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AN APPLICATION OF MODULAR SPACES 
TO APPROXIMATION PROBLEMS, VII 

Abstract . By means of terms of a sequence ( p n ) , where pn, n = 1 , 2 , . . . , are a 
pseudomodulars, and by means of an infinite matrix A = [an l] of non-negative numbers 
we shall construct the various modular spaces. Then we shall approximate elements of the 
spaces X a,s and X a by means of terms of a sequence (pm), where (pm), m = 1 , 2 , . . . , 

P ' Pg 

are a pseudomodulars. In particular, we will investigate the special case when pn and pm 

are singular integrals. 

Let (f2, /x) denote a space with a finite measure /x, defined on S, a <r-
algebra of subsets of the set U, pn(t, f ) : 0, x 3£ —• (0, oo) for n = 1 ,2 , . . . and 
/ € X - the space of functions f : fl —> (—oo, oo) which are ^-measurable 
and almost everywhere finite, with equality /¿-almost everywhere. 

Let us assume: 

(a) p n ( t , f ) is a pseudomodular in SC for almost all t and for every 
n = 1 , 2 , . . , 

(b) if for n = 1 ,2 , . . . pn(t, f ) = 0 for almost all t, then / = 0, 
(c) pn{t, f) is measurable and almost everywhere finite with respect to t 

for every / G St and every n = 1 ,2 , . . . 

Let us denote by A = [anj] an infinite matrix of non-negative numbers 
such that none of the columns of the matrix A consists only of zeros. 

Let 
oo 

P n & f ) = Yl0'niPi(t>f)> P n o f a f ) = SUp a n i p i ( t , f ) 
¿=1 i 

for n = 1 ,2 , . . . By means of terms of a sequence (p„) and by means of a 
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matrix A we shall construct the following modulars in SC\ 

p A ( f ) - s u p ^ ( / ) , P A ( f ) = J sup f£(t, f)d», 

w h e r e p * 0 ( f ) = J p£0(t, f ) d f i , 

n 

p£(f) = supp^o(/). PlU) = S sup 

Let us denote by: XpA,s,XpA,XpA,XpA,XpA,s,XpA ,XpA and XpA the 
respective modular spaces. There hold the following inclusions 

In the special case when ann = 1, ani = 0 for n ^ i, n, i = 1 , 2 , . . . , we have 
pA,s _ pA,s _ pS a n c j pA _ pA^ _ p^ -pĵ g modular spaces Xps and XPs was 
study in [1]—[3]. 

We shall approximate elements of the modular spaces XpAand XpA 
by means of terms of a sequence (pm), where pm : Q x S£ —• (0, oo) for 
m = 1 , 2 , . . . and the following conditions are satisfied: 

(â) pm(t, f ) is a pseudomodular in 3£ for almost all t and for every 
m = 1 , 2 , . . . , 

(b) P m ( t , f ) and p m { t , f — f ( t ) ) are measurable and almost everywhere 
finite with respect to t for every / € 3£ and every m = 1 , 2 , . . . 

In the following we shall suppose that besides conditions: (a)-(c) the 
following condition is satisfied: 

(d) if / , g € SC, |/(i)| < |s(0l a lmost everywhere in fi, then for n = 
1 , 2 , . . . pn(t, / ) < pn(t, 9) a lmost everywhere in i) . 

We say that a sequence ( p m ) preserves constants if p m ( t , c ) = c for all 
t € fi and for every c > 0, m = 1 , 2 , . . . 

XpA,s C XpA , XpA D Xt PA ' X P Ï ° c XPI> XPÛ D XPÎ~ Po' 
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The sequence (pm) is called singular at the point / € XpA,s iff for any 
two positive numbers a, b and for n = 1,2,. . . 

00 

J m { f ) = Y2ani \ Pi(^aPm(-,b(f - f ( - ) ) ) ) d P 0 f o r m - > oo . 
¿=i n 

T H E O R E M 1. If the sequence (pm) preserves constants and is singular at the 

point f € XpA,,, / > 0, then for every A > 0 

P A , S W { - ) - Pm(; /)]} - o with m - > oo . 

P r o o f . Let / E XpA,s, f > 0, and a, (3 > 0, a + /3 = 1. In manner, like in 
[1] and [2], we obtain 

1 Pm(t, f ) - f i t ) I < Pm ( t , + ^ m 

for almost all t G CI, m = 1,2,. . . Hence, for n,m = 1,2,. . . and A > 0 we 
have 

oo 

S J^OniPi(i,A|pm (-,/) - /( )|)dAi < 
n i=l 

00 f f t ) °° { $ 
< ^ani 5 Pi(t,2\pm[-, + $ pi ( i , 2 A - / ( - ) J dp,, 

i = i n P i=i n ^ a ' 

and so 

pA's(KPm(; / ) - / ( • ) ) ) + /•' (2A^/(-)) . 

