROLLARY 2. Let - o o < a < b < +oo and F : (a, b) —> R satisfies the 
property (4). Suppose that m is eventually d periodic and a signed measure 
fi G M(a, b) satisfies 

(10) ^ xnF(x)d/j,(x) = mn for all n > no. 
(a,b) 

If fi is continuous, then /jl = 0. 

In the sequel we will need the following extension of Theorem 2. Its proof 
is omitted as it is a modification of the previous proof. 

COROLLARY 3. Let —oo < a < b < + o o and F : (a , b) —» R be a function 
satisfying (4). If for a signed measure ¡i £ M ( ( a , 6)) the sequence of moments 

^ xnF(x) dfj,(x) = mn 

(a,6) 
is eventually periodic, then the measure /a is concentrated on the set ({x : 
F(x) = 0} U {—1, 0,1}) fl (a, b). Moreover, if mn = 0 for all n > no, then fi 
is concentrated on ({x : F(x) = 0} U {0}) fl (a, b). 

The functions F\,a(x) = e~x^a, where A > 0 and a > 1, satisfy (4). 
We note that if a > —oo, then for every A > 0 the function F\(x) = 
e~Xx again satisfies (4) on (a, +oo). In particular, the sequence of functions 
{xne~Xx} (considered in [LT]) forms a complete family. Sequences of func-
tions {xnFx jQ(a;)} or {xnF\(x)} may be substituted in Theorem 2 as well. 
We obtain an extension of Theorems 4 and 5 from [LT]. 

THEOREM 3. Let r/ and £ be two random variables defined on the same 
probability space (ii,.4, Prob ), such that for some A > 0 and a > 1 the 
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sequence 

(11) E(r]ne-XMa-Ce'ma) = mn, n> 0 

becomes eventually periodic. Then 

(12) Prob(77 e A) = Prob (£ € A) 

holds for every Borel A C R \ {—1,0,1} . If mn = 0 for all n large enough, 
or if 7} and £ have continuous distributions, then r¡ and £ have the same 
distributions. 

P r o o f . We define fx = fj,v — fî  to be a signed measure, where /¿̂  and 
are distributions of r) and £ respectively. The condition (11) is equivalent to 
(8). Applying Theorem 2 we obtain (12). If both 77 and £ have continuous 
distributions, then ¡i is continuous. Therefore (1) can be extended to all 
Borel A C R. 

Now suppose that mn = 0 for all n > no- It follows from Corollary 
3 that Prob(?7 € A) = Prob(£ E A), for all Borel A not containing 0. But 
Prob(?7 = 0) = 1 —Prob(77 € R \ { 1 } ) = l - P r o b ( £ € R \ { 1 } ) = Prob(£ = 0). 
Hence 77 and £ have the same distributions. • 

To complete this section we briefly mention completeness on Lp(a,b), 
where p > 1. Assume that for some / £ Lp(a, b) the sequence 

(13) mn= j xnF(x)f(x)dx 
(,a,b) 

is eventually periodic, where F satisfies (4). By the Holder inequality 
f(x)e~ilxl E Ll{a,b) and e i ' x ' F ( x ) satisfies (4), with the coefficient e/2 
instead of e. It follows from Corollary 1 that /(x)e~5'x ' = 0 a.e., hence 
f(x) = 0 a.e.. 

We also notice that an arbitrary sequence {i i in(x)}n>i of polynomials 
such that 

lin{u;n : n > 1} = lin{xn : n > no} 
may be used to construct 0-complete families. For instance {Ln(x)e~lxl : 
n = 0, 1 , . . . } , where Ln denote the Laguerre polynomials, and the Her-
mite functions {xne~x : n = 0, 1 , . . . } are 0-complete on Lp(a,b). This 
is however well known (see [B] Chapter 12, [P] pages 214-217, or [S] pages 
400-403). 

