

Stanisław Stoiński

AN APPLICATION OF MODULAR SPACES
TO APPROXIMATION PROBLEMS, VII

Abstract. By means of terms of a sequence (ρ_n) , where $\rho_n, n = 1, 2, \dots$, are a pseudomodulars, and by means of an infinite matrix $A = [a_{ni}]$ of non-negative numbers we shall construct the various modular spaces. Then we shall approximate elements of the spaces $X_{\rho A, s}$ and $X_{\rho_A^s}$ by means of terms of a sequence $(\tilde{\rho}_m)$, where $(\tilde{\rho}_m)$, $m = 1, 2, \dots$, are a pseudomodulars. In particular, we will investigate the special case when ρ_n and $\tilde{\rho}_m$ are singular integrals.

Let (Ω, Σ, μ) denote a space with a finite measure μ , defined on Σ , a σ -algebra of subsets of the set Ω , $\rho_n(t, f) : \Omega \times \mathcal{X} \rightarrow \langle 0, \infty \rangle$ for $n = 1, 2, \dots$ and $f \in \mathcal{X}$ – the space of functions $f : \Omega \rightarrow \langle -\infty, \infty \rangle$ which are Σ -measurable and almost everywhere finite, with equality μ -almost everywhere.

Let us assume:

- (a) $\rho_n(t, f)$ is a pseudomodular in \mathcal{X} for almost all t and for every $n = 1, 2, \dots$,
- (b) if for $n = 1, 2, \dots$ $\rho_n(t, f) = 0$ for almost all t , then $f = 0$,
- (c) $\rho_n(t, f)$ is measurable and almost everywhere finite with respect to t for every $f \in \mathcal{X}$ and every $n = 1, 2, \dots$

Let us denote by $A = [a_{ni}]$ an infinite matrix of non-negative numbers such that none of the columns of the matrix A consists only of zeros.

Let

$$\rho_n^A(t, f) = \sum_{i=1}^{\infty} a_{ni} \rho_i(t, f), \quad \rho_{n0}^A(t, f) = \sup_i a_{ni} \rho_i(t, f)$$

for $n = 1, 2, \dots$ By means of terms of a sequence (ρ_n) and by means of a

Key words and phrases: modular space, Lebesgue measure, singular integral.

1991 *Mathematics Subject Classification:* 41A35.

matrix A we shall construct the following modulars in \mathcal{X} :

$$\begin{aligned}\rho^{A,s}(f) &= \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_n^A(f)}{1 + \rho_n^A(f)}, \quad \text{where } \rho_n^A(f) = \int_{\Omega} \rho_n^A(t, f) d\mu, \\ \rho_s^A(f) &= \int_{\Omega} \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_n^A(t, f)}{1 + \rho_n^A(t, f)} d\mu, \\ \rho^A(f) &= \sup_n \rho_n^A(f), \quad \rho_A(f) = \int_{\Omega} \sup_n \rho_n^A(t, f) d\mu, \\ \rho_0^{A,s}(f) &= \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_{n0}^A(f)}{1 + \rho_{n0}^A(f)}, \quad \text{where } \rho_{n0}^A(f) = \int_{\Omega} \rho_{n0}^A(t, f) d\mu, \\ \rho_{0s}^A(f) &= \int_{\Omega} \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_{n0}^A(t, f)}{1 + \rho_{n0}^A(t, f)} d\mu, \\ \rho_0^A(f) &= \sup_n \rho_{n0}^A(f), \quad \rho_1^A(f) = \int_{\Omega} \sup_n \rho_{n0}^A(t, f) d\mu.\end{aligned}$$

Let us denote by: $X_{\rho^{A,s}}, X_{\rho_s^A}, X_{\rho^A}, X_{\rho_A}, X_{\rho_0^{A,s}}, X_{\rho_{0s}^A}, X_{\rho_0^A}$ and $X_{\rho_1^A}$ the respective modular spaces. There hold the following inclusions

$$X_{\rho^{A,s}} \subset X_{\rho_s^A}, \quad X_{\rho^A} \supset X_{\rho_A}, \quad X_{\rho_0^{A,s}} \subset X_{\rho_{0s}^A}, \quad X_{\rho_0^A} \supset X_{\rho_1^A}.$$

In the special case when $a_{nn} = 1$, $a_{ni} = 0$ for $n \neq i$, $n, i = 1, 2, \dots$, we have $\rho^{A,s} = \rho_0^{A,s} = \rho^s$ and $\rho^A = \rho_{0s}^A = \rho_s$. The modular spaces X_{ρ^s} and X_{ρ_s} was study in [1]–[3].