Since / 6 XpA,s, so, for every e > 0, there exists = /3(e) > 0 such that 
pA's(2\£f(-)) < |. The sequence ( P M ) is singular at the point / G XpA,s. 

Hence for this (3 we obtain pA ' s (2Apm ( - , ^j^-)) < f for m>M = M(e)>0. 
Therefore for every A > 0 

/ ' s { A [ p m ( - , /) - /(•)] } < e for m > M. 

The sequence ( p m ) is called singular at the point / 6 iff for any two 
positive numbers o, 6 and for n = 1, 2 , . . . 

oo 

j ™ ( f ) ( t ) = Y / a n i p i ( t , a p m ( ; b ( f - f ( • ) ) ) ) f o r m - > oo 

¿=1 
in measure in ii. 

T H E O R E M 2. 7/i/ie sequence (pm) preserves constants and is singular at the 

point f e XpA, f > 0, then for every A > 0 

^ { A [ / ( 0 - pm(; / ) ] } 0 for m —> oo. 
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P r o o f . Let / G -Xp^, / > 0, and a,/3 > 0, a + ¡3 = 1. In manner, like in 
[1] and [2], we obtain, for every A > 0 and for almost all t € Ct, that 

oo 
Y^°>niPi(t, A|pm(- , / ) - /(•)!) < 
¿=1 
OO , jw \ OO 

¿=i ¿=1 

for m — 1, 2 , . . . , and so 

p?(\(pm(; / ) - /(•))) < pf (2\pm (-, + i»f(2A|/(-)). 

Since / € Xp>i, then, for every e > 0, there exists (3 — /3(e) > 0 such that 
p f ( 2 \ ^ f ( - ) ) < | . The sequence (pm) is singular at the point XpA. Using 
the Beppo Levi Theorem for series and the Lebesgue bounded convergence 
Theorem, we have for this ¡3, pf(2Xpm(-, < § for m > M = M(e) 
> 0. Hence for m > M we obtain 

P?(HPm(; / ) - / ( • ) ) ) < £ for m> M. 

In the sequel we will consider the following special case. Let fi = (0,1), 
E — cr-algebra of Lebesgue measurable sets in (0,1), ¡i — the Lebesgue meas-
ure. Let SC denote the set of ^-measurable and almost everywhere finite 
functions in (0,1), extended periodically, with period 1, outside (0,1), with 
equality /¿-almost everywhere. Let Kn, Km, n,m = 1 ,2 , . . . , be functions 
which are E-measurable and positive almost everywhere in (0,1) and such 
that 

l 
\Kn{u)du < oo fo r ra = 1, 2 , . . . 
0 

and 
1 
^Km(u)du = 1 for m = l , 2 , . . . 
o 

We define the following sequences of operators 
l 

Pn(t, f ) = <f~X (J Kn(u)ip(\f(u + t)|)du) , 
0 
1 

( A ) pm(t, f ) = ip~l Q Km(uM\f(u + t)\)du), 
0 
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for n,m = 1, 2 , . . . and for t 6 (0,1), where ip is a convex ^-function and 
<p -1 is the function inverse to tp for u > 0. 

THEOREM 3. Assume that: a) a convex tp-function <p satisfies the condition 
(A2) for large arguments, 

b) for f G XpA,s,f > 0, and for an arbitrary b > 0 the following condi-
tion 

1 1 
jLirn^ J Km(v) ( j <p{b\f{v + s) - f(s)\)ds)dv = 0 

holds, 
c) for every n = 1 , 2 , . . . 

00 

^ ani6l£ —> 0 with e —> 0, 
¿=1 

where 
_i / \ 1 

61 = v\ sup — — — , v\ = (p(ae) ^ Ki(u)du for a > 0. 
u>vi u 0 

Then the sequence (pm) of the form (A) is singular at the point f . 

P r o o f . Since ip satisfies the condition (A2) for large arguments, so for every 
e > 0 and for a > 0 there exists a' = o'(e) > 0 such that (p(au) < a'(p(u) for 
u > e. Hence it follows 

00 i 1 

¿=1 0 0 
1 1 

+ a'\Ki{u)^Km{v)ip{b\f{u + v + t) - f(u + t)\)dv du}dt. 
0 

It can be easily seen that a convex ^-function ip satisfies the following con-
dition 

(W) v sup - — — -> 0 as v 0 + . 