3. A multidimensional moment problem 
We begin this section with a brief introduction to conditional distribu-

tions. Most of the material we quote comes from [P] (see §45 and 46) and 
if necessary the reader is referred to this book for more details. Let X and 
X\ be Polish spaces with Borel a-algebras B and B\ respectively. Suppose 
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that there is given a nonnegative measure P on ( X , B) and a Borel mapping 
II : X —> X\. The image of P is denoted by Qp,n — P o I I - 1 . A regular 
conditional distribution of II is a mapping x\ —> PXl such that: 

• for each xi G Xi, PXl is a measure on (X, B) 
• there exists a set I G B\ such that <Qp,n(-0 = 0 and for each x\ G 

Xi \ I we have PXl (X \ XXl) = 0, where XXl = {x G X : II(x) = xi} 
• for every set A G B the mapping X\ 3 x\ —• PXl (A) is B\ measurable 

and 

(14) P(A)= \ PXl{A)dQp,n{xi)-
Xi 

It is well known that on Polish spaces regular conditional distributions do 
exist (see Proposition 46.3, page 239 in [P]). The formula (14) can be easily 
extended to 

(15) J h{x) dP{x) = \ J h(x) dPXl (x) dQpj\(x\), 
X x1x 

where h G V-(P). 
If /x is a signed measure on ( X , B) then 

dfJ- , , 
where is the Radon Nikodym derivative. Without loss of generality we 
will assume that ^ y (x) = K(x) for |/x| almost all x € X, where K is a Borel 
function on X such that |-K"(x)| = 1 for all x G X. Now we set ¡1 = j ^ X ) 
and = \fi\(X)p,Xl and finally 

(16) nXl(A) = \K(x)d\n\Xl(x), 
A 

where A G B. Note that fiXl is a signed Borel measure concentrated on XXl. 
We have 

(17) \ nXl(A)dQ|M[,n(®i) = 
S \K(x)d\»\ X l(x) dQ^jifai) 

Xx Xi A = 5 K(x)lA(x)djMj(x) = M(A). 
X 

Again (17) can be extended to 

(18) \ h{x)d/j,(x) = \ \h(x)dfjLXl(x)dQMtn(x1), 
x XxX 
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where h G L 1 ( | / x | ) . We write 

(19) n = \ nX l d Q M i n ( x i ) . 
X! 

Now let us return to the finite dimensional moment problem and consider 
Rn , the iV-dimensional (real) vector space with a fixed norm || • || at• Elements 
of R-^ will be denoted by x = (x\, X2, •. •, x^). Let X be a subset of . In 
the finite dimesional case condition (6) is naturally replaced by 

( 2 0 ) \F(x)\ < 

where F : X —> M, and A, e > 0 are some fixed constants. Now we are in a 
position to formulate a finite dimensional version of Theorem 2. Namely we 
have 

THEOREM 4. Let X be a Borel subset of (RN, || • ||JV) and ^ be a finite Borel 

signed measure on X . Let F be a Borel function on X satisfying ( 2 0 ) . Given 

natural numbers n i , . . . , njv we define 

(21) m n i ! n 2 ! . . . i n N = \ x^x?;2 • • • X x N F ( x 1 , . . . , x N ) d f i ( x i , X 2 , . . . , x N ) . 
x 

( i ) If there exists Ln such that for every 1 < j < N 

for all n > Ln and all n i , . . . , r i j - i , n ^ + i , . . . , t i n > 0, then /x is 
concentrated on {x : F(x) — 0}U{(0 , . . . , 0)}. In particular, if F(x) / 

0 for all x E X , then /J, — t6o for some scalar t . 

(ii) If Tnni)Tl2i...)njv = 0 for all ni,ri2, • • • ,njv > 0, and F(x) ^ 0 for all 

x G X , then [i is the zero measure. 

( i i i ) If for every 1 < j < N and all fixed ni,ri2,..., n j _ i , r i j + i , . . . , un > 

0 the sequence 

( 2 2 ) n —• 7raniin2i...)n3._1)T,)Tl3.+1)...)nN 

is eventually periodic, and F(x) ^ 0 for allx € X , then f j , is a discrete 

measure concentrated on the finite set {—1,0,1}^ fl X . 