We shall approximate elements of the modular spaces $X_{\rho^{A,s}}$ and $X_{\rho_s^A}$ by means of terms of a sequence $(\tilde{\rho}_m)$, where $\tilde{\rho}_m : \Omega \times \mathcal{X} \rightarrow \langle 0, \infty \rangle$ for $m = 1, 2, \dots$ and the following conditions are satisfied:

(a) $\tilde{\rho}_m(t, f)$ is a pseudomodular in \mathcal{X} for almost all t and for every $m = 1, 2, \dots$,

(b) $\tilde{\rho}_m(t, f)$ and $\tilde{\rho}_m(t, f - f(t))$ are measurable and almost everywhere finite with respect to t for every $f \in \mathcal{X}$ and every $m = 1, 2, \dots$

In the following we shall suppose that besides conditions: (a)–(c) the following condition is satisfied:

(d) if $f, g \in \mathcal{X}$, $|f(t)| \leq |g(t)|$ almost everywhere in Ω , then for $n = 1, 2, \dots$ $\rho_n(t, f) \leq \rho_n(t, g)$ almost everywhere in Ω .

We say that a sequence $(\tilde{\rho}_m)$ preserves constants if $\tilde{\rho}_m(t, c) = c$ for all $t \in \Omega$ and for every $c \geq 0$, $m = 1, 2, \dots$

The sequence $(\tilde{\rho}_m)$ is called singular at the point $f \in X_{\rho^{A,s}}$ iff for any two positive numbers a, b and for $n = 1, 2, \dots$

$$J_m^n(f) = \sum_{i=1}^{\infty} a_{ni} \int_{\Omega} \rho_i(t, a\tilde{\rho}_m(\cdot, b(f - f(\cdot)))) d\mu \rightarrow 0 \quad \text{for } m \rightarrow \infty.$$

THEOREM 1. *If the sequence $(\tilde{\rho}_m)$ preserves constants and is singular at the point $f \in X_{\rho^{A,s}}$, $f \geq 0$, then for every $\lambda > 0$*

$$\rho^{A,s}\{\lambda[f(\cdot) - \tilde{\rho}_m(\cdot, f)]\} \rightarrow 0 \quad \text{with } m \rightarrow \infty.$$

Proof. Let $f \in X_{\rho^{A,s}}$, $f \geq 0$, and $\alpha, \beta > 0$, $\alpha + \beta = 1$. In manner, like in [1] and [2], we obtain

$$|\tilde{\rho}_m(t, f) - f(t)| \leq \tilde{\rho}_m\left(t, \frac{f - f(t)}{\beta}\right) + \frac{\beta}{\alpha}f(t)$$

for almost all $t \in \Omega$, $m = 1, 2, \dots$. Hence, for $n, m = 1, 2, \dots$ and $\lambda > 0$ we have

$$\begin{aligned} & \int_{\Omega} \sum_{i=1}^{\infty} a_{ni} \rho_i(t, \lambda|\tilde{\rho}_m(\cdot, f) - f(\cdot)|) d\mu \leq \\ & \leq \sum_{i=1}^{\infty} a_{ni} \int_{\Omega} \rho_i\left(t, 2\lambda\tilde{\rho}_m\left(\cdot, \frac{f - f(\cdot)}{\beta}\right)\right) d\mu + \sum_{i=1}^{\infty} a_{ni} \int_{\Omega} \rho_i\left(t, 2\lambda\frac{\beta}{\alpha}f(\cdot)\right) d\mu, \end{aligned}$$

and so

$$\rho^{A,s}(\lambda(\tilde{\rho}_m(\cdot, f) - f(\cdot))) \leq \rho^{A,s}\left(2\lambda\tilde{\rho}_m\left(\cdot, \frac{f - f(\cdot)}{\beta}\right)\right) + \rho^{A,s}\left(2\lambda\frac{\beta}{\alpha}f(\cdot)\right).$$

