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AN APPLICATION OF MODULAR SPACES
TO APPROXIMATION PROBLEMS, VII

Abstract. By means of terms of a sequence (prn), where pn, n = 1,2,..., are a
pseudomodulars, and by means of an infinite matrix A = [a,;] of non-negative numbers
we shall construct the various modular spaces. Then we shall approximate elements of the
spaces XPA"’ and ngA by means of terms of a sequence (Em), where (pm), m =1,2,...,

are a pseudomodulars. In particular, we will investigate the special case when p, and pm
are singular integrals.

Let (2, %, 1) denote a space with a finite measure u, defined on ¥, a o-
algebra of subsets of the set 2, pn (¢, f) : @x Z — (0,00) forn =1,2,... and
f € & — the space of functions f : @ — (—00, 00) which are ¥-measurable
and almost everywhere finite, with equality p-almost everywhere.

Let us assume:

(a) pn(t, f) is a pseudomodular in 2 for almost all ¢ and for every
n=12...,

(b)ifforn=1,2,... pn(t f) =0 for almost all ¢, then f =0,

(c) pn(t, f) is measurable and almost everywhere finite with respect to ¢
for every f € 2 and every n=1,2,...

Let us denote by A = [a,;] an infinite matrix of non-negative numbers
such that none of the columns of the matrix A consists only of zeros.

Let

oo
pﬁ(ta f) = Z anipi(t> f)> pﬁO(t f) = SL}p AnipPi (ta f)
i=1 *
for n = 1,2,... By means of terms of a sequence (p,) and by means of a
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matrix A we shall construct the following modulars in Z:
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o (f) = Suppﬁo(f), pit(f) = | sup pfio (¢, f)dp
n n n
Let us denote by: XPA,s,XpsA,XpA,XpA,ngt,s,Xpaqs,Xp[/]i and XP{‘ the
respective modular spaces. There hold the following inclusions

XpA,s CXP‘;" XPA D) XPA’ Xp(,;a,s C XP(?,’ XP('? DXP‘{"

In the spec1a1 case when Onn =1, an; =0forn #1¢, n,i=1,2,..., we have
phs = p = p® and p2 = pg. = ps. The modular spaces Xps and Xp, was
study in [1]-[3].

We shall approximate elements of the modular spaces X, 4., and X 4
by means of terms of a sequence (pn,), where g, : @ x Z — (0, 00) for

m =1,2,... and the following conditions are satisfied:

(8) pm(t, f) is a pseudomodular in Z for almost all ¢ and for every
m=12,...,

(b) Pm(t, f) and G (t, f — f(t)) are measurable and almost everywhere
finite with respect to ¢ for every f € 2 and every m =1,2,...

In the following we shall suppose that besides conditions: (a)-(c) the
following condition is satisfied:

(d) if f,g € &, |f(t)] < |g(t)| almost everywhere in Q, then for n =
1,2,... pu(t, f) < pn(t, g) almost everywhere in Q.

We say that a sequence (p,,) preserves constants if p,,(¢,¢) = ¢ for all
tcQand foreveryc>0,m=12,...
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The sequence (pr,) is called singular at the point f € X, 4., iff for any
two positive numbers a,b and for n = 1,2, ...

Im(f) = Zani S pi(t,apm (-, 0(f — f(-))))dp — 0 for m — oo.
i=1 [¢)

THEOREM 1. If the sequence (p,) preserves constants and is singular at the
point f € Xpa,0, f >0, then for every A >0

PP S () = P ]} = 0 with m — co.
Proof Let f € X 4., f 20, and o,8 >0, a+ 8 = 1. In manner, like in
[1] and [2], we obtain

ints 1) = 101 < 5 (6 219 4 £ 100

for almost allt € 2, m = 1,2,... Hence, for n,m =1,2,... and A > 0 we
have

1S Gnini(t, Aipm(-, £) = FO)dp <

N i=1
< iani S pi (t, 2Xpm (', f_Tm))du + iam‘ S pi (t, 2/\§f(')) dp,
=1 Q i=1 0
and so
PAo OG- 1) = 10 < 0% (23 (L)) 4 2 (0250 )

Since f € X,a.., s0, for every € > 0, there exists 3 = B(¢) > 0 such that
pA’s(2)\§f(-)) < 5. The sequence () is singular at the point f € X, a4...
Hence for this 8 we obtain p** (2App, (-, f_Tf())) < £ for m>M=M(e)>0.
Therefore for every A > 0

P A B (-, f) = F()]} <& for m > M.