Let us put 

vl£ = <p(ae) ^ Ki(u)du, ôl£ = v\ sup 
u>vi U V\ 

Then, by the condition (W), it follows the following estimation ip 1(n) < c\u 
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for u > v\. Hence we obtain that for m, n = 1 ,2 , . . . and for b > 0 
oo , 1 1 

jw) < ( E F 1 + T T T 5 K M { V ) 0 + S ) ~ f^ds)dv) • 
i=l (P(a£) o o 

The assumptions b) and c) imply that for every n = 1 ,2 , . . . J ^ ( f ) —• 0 for 
m —» oo. This proves the theorem. We say that ( i f m ) is a singular kernel if 

l 
lim \Krn(v)dv — 0 

m—• oo J 

for every <5 € (0,1). 
From Theorems 1 and 3 it follows the following 

THEOREM 4. Assume that: a) a convex (p-function ip satisfies the condition 
(A2) for large arguments, 

b) for an arbitrary a > 0 and for every n = 1 , 2 , . . . 
00 1 

^^ aniip'1 (tp(ae) ^ Ki(u)du) —» 0 wi/i e —> 0, 
¿ = 1 0 

c) i/ie sequence ( K m ) is a singular kernel. 

Then for f 6 fl 1^(0,1) and for every A > 0 we have 

pA'sW(-)~Pm(;f)}}^0 form->00. 

Let us denote for a bounded function / G 
1 

S ( t ) = sup U ( | / ( v + u + i ) - / ( u + i ) | )du, 
H<«5 

where i € R, <5 > 0, <p-function <p satisfies the condition (A2) for large argu-
ments. It is known (see [4]) that g is a measurable function. We define the 
(¿'-integral modulus of continuity in measure for a bounded function / & SC 

1 

<5; / ) = /*({* e (0,1} : sup \ <p(\f(u + v + t ) - f ( u + i)|) du > r,}), 
H<«6 

where rj > 0,6 > 0. In [4] the properties of 0^(77,6 :, / ) were shown. 
For / 6 XpA, f > 0, let us denote 

f m = / / ( * ) ^ i € {i € (0,1) : / ( i ) < fc}, 
\ A; for the remaining t e (0,1), 

where A; is a positive integer. 
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We say that / € XpA, / > 0, is a /¿-regular function if for every k — 
1 , 2 , . . . and for every 77 > 0 

as <5 —> 0. 

A sequence (pm) of the form (A) is called regular at the point / 6 
XpA, / > 0, if for every n = 1 , 2 , . . . and for an arbitrary a > 0, 

00 

^ani/3i(i,a|pm(-,/fc) - Pm{-,f)\) 0 as fcoo, 
¿=1 

for almost every t 6 (0,1) and uniformly with respect to m = 1 , 2 , . . . 
We say that Pi{-,f), i = 1 , 2 , . . . , are equiabsolutely continuous at the 

point / G XpA, f > 0, if for almost every t € (0,1} and for an arbitrary 
e > 0 there exists a A > 0 such that for every i = 1 , 2 , . . . and for every 
A C (0,1), A G S , such that n(A) < A, we have 

j Ki(u)ip(f(u + t))du < e. 
A 

Let us denote by li = li(e) the least positive integer such that 

(*) J Ki(u)du < e, where e > 0. 
{u6(0,l):ifi(u)>ii} 

THEOREM 5. Let f € XpA, f > 0, is a ¡i-regular function. Assume that: a) 
a convex tp-function ip satisfies the condition (A2) for large arguments, 

b) the sequence 
1 

§Ki{u)du) 
0 

is bounded and for every n = 1 , 2 , . . . and for an arbitrary e > 0 the series 
00 

anih{z), where li is defined by the condition (*), is convergent, where 
i=1 

00 

V - 1 ( £ ) S anih{s) —> 0 with £—•(), 
¿=1 

c) Pi(-,f), ¿ = 1 ) 2 , . . . , are equiabsolutely continuous at the point f , 
d) the sequence (pm) of the form (A) is regular at the point f and (Km) 

is a singular kernel. 
Then for every A > 0 

pfW(-) - Pm(; /)]} for m, —y 00. 

P r o o f . Let / G XpA, / > 0, is a /x-regular function and ( f k ) is the sequence 
of truncated functions of /. For A > 0, m, k — 1 , 2 , . . . we have 
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(1) P f { A [ / ( ) - P m ( ; f ) } } < P f m f ( - ) ~ /*(•)]}+ 

+ P s m f k ( - ) - P m ( ; f k ) } } + 

+ pf{SX[Pm(-Jk)-Pm(-J)}}-

Since for almost every t G (0,1) we have y?(3A[/(u +1) — fk(u + i)]) —> 0 
if k —» oo, for almost every u G (0,1), so, from the Egorov Theorem, it 
follows that for an arbitrary e > 0 there exists a A = A(e) > 0, where A 
is defined by equiabsolutely continuity Pi(-, f ) , i = 1 ,2 , . . . , at the point / , 
such that there exists a set A, A G E, with /a(A) < A, and <p(3A[/(u + t) 
—fk(u + i)]) < £ for every k > K — K(t,e,X), uniformly with respect to 
u G (0,1) \ A. Using the Beppo Levi Theorem for series and the Lebesgue 
bounded convergence Theorem, we obtain that there exists K\ = K\ (e, A) > 
0 such that for k > K\ we have 

(2) P ^ 3 A [ / ( 0 - / f c ( - ) ] } < | . 