P r o o f . We proceed with the induction for N. If N — 1 then (i), (ii), (iii) 
hold by Theorem 2. Now let us assume that they hold for all N — 1 finite 
dimensional vector spaces X (we notice that in our considerations the ge-
ometry of the norm on X does not play any role as long as X remains finite 
dimensional). Let us denote the projection on the k ^ coordinate by 7r^. If 
mn i !n2 t . . . ,n N = 0 for all n i , n 2 , . . . , u n > L N then 

\ xTFn tin ( ® l ) d Q \ t i \ , i n ( ® l ) = 
R 
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where 

Fn2,...,nN ( s i ) = j . . . ^ X2 2 • • • X n
N

NF{x 1,X2, X N ) d f l X l ( x 2 , • • • , X N ) , 

and Qi^ttj, /xXl come from the désintégration of /z associated with the pro-
jection R^ 3 (xi,x2,. • • , x n ) n i (x i ,x2, . . . , xn ) — xi 6 R. The norm 

N 
|| • j|TV" is equivalent to ||(xi, 22, • • •, £Ar)lliv,i = \ xj\- I n particular there 

j=1 
exists a constant 7 > 0 such that 

\ F ( ( x l t X 2 , ® j v ) ) | < Ae _ e"^ X l' X 2''"' X N^" J V  

< -̂£711(̂ 1.̂ 2,...,acjy)||AT.1 

Since |/xXl| < ||/x|| it follows that 

A' = sup A \... \ |x£2 • • • x n
N" |e-^7ll(x2,...,xw)iu_1,1 d|Mxi |(X2) ...}XN)< +00. 

Finally we obtain condition (20), i.e. 
I Fn2 n M i ) \ < A ' e - £ " l x i ] 

holds for all x\ G M. By Corollary 2 the measure is concentrated 
on { x i : Fn2t„, tnN(x 1) = 0} U {0 } . Since neither Q\tl\t-Kl nor /xXl depend on 
ri2,. . ., tin, thus Q\fi\i-Kl is concentrated on D\ U {0 } , where 

Di= f ) {xx :Fn 2 ; . . . ,n„ (xi ) = 0}. 
n.2,...,nw >0 

By the induction assumption, if x\ E D\, then /.iXl = 0. On the other hand, 
if x\ D\, then we get 

N-1 

From this we infer that the measure fi = \ fiXldQ^^1T l (xi) is concentrated 
on the linear subspace R x { 0 } x . . . x {0 } . Repeating the above arguments 

s ,, ' 
N-l 

to other projections 7Tfc, where 2 < k < N, there exists a scalar t such that 
M = i£(o,...,o)-

If (ii) holds, then t = m,(o,...,o) = 0- Therefore, ¡jl is the zero measure. It 
follows from the induction that (i) and (ii) hold for an arbitrary N . 

(iii) As before, we begin the second step of the induction with the pro-
jection 7Ti. By Corollary 2 the measure Q|M|,7n is concentrated on the set 
Di U {—1,0,1}. If x\ qL .Di, then it follows from the induction assumption 
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that fiXl is concentrated on {—1,0, l } ^ - 1 . If x\ G D\, then simply /xXl = 0. 
Therefore, for an arbitrary Borel set A C we have 

H(A) = J 

R 

j fiXl(A)dQ |M|,*1(xi)+ j MxxC^dQ^i^ixi) 

£>i\{-l,0,l} {-1,0,1} 

se{- i ,o, i } 

From the above it is easy to infer that fi is concentrated on 

{ - 1 , 0 , 1 } x R * - 1 . 

Applying the same arguments to other coordinates we obtain that fi is con-
centrated on the set Sn = {—1,0 ,1 }^ . • 

If in the above theorem our conditions on mnit...>nN are relaxed further, 
then we obtain the following proposition which applies to continuous mea-
sures. Namely, we have: 

PROPOSITION 1. Let X be a Borel subset of (RN, || • ||JV) and ¡J, be a signed 

and finite Borel measure on X. Assume that a Borel funtion F(x) / 0, for 

all x 6 X, and that (20) holds. If there exist L and j 6 { 1 , . . . , n} so that 

whenever ni,... ,nj_i, nJ+i,..., njv > L then the sequence 

n ~ * m n i n j _ i , n , n j + i , . . . , n w 

is eventually periodic, then ¡i is concentrated on the set 

N 

Z = {-l,0,l}Jvu|J{xeRJV : xi = 0}. 
l=i 

In particular, if /x € Mac(X), then /x = 0. 

P r o o f . Consider the function F(x) = • • • x^ • F((xi,..., xAT)) instead 
of F. Similarly as in the proof of Theorem 4 we obtain that the measure 
Q i s concentrated on the set {—1,0,1} . If Xj {—1,0,1} , then /xXj. is 
concentrated on the set 

{ i 6 l : ^ ^i1 """ x7-i ' Xj+T '"' xnN • Pi*) Mx) = 0 for all nj > o}. 
x 

Since F(x) ^ 0 on X it follows that 

supp(/zIj.) C { x € X : xi = 0 for some I e { 1 , . . . , j - 1, j + 1 , . . . ,N}}. 