The sequence (g, ) is called singular at the point f € X4 iff for any two
positive numbers a,b and forn =1,2,...

TR (f)(E) = Zamm(t,aﬁm(~,b(f —f()) =0 for m— oo

in measure in 2.

THEOREM 2. If the sequence (pr,) preserves constants and is singular at the
point f € X,a, f >0, then for every A >0

PLA() = P NI} =0 for m — co.
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Proof. Let f € X 4, f 2 0,and ,8 > 0, o+ = 1. In manner, like in
[1] and [2], we obtaln for every A > 0 and for almost all ¢t € Q, that

Zampi(t, Mom (5 f) = FOI) <

< iampi (t, 2APm (', iva(—)» + iam‘/’i(t, 2>\§‘f(‘))
i=1

i=1

forn,m=1,2,..., and so
_ _( f-10) 8
oL OB, ) = FO)) < 03 (208 (52 ) + 022X O))

Since f € X,4, then, for every ¢ > 0, there exists 3 = ((¢) > 0 such that
pf(Z/\g f()) < 5. The sequence (pn) is singular at the point X, 4. Using
the Beppo Levi Theorem for series and the Lebesgue bounded convergence
Theorem, we have for this 3, p2 (ZAﬁm (-, f——g—(—))) < £ form > M = M(e)
> 0. Hence for m > M we obtain

p‘:()‘(ﬁm(') f) - f())) <e for m>M.

In the sequel we will consider the following special case. Let Q = (0, 1),
Y. —o-algebra of Lebesgue measurable sets in (0, 1), i — the Lebesgue meas-
ure. Let 2 denote the set of Y-measurable and almost everywhere finite
functions in (0, 1), extended periodically, with period 1, outside (0, 1), with
equality p-almost everywhere. Let K,, I?m, n,m = 1,2,..., be functions
which are ¥-measurable and positive almost everywhere in (0,1) and such
that

1
SKn(u)du <oo for n=1,2,...
0

and
1

Sf?m(u)du =1 for m=1,2,...
0

We define the following sequences of operators

ont, £) = o7} (| Kn(w)o(1f (w + t)])du),

O ey ok O ey

(4) Fm(t, £) = o7 (| Bl f(u + 1)) du),
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for n,m = 1,2,... and for ¢t € (0,1), where ¢ is a convex ¢-function and
¢~ ! is the function inverse to ¢ for u > 0.

THEOREM 3. Assume that: a) a convez @-function ¢ satisfies the condition
(Az2) for large arguments,
b) for f € X, a.s, f >0, and for an arbitrary b > 0 the following condi-
tion
1

1
lim | & n(v) (§ ol f(v+s) — f(s)|)ds)dv =0

m—o0
0

holds,
c) for everyn=1,2,...

Zam-fﬁi — 0 with € -0,
i=1
where
RO O 1
6, =v; sup ———~, v, = (,o(as)SKi(u)du for a>0.
u>vi u 0
Then the sequence (pm) of the form (A) is singular at the point f.

Proof. Since ¢ satisfies the condition (A;) for large arguments, so for every
€ > 0 and for @ > 0 there exists a’ = a(¢) > 0 such that p(au) < a’p(u) for
u > €. Hence it follows

o] 1 1
Tnlf) £ eni § o™ {plee) | Kilw) dut
i=1 0 0
1 1
+a' | Ki(u) [g K)ol f(ut+v+1t) — flu+ t)|)du] du}dt.
0 0

It can be easily seen that a convex g-function ¢ satisfies the following con-
dition