Since $f \in X_{\rho^{A,s}}$, so, for every $\varepsilon > 0$, there exists $\beta = \beta(\varepsilon) > 0$ such that $\rho^{A,s}(2\lambda\frac{\beta}{\alpha}f(\cdot)) < \frac{\varepsilon}{2}$. The sequence $(\tilde{\rho}_m)$ is singular at the point $f \in X_{\rho^{A,s}}$. Hence for this β we obtain $\rho^{A,s}(2\lambda\tilde{\rho}_m(\cdot, \frac{f - f(\cdot)}{\beta})) < \frac{\varepsilon}{2}$ for $m > M = M(\varepsilon) > 0$. Therefore for every $\lambda > 0$

$$\rho^{A,s}\{\lambda[\tilde{\rho}_m(\cdot, f) - f(\cdot)]\} < \varepsilon \quad \text{for } m > M.$$

The sequence $(\tilde{\rho}_m)$ is called singular at the point $f \in X_{\rho_s^A}$ iff for any two positive numbers a, b and for $n = 1, 2, \dots$

$$J_n^m(f)(t) = \sum_{i=1}^{\infty} a_{ni} \rho_i(t, a\tilde{\rho}_m(\cdot, b(f - f(\cdot)))) \rightarrow 0 \quad \text{for } m \rightarrow \infty$$

in measure in Ω .

THEOREM 2. *If the sequence $(\tilde{\rho}_m)$ preserves constants and is singular at the point $f \in X_{\rho_s^A}$, $f \geq 0$, then for every $\lambda > 0$*

$$\rho_s^A\{\lambda[f(\cdot) - \tilde{\rho}_m(\cdot, f)]\} \rightarrow 0 \quad \text{for } m \rightarrow \infty.$$

Proof. Let $f \in X_{\rho_s^A}$, $f \geq 0$, and $\alpha, \beta > 0$, $\alpha + \beta = 1$. In manner, like in [1] and [2], we obtain, for every $\lambda > 0$ and for almost all $t \in \Omega$, that

$$\begin{aligned} & \sum_{i=1}^{\infty} a_{ni} \rho_i(t, \lambda |\tilde{\rho}_m(\cdot, f) - f(\cdot)|) \leq \\ & \leq \sum_{i=1}^{\infty} a_{ni} \rho_i\left(t, 2\lambda \tilde{\rho}_m\left(\cdot, \frac{f-f(\cdot)}{\beta}\right)\right) + \sum_{i=1}^{\infty} a_{ni} \rho_i\left(t, 2\lambda \frac{\beta}{\alpha} f(\cdot)\right) \end{aligned}$$

for $n, m = 1, 2, \dots$, and so

$$\rho_s^A(\lambda(\tilde{\rho}_m(\cdot, f) - f(\cdot))) \leq \rho_s^A\left(2\lambda \tilde{\rho}_m\left(\cdot, \frac{f-f(\cdot)}{\beta}\right)\right) + \rho_s^A\left(2\lambda \frac{\beta}{\alpha} f(\cdot)\right).$$

Since $f \in X_{\rho_s^A}$, then, for every $\varepsilon > 0$, there exists $\beta = \beta(\varepsilon) > 0$ such that $\rho_s^A(2\lambda \frac{\beta}{\alpha} f(\cdot)) < \frac{\varepsilon}{2}$. The sequence $(\tilde{\rho}_m)$ is singular at the point $X_{\rho_s^A}$. Using the Beppo Levi Theorem for series and the Lebesgue bounded convergence Theorem, we have for this β , $\rho_s^A\left(2\lambda \tilde{\rho}_m\left(\cdot, \frac{f-f(\cdot)}{\beta}\right)\right) < \frac{\varepsilon}{2}$ for $m > M = M(\varepsilon) > 0$. Hence for $m > M$ we obtain

$$\rho_s^A(\lambda(\tilde{\rho}_m(\cdot, f) - f(\cdot))) < \varepsilon \quad \text{for } m > M.$$