We have obtained that Z has Lebesgue measure 0. In particular, if /x is 
absolutely continuous then ¡x = 0. • 
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Let F(x) ^ 0 for all x € X and ¡i be as in Theorem 4. Similarly as in 
Theorem 2, the system of moments mn i )n2 ) . . . )7 lN , where ni,n2,. •. , u n > 0, 
completely describes /i. In order to restore fi we only need to know some of 
its moments. These are m n i ) n 2 ; . . . i n N , where 0 < rij < 2. It remains to solve 
the system of equations: 

N 

I I S " i F ( ( ® l . • • • ' SN))V({{SI, 82,..., S N ) } ) = MNI 

(SL,S2,...,SN)ESN j= 1 

(according to the standard convention we assume that (—1)° = 1). We have: 

COROLLARY 4. Let X be a Borel subset of . Then for every function F 
satisfying (20) and such that F(x) ^ 0 on X the family of functions 

(23) {x?1 •x?---xn
N

NF({x1,x2,...,xN)) -.O^rij, 1 < j < N} 

is strictly m-complete on Mac{X), where mnitn2t.,.inN is eventually constant 
or periodic. 

It is worth emphasizing that if we consider only strictly positive F and 
nonnegative measures /¿, then the moment problem becomes trivial and 
a smaller class than (23) is complete. This may be checked directly (i.e. 
without the use of Theorem 4) that if for every 1 < j < N the sequence 

n J... J x"F(x i,..., xN) dfi((x i , x 2 , x N ) ) 

is eventually periodic, then since even moments m ^ are separated from 0 
and oo, we obtain /¿({x € X : Xj £ {—1, 0,1}}) = 0. 

4. Infinite dimensional moment problem 
Now let £ be a vector subspace of . As before, elements of X are 

denoted by x = (xi,x2, •. •)• Given a strictly positive sequence A j > 0, we 
oo 

introduce on X the functional ||x||a = XI ^ will be always assumed 
j=l 

that || • || a is finite on X; hence (X, || • || a) becomes a separable Banach space. 
The elements of its dual X*(— £°°) are denoted by x* — ( x * ) ^ ^ Clearly the 

oo 
dual action has the form < x,x* > = Y1 x j x j • The norm on X* is denoted 

j=i 
by || • ||*. The projection onto the first N coordinates is denoted by IIjv (i.e. 
X 3 x —> n ( ( x i , x 2 , . . . ) ) = (xi,X2, • . . , xw) € 1RN) while the projection on 
the k coordinate is denoted by iXk-

If F : X —> M is Borel, then condition (20) is replaced by 
(24) |F(x) | 
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where X C X is Borel and A, s > 0 are some constants. The subspaces 
3Cn = {(z i ,x 2 , • • • ,a;jv,0,0,. . .) : x j € R} are isomorphic to R N . Similarly 
as in the finite dimensional case, functions defined by the integrals 

FnN+i,...,nN+K • • • , Xn) = ^ ^iV+l ' ' ' XN+K F f e ) 

satisfy condition (20) on = • Constants A and e must be however 
adjusted. The moments are again defined as 

^ni,n2,...,nN = J •'•'l1 ' ' ' ' x N ' ) 
X 

where n is a finite signed Borel measure on X. 

LEMMA 2. Let n be a signed measure on X C X. Suppose that F : X —> R 
satisfies (24). Ifmni n 2 n N — 0 for all 711,712,... ,un, then supp(^i) C {x : 
F(x) = 0}. 

P r o o f . We define the characteristic function 

= \ ¿ ^ ^ F i x ) dfi(x). 
x 

Applying the Lebesgue dominated convergence theorem we obtain 

\<x,x* >n F(x) dn{x) = 0 
x 

where n > 0 and ||x*||* < 1. This implies that ^(x*) = 0 for all such x*. In 
particular, if we consider the measure (on Borel sets B C l ) 

vr{B)= \ F(x)dn(x), 
x- i (B) 

then \sndj/x*(s) = 0 for all n > 0, where ||x*||* < 1. It is easy to verify that 
. |(s) < oo. Hence by Lemma 1 is the zero measure on R. This 

gives 

\eiLs dv*.{s) = 0 
R 

for all L > 0. We get 

0 = j eiL<*,**>F(x) dfj,{x) = J el<-'L->F(x) dn{x) = ^{Lx*) 
X X 

for all ||x*||* < 1 and L > 0. In particular, the characteristic function of 
F(x)d/j,(x) is zero. Hence supp(^t) C {x : F(x) — 0}. • 