-1
(W) vsupﬁ——(i)—»O as v — 0.
u>v U
Let us put
, 1 ‘ , -1 Y
vy = <p(as)§K,~(u)du, 8; = v} sup (’i—(—@, ¢ ==,
0 w>vi U Ve

Then, by the condition (W), it follows the following estimation ¢ ~!(u) < ctu
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for u > v:. Hence we obtain that for m,n = 1,2,... and for b > 0

!

o0 1 1
n i a 7
Jn(f) < (g aniti) (1+ o) § Em(v) (§ P (blf (0 +3) = £(s))ds)dv).
The assumptions b) and c) imply that for every n =1,2,... J2(f) — 0 for
m — 00. This proves the theorem.
We say that (K,,) is a singular kernel if
1
"}i_moSI?m(v) dv=20
6
for every 6 € (0,1).
From Theorems 1 and 3 it follows the following

THEOREM 4. Assume that: a) a convez ¢-function ¢ satisfies the condition
(Az) for large arguments,
b) for an arbitrary a > 0 and for everyn =1,2,...
oo 1
Zamcp-l(cp(ae) S K;(u)du) - 0 with € — 0,
i=1 0

c) the sequence (K,) is a singular kernel.

Then for f € X,4.. N L¥(0,1) and for every A > 0 we have

PP A C) = B ]} = 0 for m — oo
Let us denote for a bounded function f € &
1

g(t) = sup {@(If(v+u+1t) - fu+1t)]) du,
[v|<6 0
where t € R, § > 0, ¢o-function ¢ satisfies the condition (Agz) for large argu-
ments. It is known (see [4]) that ¢ is a measurable function. We define the
p-integral modulus of continuity in measure for a bounded function f € &
1

wf(n,8; f) = p({t € (0,1) : 1SI|1<1>6S o(If(u+v+1t)— flu+1)])du>n}),
V=g
where 7 > 0,6 > 0. In [4] the properties of w¥(n, 6 :, f) were shown.
For f € X 4, f >0, let us denote
t) forte {te(0,1): f(t
fk(t)z{f() orte{te(0,1): f(1)

<k},
k for the remaining ¢ € (0,1)

)

where k is a positive integer.
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We say that f € X 4, f > 0, is a p-regular function if for every k =
1,2,... and for every n > 0

wh(m,6;fe) >0 as 6§ 0.

A sequence (p,,) of the form (A) is called regular at the point f €
Xoa, f20,if for every n =1,2,... and for an arbitrary a > 0,

[o o]
S Gnipi(ts alfm(, fi) = B> ) = 0 a5 k— oo,
i=1
for almost every ¢ € (0,1) and uniformly with respect tom =1,2,...

We say that p;(-, f), i = 1,2,..., are equiabsolutely continuous at the
point f € X 4, f > 0, if for almost every ¢ € (0,1) and for an arbitrary
€ > 0 there exists a A > 0 such that for every ¢ = 1,2,... and for every
AC(0,1), A€ X, such that u(A) < A, we have

| Ki(weo(f(u+1t))du <e.
A
Let us denote by I; = [;(€) the least positive integer such that
(%) S K;(u)du < e, where ¢ > 0.
{u€(0,1):K;(u)>1;}

THEOREM 5. Let f € X, a,f 2 0, is a p-regular function. Assume that: a)
a convez p-function @ satisfies the condition (Az) for large arguments,
b) the sequence

[y

(S K; (u)du)
0
s bounded and for everyn = 1,2,... and for an arbitrary € > 0 the series

o0
Y- anili(€), where l; is defined by the condition (%), is convergent, where
i=1

0 He) 3 anili(e) — 0 with e — 0,
i=1
c) pi(, f), 1=1,2,..., are equiabsolutely continuous at the point f,
d) the sequence (prm) of the form (A) is regular at the point f and (K,,)
s a singular kernel.
Then for every A > 0

P{AF() = B A} =0 for m — oo.