In the sequel we will consider the following special case. Let $\Omega = \langle 0, 1 \rangle$, $\Sigma - \sigma$ -algebra of Lebesgue measurable sets in $\langle 0, 1 \rangle$, μ — the Lebesgue measure. Let \mathcal{X} denote the set of Σ -measurable and almost everywhere finite functions in $\langle 0, 1 \rangle$, extended periodically, with period 1, outside $\langle 0, 1 \rangle$, with equality μ -almost everywhere. Let K_n, \tilde{K}_m , $n, m = 1, 2, \dots$, be functions which are Σ -measurable and positive almost everywhere in $\langle 0, 1 \rangle$ and such that

$$\int_0^1 K_n(u) du < \infty \quad \text{for } n = 1, 2, \dots$$

and

$$\int_0^1 \tilde{K}_m(u) du = 1 \quad \text{for } m = 1, 2, \dots$$

We define the following sequences of operators

$$\begin{aligned} \rho_n(t, f) &= \varphi^{-1}\left(\int_0^1 K_n(u) \varphi(|f(u+t)|) du\right), \\ \tilde{\rho}_m(t, f) &= \varphi^{-1}\left(\int_0^1 \tilde{K}_m(u) \varphi(|f(u+t)|) du\right), \end{aligned} \tag{A}$$

for $n, m = 1, 2, \dots$ and for $t \in \langle 0, 1 \rangle$, where φ is a convex φ -function and φ^{-1} is the function inverse to φ for $u \geq 0$.

THEOREM 3. *Assume that: a) a convex φ -function φ satisfies the condition (Δ_2) for large arguments,*

b) for $f \in X_{\rho^{A,s}}$, $f \geq 0$, and for an arbitrary $b > 0$ the following condition

$$\lim_{m \rightarrow \infty} \int_0^1 \tilde{K}_m(v) \left(\int_0^1 \varphi(b|f(v+s) - f(s)|) ds \right) dv = 0$$

holds,

c) for every $n = 1, 2, \dots$

$$\sum_{i=1}^{\infty} a_{ni} \delta_{\varepsilon}^i \rightarrow 0 \quad \text{with } \varepsilon \rightarrow 0,$$

where

$$\delta_{\varepsilon}^i = v_{\varepsilon}^i \sup_{u \geq v_{\varepsilon}^i} \frac{\varphi^{-1}(u)}{u}, \quad v_{\varepsilon}^i = \varphi(a\varepsilon) \int_0^1 K_i(u) du \quad \text{for } a > 0.$$

Then the sequence $(\tilde{\rho}_m)$ of the form (A) is singular at the point f .

P r o o f. Since φ satisfies the condition (Δ_2) for large arguments, so for every $\varepsilon > 0$ and for $a > 0$ there exists $a' = a'(\varepsilon) > 0$ such that $\varphi(au) \leq a'\varphi(u)$ for $u \geq \varepsilon$. Hence it follows

$$\begin{aligned} J_m^n(f) &\leq \sum_{i=1}^{\infty} a_{ni} \int_0^1 \varphi^{-1} \left\{ \varphi(a\varepsilon) \int_0^1 K_i(u) du + \right. \\ &\quad \left. + a' \int_0^1 K_i(u) \left[\int_0^1 \tilde{K}_m(v) \varphi(b|f(u+v+t) - f(u+t)|) dv \right] du \right\} dt. \end{aligned}$$

It can be easily seen that a convex φ -function φ satisfies the following condition

$$(W) \quad v \sup_{u \geq v} \frac{\varphi^{-1}(u)}{u} \rightarrow 0 \quad \text{as } v \rightarrow 0^+.$$

Let us put

$$v_{\varepsilon}^i = \varphi(a\varepsilon) \int_0^1 K_i(u) du, \quad \delta_{\varepsilon}^i = v_{\varepsilon}^i \sup_{u \geq v_{\varepsilon}^i} \frac{\varphi^{-1}(u)}{u}, \quad c_{\varepsilon}^i = \frac{\delta_{\varepsilon}^i}{v_{\varepsilon}^i}.$$