Using Lemma 2 the following result can be proved similarly as Theorem 
4. Therefore its proof is limited to a short sketch. 
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THEOREM 5. Let X be a Borel subset of X, F satisfies ( 2 4 ) on X , and 
H e M(X). Then 

( i ) If m n i i I l 2 i . . . ) T l J V = 0 for all n\,ri2, • •. > 0 , and F(x) ^ 0 for all 
x G X , then ft = 0. 

(ii) If for every j there exists Jj such that for all ni,... ,nj-i,nj+1,... 
. . . , tin > 0, and k > Jj we have 

where F(x) ^ 0 for all x e X , then n = tôo for some scalar t. 
( i i i ) If for every fixed n \ , . . . , n , - _ i , n ^ + i , . . . , n j v > 0 the sequence 

is eventually periodic, then ¡1 is concentrated on the set 
00 

5 = [ ¡ { - 1 . 0 , 1 } -

j=1 
The measure fi is determined by low level moments mni,n2,...,nN, where 
« 1 , 7 1 2 , . . . , TIN 6 { 0 , 1 , 2 } . If in addition, for some projection IIJV, the corre-
sponding measure Qi^n^ is continuous, then fi = 0. 

P r o o f , ( i ) f o l l o w s d i r e c t l y f r o m L e m m a 2 . I n o r d e r t o o b t a i n ( i i ) w e a p p l y 

T h e o r e m 4 ( i ) a n d g e t 

00 

s u p p ( / x ) c P i { x : xi — 0 . . . x n = 0 } = { 0 } . 

N=1 
T h e p r o o f o f ( i i i ) i s e s s e n t i a l l y t h e s a m e a s T h e o r e m 4 ( i i i ) . W e s i m p l y c o n -

s i d e r a l l p r o j e c t i o n s i z j a n d t h e c o r r e s p o n d i n g d é s i n t é g r a t i o n s f i = 

d Q | M j ) 7 r 3 ( x j ) . I t f o l l o w s t h a t f i X j = 0 f o r a l l X j ^ { — 1 , 0 , 1 } . A s a r e -

s u l t s u p p ( ^ ) C S. N o w , i f w e a s s u m e t h a t f o r s o m e n a t u r a l N t h e m e a s u r e 

Q\II\,TIn i s c o n t i n u o u s , t h e n fi = \fj,Xl ( ( ® i , • • • , xN)) - 0 . • 

T h e n e x t r e s u l t f o l l o w s d i r e c t l y f r o m T h e o r e m 5 . 

PROPOSITION 2. Let rj = ( 7 7 1 , 7 7 2 , . . •) and £ = (£1 ,^2, • • •) be random vectors 
on X Ç IR00 . If there exists a strictly positive vector A = (AI, A 2 , . . •) such 
that for all n i , 7 1 2 , . . . , njv > 0 we have 

EVi1 •••VnN e ~ A j ^ ' = ECS e ~ ' < °°> 

then 77 and £ have the same distributions. 

P r o o f . L e t f i = f j , v — w h e r e / j , v a n d d e n o t e t h e d i s t r i b u t i o n s o f 77 a n d 

£ r e s p e c t i v e l y . W e g e t m n i i n 2 ) . . . ) n A , = 0 f o r a l l 7 1 1 , 7 1 2 , . . . > 0 . W e e a s i l y 
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check that the function 

is strictly positive and satisfies (24). Now it remains to apply Theorem 5. • 

The last result of the paper is another generalization of Theorems 4 and 
5 from [LT]. It is a direct combination of Theorem 5 (iii) and Proposition 2. 
Namely we have: 
COROLLARY 5. If in the above Proposition 2, for some N we have . 

Q ] f , v - ^ \ , n N e M a c ( R N ) , 

then rj and £ have the same distributions if an only if the sequence 

k —> mnitn2t_^nj_1}k,nj+i,...,nN 

is eventually periodic, when n\, ri2,. • •, rij-i,nj+i,..., njv are large enough. 
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