Proof. Let f € X,a, f >0, is a u-regular function and (fx) is the sequence
of truncated functions of f. For A > 0, m,k =1,2,... we have
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(1) P () = B, DI} < pf{3/\[f()—fk()]}+
+ P {BAf () = Py F)I}+
+ps {3’\[,0171( fk)_ﬁm(vf)]}

Since for almost every t € (0,1) we have p(3A[f(u+t) — fr(u+t)]) — 0
if k — oo, for almost every u € (0,1), so, from the Egorov Theorem, it
follows that for an arbitrary € > 0 there exists a A = A(e) > 0, where A
is defined by equiabsolutely continuity p;(-, f), ¢ = 1,2,..., at the point f,
such that there exists a set A, A € X, with u(A4) < A, and p(3A[f(u + 1)
—fe(u +t)]) < € for every k > K = K(t,¢, ), uniformly with respect to
u € (0,1) \ A. Using the Beppo Levi Theorem for series and the Lebesgue
bounded convergence Theorem, we obtain that there exists K3 = K;(g, ) >
0 such that for £ > K; we have

@) PABMS() — SN} < 5

From the Theorem 2 we can conclude that if for any two positive numbers
a,b and for every n =1,2,...

TP =3 anipit: abm(b(fx — fx(-)) = 0 with m — oo
i=1
in measure in (0, 1), then p2{3A[fx(-) — Pm (-, fx)]} — 0 with m — oco. Since
¢ satisfies the condition (Aj) for large arguments, i.e. for an arbitrary € > 0
and for every a > 0 there exists a’ = a’(¢,a) > 0 such that ¢(au) < a’p(u)
for every u > €, so the following estimation
1

J(fe)(t) < Zamgo 1( ae SKi(u)du+

0

+ o | Ki(uw) (S Bon(@)p(0fu(v+u+ 1) = falu+)]) dv)du)
0

1
Ko (v) (S Ki(u)p(d|fu(v+u+1t) — fr(u+ t)|)du) dv+
0

1

+ o(2bk) (§ f{m(v)du) (g Ki(u)du) =L +1,
é 0
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and
1

6
£ o~
< (i sup (bl +u+t) - fulw+H)du+ S ) [Bn()dr,
0<v<é as g
where [ is the least positive integer such that
€
S Ki(u)du < ———.
2bk
{uE(O,l):K,—(u)>lf} a (P( )

By the assumption a) it follows that for a’ there exists a’ = a’(g,a’,b) > 0
such that for every u > (1/b)¢p~!(e/a’) we have p(bu) < a”¢(u). Hence we
obtain

1 1
Jolfiv+utt) = filutt))du < " [l felv+u+t) - filutt))du+—.
0 0

Therefore for an arbitrary n > 0 and for every n = 1,2,... we have
(3)  w({te(0,1): I (fi)(t) 2 n}) <
<u({re 00 Cotenn 2 I} )4

ralfe
ralfecton

et O/ 55t 1)
+u({t€ (E)ganilf > g-}>,

0.1 @D, 2 1} )+
1

a'ap(2bk)CS

6

/—\

where
1

o0
SKi(u)du <C, Zam <D,, in=12,...
0 i=1
For k=1,2,... the following estimation

_ o 1 IR (fe)(@) B
PABNA() = Bl )]} < § _wrrmgme e (9es0)

holds. Since f € X,a, so there exists 8 such that p; 2(6A(B/a)fu() < £
Because f is a p-regular function and (I?m) is a singular kernel, by the
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estimation (3) we obtain that for every n = 1,2,... J7(fi) — 0 with m —
oo in measure in (0, 1). Therefore, using the Lebesgue bounded convergence
Theorem, we have that for k =1,2,...

A0 c )
gﬁﬂfiﬁmwﬁ<aﬁ”m>M—M@m

and so
4) PRBASC) = P S} < 5 for m> M.

Since the sequence (pn,) is regular at the point f, so, using the Lebesgue
in measure convergence Theorem, we obtain

(5) P2 {BABm (s fx) — Pm(, A1} < g

for k > K> = Ks(e, A), uniformly with respect to m =1,2,...
Let ko > max(K, K2). Then, putting in (1) k = ko, we have from (1)
and (2), (4), (5) that

PAF() =B, O} < e
for m > M = M(e, ko). This completes the proof.
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