Then, by the condition (W), it follows the following estimation $\varphi^{-1}(u) \leq c_{\varepsilon}^i u$

for $u \geq v_\varepsilon^i$. Hence we obtain that for $m, n = 1, 2, \dots$ and for $b > 0$

$$J_m^n(f) \leq \left(\sum_{i=1}^{\infty} a_{ni} \delta_\varepsilon^i \right) \left(1 + \frac{a'}{\varphi(a\varepsilon)} \int_0^1 \tilde{K}_m(v) \left(\int_0^1 \varphi(b|f(v+s) - f(s)|) ds \right) dv \right).$$

The assumptions b) and c) imply that for every $n = 1, 2, \dots$ $J_m^n(f) \rightarrow 0$ for $m \rightarrow \infty$. This proves the theorem.

We say that (\tilde{K}_m) is a singular kernel if

$$\lim_{m \rightarrow \infty} \int_{-\delta}^1 \tilde{K}_m(v) dv = 0$$

for every $\delta \in (0, 1)$.

From Theorems 1 and 3 it follows the following

THEOREM 4. *Assume that: a) a convex φ -function φ satisfies the condition (Δ_2) for large arguments,*

b) for an arbitrary $a > 0$ and for every $n = 1, 2, \dots$

$$\sum_{i=1}^{\infty} a_{ni} \varphi^{-1} \left(\varphi(a\varepsilon) \int_0^1 K_i(u) du \right) \rightarrow 0 \quad \text{with } \varepsilon \rightarrow 0,$$

c) the sequence (\tilde{K}_m) is a singular kernel.

Then for $f \in X_{\rho^{A,s}} \cap L^\varphi(0, 1)$ and for every $\lambda > 0$ we have

$$\rho^{A,s} \{ \lambda[f(\cdot) - \tilde{\rho}_m(\cdot, f)] \} \rightarrow 0 \quad \text{for } m \rightarrow \infty.$$

Let us denote for a bounded function $f \in \mathcal{X}$

$$g(t) = \sup_{|v| \leq \delta} \int_0^1 \varphi(|f(v+u+t) - f(u+t)|) du,$$

where $t \in \mathbb{R}$, $\delta \geq 0$, φ -function φ satisfies the condition (Δ_2) for large arguments. It is known (see [4]) that g is a measurable function. We define the φ -integral modulus of continuity in measure for a bounded function $f \in \mathcal{X}$

$$\omega_\mu^\varphi(\eta, \delta; f) = \mu(\{t \in \langle 0, 1 \rangle : \sup_{|v| \leq \delta} \int_0^1 \varphi(|f(u+v+t) - f(u+t)|) du \geq \eta\}),$$

where $\eta \geq 0$, $\delta \geq 0$. In [4] the properties of $\omega_\mu^\varphi(\eta, \delta, f)$ were shown.

For $f \in X_{\rho_s^A}$, $f \geq 0$, let us denote

$$f_k(t) = \begin{cases} f(t) & \text{for } t \in \{t \in \langle 0, 1 \rangle : f(t) \leq k\}, \\ k & \text{for the remaining } t \in \langle 0, 1 \rangle, \end{cases}$$

where k is a positive integer.

We say that $f \in X_{\rho_s^A}$, $f \geq 0$, is a μ -regular function if for every $k = 1, 2, \dots$ and for every $\eta > 0$

$$\omega_\mu^\varphi(\eta, \delta; f_k) \rightarrow 0 \quad \text{as } \delta \rightarrow 0.$$

A sequence $(\tilde{\rho}_m)$ of the form (A) is called regular at the point $f \in X_{\rho_s^A}$, $f \geq 0$, if for every $n = 1, 2, \dots$ and for an arbitrary $a > 0$,

$$\sum_{i=1}^{\infty} a_{ni} \rho_i(t, a | \tilde{\rho}_m(\cdot, f_k) - \tilde{\rho}_m(\cdot, f) |) \rightarrow 0 \quad \text{as } k \rightarrow \infty,$$

for almost every $t \in \langle 0, 1 \rangle$ and uniformly with respect to $m = 1, 2, \dots$