From the Theorem 2 we can conclude that if for any two positive numbers 
a, b and for every n = 1 ,2 , . . . 

oo 
JnUk){t) = Yla™Pi(t'aP™('Mfk- fk(-)))) With TTl > OO 

t=l 
in measure in (0,1), then p^{3A[/fc(-) — pm(-, fk)]} 0 with m —• oo. Since 
(p satisfies the condition (A2) for large arguments, i.e. for an arbitrary e > 0 
and for every a > 0 there exists a' = a'(e, a) > 0 such that ip(au) < a'ip(u) 

for every u > e, so the following estimation 
00 1 

J n ( h ) ( t ) < Y,a^(P~1{lP(ci£)\Ki(U)du+ 
i=1 0 

1 1 

+ a' 5 Ki{u) ( j Km(v)<p(b\fk(v + u + t ) ~ fk{u + t ) | ) dv)du) 
0 0 

for n = 1 , 2 , . . . , i e (0,1), holds. In the following we obtain that for 8 G 
(0,1) 

1 1 

5 Km(v)ip(b\fk{v + u + t ) - f k ( u + t)\)dv)du < 
0 0 
6 1 

< j Km{v) (J Ki{u)<p(b\fk(v + u + t ) - fk(u + t ) \ ) d u y v + 
0 0 

1 1 

+ if{2bk) (J Km(v)dv) (J Ki{u)du) = h + h 
6 0 
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and 
i o 

h < (li s u p \ <p(b\fk(v + u + t ) - f k ( u + t)\)du + ( Km(v)dv, 

where if is the least positive integer such that 
e 

\ Ki(u)du < — 
a'tp(2bk)' 

By the assumption a) it follows that for a' there exists a" = a"(e, a',b) > 0 
such that for every u > (1 /6)</?_1(e/a') we have ip(bu) < a"(p(u). Hence we 
obtain 
l l 
\<p(b\fk(v + u + t ) - f k ( u + t)\)du<a"\lp(\fk(v + u + t ) - f k ( u + t)\)du + ^ . 

0 o a 

Therefore for an arbitrary rj > 0 and for every n = 1 , 2 , . . . we have 

(3) / z ( { i G ( 0 , l ) : JH/fc)(i) > » ? } ) < 

< M ( { t G (0,1) : ^ ( C ^ a e ) ) ! ^ > + 

+ € (0,1) : V - \ e ) D n > + 

+ € (0,1) •.ip-1(^a'ip(2bk)C\Km(v)dvSSjDn > 

oo 
+ u* ( ( 1 /(a'a"))<p (p/ ( 5 £ amity ,6; fk) + 

i=1 

+ 

where 

J K i ( u ) d u < C , ^2,ani<Dn, z,n = l , 2 , . . . 
¿=1 

For k = 1 , 2 , . . . the following estimation 

^{3A[/ fc(-) - p m ( . A) ] } < J £ ^ / [ t ) ^ + ^ ( 6 A a / f c ( - } 

On=l " 
holds. Since / G -XpA, so there exists ¡3 such that pf(6\((3/a)fk(-)) < §. 

Because / is a /x-regular function and ( K m ) is a singular kernel, by the 
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estimation (3) we obtain that for every n = 1, 2 , . . . J™(fk) 0 with m —> 
oo in measure in (0,1) . Therefore, using the Lebesgue bounded convergence 
Theorem, we have that for k = 1 , 2 , . . . 

X ] 2 " S J 
f Jn(fk)(t) d t < e for m > m = M ( e , k ) , 

n=1 - o - + J?{fk)(t) 6 

and so 

(4) P . { 3 A [ / f c ( - ) - p m ( - , / f c ) ] } < 3 for m> M. 

Since the sequence (p m ) is regular at the point / , so, using the Lebesgue 
in measure convergence Theorem, we obtain 

( 5 ) p f m P m ( ; f k ) - P m ( ; f ) } } < l 

for k > K2 = K2(e, A), uniformly with respect to m = 1, 2 , . . . 
Let ko > max.(Ki, K2). Then, putting in (1) k = ko, we have from (1) 

and (2), (4), (5) that 

pf{m-)-Pm(;f)]}<e 
for m > M = M(e, ko)- This completes the proof. 
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