We say that $\rho_i(\cdot, f)$, $i = 1, 2, \dots$, are equiabsolutely continuous at the point $f \in X_{\rho_s^A}$, $f \geq 0$, if for almost every $t \in \langle 0, 1 \rangle$ and for an arbitrary $\varepsilon > 0$ there exists a $\Delta > 0$ such that for every $i = 1, 2, \dots$ and for every $A \subset \langle 0, 1 \rangle$, $A \in \Sigma$, such that $\mu(A) < \Delta$, we have

$$\int_A K_i(u) \varphi(f(u+t)) du < \varepsilon.$$

Let us denote by $l_i = l_i(\varepsilon)$ the least positive integer such that

$$(*) \quad \int_{\{u \in \langle 0, 1 \rangle : K_i(u) > l_i\}} K_i(u) du < \varepsilon, \quad \text{where } \varepsilon > 0.$$

THEOREM 5. Let $f \in X_{\rho_s^A}$, $f \geq 0$, is a μ -regular function. Assume that: a)

a convex φ -function φ satisfies the condition (Δ_2) for large arguments,

b) the sequence

$$\left(\int_0^1 K_i(u) du \right)$$

is bounded and for every $n = 1, 2, \dots$ and for an arbitrary $\varepsilon > 0$ the series $\sum_{i=1}^{\infty} a_{ni} l_i(\varepsilon)$, where l_i is defined by the condition (*), is convergent, where

$$\varphi^{-1}(\varepsilon) \sum_{i=1}^{\infty} a_{ni} l_i(\varepsilon) \rightarrow 0 \text{ with } \varepsilon \rightarrow 0,$$

c) $\rho_i(\cdot, f)$, $i = 1, 2, \dots$, are equiabsolutely continuous at the point f ,

d) the sequence $(\tilde{\rho}_m)$ of the form (A) is regular at the point f and (\tilde{K}_m) is a singular kernel.

Then for every $\lambda > 0$

$$\rho_s^A \{ \lambda [f(\cdot) - \tilde{\rho}_m(\cdot, f)] \} \rightarrow 0 \quad \text{for } m \rightarrow \infty.$$

Proof. Let $f \in X_{\rho_s^A}$, $f \geq 0$, is a μ -regular function and (f_k) is the sequence of truncated functions of f . For $\lambda > 0$, $m, k = 1, 2, \dots$ we have

$$(1) \quad \rho_s^A \{ \lambda[f(\cdot) - \tilde{\rho}_m(\cdot, f)] \} \leq \rho_s^A \{ 3\lambda[f(\cdot) - f_k(\cdot)] \} + \\ + \rho_s^A \{ 3\lambda[f_k(\cdot) - \tilde{\rho}_m(\cdot, f_k)] \} + \\ + \rho_s^A \{ 3\lambda[\tilde{\rho}_m(\cdot, f_k) - \tilde{\rho}_m(\cdot, f)] \}.$$

Since for almost every $t \in \langle 0, 1 \rangle$ we have $\varphi(3\lambda[f(u+t) - f_k(u+t)]) \rightarrow 0$ if $k \rightarrow \infty$, for almost every $u \in \langle 0, 1 \rangle$, so, from the Egorov Theorem, it follows that for an arbitrary $\varepsilon > 0$ there exists a $\Delta = \Delta(\varepsilon) > 0$, where Δ is defined by equiabsolutely continuity $\rho_i(\cdot, f)$, $i = 1, 2, \dots$, at the point f , such that there exists a set A , $A \in \Sigma$, with $\mu(A) < \Delta$, and $\varphi(3\lambda[f(u+t) - f_k(u+t)]) < \varepsilon$ for every $k > K = K(t, \varepsilon, \lambda)$, uniformly with respect to $u \in \langle 0, 1 \rangle \setminus A$. Using the Beppo Levi Theorem for series and the Lebesgue bounded convergence Theorem, we obtain that there exists $K_1 = K_1(\varepsilon, \lambda) > 0$ such that for $k > K_1$ we have

$$(2) \quad \rho_s^A \{ 3\lambda[f(\cdot) - f_k(\cdot)] \} < \frac{\varepsilon}{3}.$$

From the Theorem 2 we can conclude that if for any two positive numbers a, b and for every $n = 1, 2, \dots$

$$J_n^m(f_k)(t) = \sum_{i=1}^{\infty} a_{ni} \rho_i(t, a\tilde{\rho}_m(\cdot, b(f_k - f_k(\cdot)))) \rightarrow 0 \quad \text{with } m \rightarrow \infty$$

in measure in $\langle 0, 1 \rangle$, then $\rho_s^A \{ 3\lambda[f_k(\cdot) - \tilde{\rho}_m(\cdot, f_k)] \} \rightarrow 0$ with $m \rightarrow \infty$. Since φ satisfies the condition (Δ_2) for large arguments, i.e. for an arbitrary $\varepsilon > 0$ and for every $a > 0$ there exists $a' = a'(\varepsilon, a) > 0$ such that $\varphi(au) \leq a'\varphi(u)$ for every $u \geq \varepsilon$, so the following estimation

$$\begin{aligned} J_n^m(f_k)(t) &\leq \sum_{i=1}^{\infty} a_{ni} \varphi^{-1} \left(\varphi(a\varepsilon) \int_0^1 K_i(u) du + \right. \\ &\quad \left. + a' \int_0^1 K_i(u) \left(\int_0^1 \tilde{K}_m(v) \varphi(b|f_k(v+u+t) - f_k(u+t)|) dv \right) du \right) \end{aligned}$$

for $n = 1, 2, \dots$, $t \in \langle 0, 1 \rangle$, holds. In the following we obtain that for $\delta \in (0, 1)$

$$\begin{aligned} &\int_0^1 K_i(u) \left(\int_0^1 \tilde{K}_m(v) \varphi(b|f_k(v+u+t) - f_k(u+t)|) dv \right) du \leq \\ &\leq \int_0^{\delta} \tilde{K}_m(v) \left(\int_0^1 K_i(u) \varphi(b|f_k(v+u+t) - f_k(u+t)|) du \right) dv + \\ &\quad + \varphi(2bk) \left(\int_{\delta}^1 \tilde{K}_m(v) dv \right) \left(\int_0^1 K_i(u) du \right) = I_1 + I_2 \end{aligned}$$

and

$$I_1 \leq \left(l_i^k \sup_{0 \leq v \leq \delta} \int_0^1 \varphi(b|f_k(v+u+t) - f_k(u+t)|) du + \frac{\varepsilon}{a'} \right) \int_0^\delta \tilde{K}_m(v) dv,$$

where l_i^k is the least positive integer such that

$$\int_{\{u \in \langle 0, 1 \rangle : K_i(u) > l_i^k\}} K_i(u) du < \frac{\varepsilon}{a' \varphi(2bk)}.$$

By the assumption a) it follows that for a' there exists $a'' = a''(\varepsilon, a', b) > 0$ such that for every $u \geq (1/b)\varphi^{-1}(\varepsilon/a')$ we have $\varphi(bu) \leq a''\varphi(u)$. Hence we obtain

$$\int_0^1 \varphi(b|f_k(v+u+t) - f_k(u+t)|) du \leq a'' \int_0^1 \varphi(|f_k(v+u+t) - f_k(u+t)|) du + \frac{\varepsilon}{a'}.$$

Therefore for an arbitrary $\eta > 0$ and for every $n = 1, 2, \dots$ we have

$$\begin{aligned} (3) \quad \mu(\{t \in \langle 0, 1 \rangle : J_n^m(f_k)(t) \geq \eta\}) &\leq \\ &\leq \mu\left(\left\{t \in \langle 0, 1 \rangle : \varphi^{-1}(C\varphi(a\varepsilon))D_n \geq \frac{\eta}{5}\right\}\right) + \\ &+ \mu\left(\left\{t \in \langle 0, 1 \rangle : \varphi^{-1}(\varepsilon)D_n \geq \frac{\eta}{5}\right\}\right) + \\ &+ \mu\left(\left\{t \in \langle 0, 1 \rangle : \varphi^{-1}\left(a'\varphi(2bk)C \int_0^\delta \tilde{K}_m(v) dv\right)D_n \geq \frac{\eta}{5}\right\}\right) + \\ &+ \omega_\mu^\varphi\left((1/(a'a''))\varphi\left(\eta/\left(5 \sum_{i=1}^{\infty} a_{ni} l_i^k\right)\right), \delta; f_k\right) + \\ &+ \mu\left(\left\{t \in \langle 0, 1 \rangle : \varphi^{-1}(\varepsilon) \sum_{i=1}^{\infty} a_{ni} l_i^k \geq \frac{\eta}{5}\right\}\right), \end{aligned}$$

where

$$\int_0^1 K_i(u) du \leq C, \quad \sum_{i=1}^{\infty} a_{ni} \leq D_n, \quad i, n = 1, 2, \dots$$

For $k = 1, 2, \dots$ the following estimation

$$\rho_s^A\{3\lambda[f_k(\cdot) - \tilde{\rho}_m(\cdot, f_k)]\} \leq \int_0^1 \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{J_n^m(f_k)(t)}{1 + J_n^m(f_k)(t)} dt + \rho_s^A\left(6\lambda \frac{\beta}{\alpha} f_k(\cdot)\right)$$

holds. Since $f \in X_{\rho_s^A}$, so there exists β such that $\rho_s^A(6\lambda(\beta/\alpha)f_k(\cdot)) < \frac{\varepsilon}{6}$. Because f is a μ -regular function and (\tilde{K}_m) is a singular kernel, by the

estimation (3) we obtain that for every $n = 1, 2, \dots$ $J_n^m(f_k) \rightarrow 0$ with $m \rightarrow \infty$ in measure in $\langle 0, 1 \rangle$. Therefore, using the Lebesgue bounded convergence Theorem, we have that for $k = 1, 2, \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \int_0^1 \frac{J_n^m(f_k)(t)}{1 + J_n^m(f_k)(t)} dt < \frac{\varepsilon}{6} \quad \text{for } m > M = M(\varepsilon, k),$$

and so

$$(4) \quad \rho_s^A \{3\lambda[\rho_m(\cdot, f_k) - \tilde{\rho}_m(\cdot, f_k)]\} < \frac{\varepsilon}{3} \quad \text{for } m > M.$$

Since the sequence $(\tilde{\rho}_m)$ is regular at the point f , so, using the Lebesgue in measure convergence Theorem, we obtain

$$(5) \quad \rho_s^A \{3\lambda[\tilde{\rho}_m(\cdot, f_k) - \tilde{\rho}_m(\cdot, f)]\} < \frac{\varepsilon}{3}$$

for $k > K_2 = K_2(\varepsilon, \lambda)$, uniformly with respect to $m = 1, 2, \dots$

Let $k_0 > \max(K_1, K_2)$. Then, putting in (1) $k = k_0$, we have from (1) and (2), (4), (5) that

$$\rho_s^A \{\lambda[f(\cdot) - \tilde{\rho}_m(\cdot, f)]\} < \varepsilon$$

for $m > M = M(\varepsilon, k_0)$. This completes the proof.

References

- [1] J. Musielak, *An application of modular spaces to approximation*, Ann. Soc. Math. Pol., Ser. I, Comment. Math., Tomus Specialis in Honorem Ladislai Orlicz, I (1978), 251–259.
- [2] J. Musielak, *Modular Spaces*, Poznań 1978 (in Polish).
- [3] J. Musielak, *Orlicz Spaces and Modular Spaces*, Lecture Notes in Math. 1034, Springer-Verlag 1983.
- [4] S. Stoiński, *Approximation with respect to a measure in modular space*, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. 35 (1987), 425–439.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
 ADAM MICKIEWICZ UNIVERSITY
 ul. Matejki 48/49
 60-769 POZNAŃ, POLAND

Received February 2nd, 2000.