DEMONSTRATIO MATHEMATICA
Vol. XXXIII No 4 2000

C. Asma, R. Colak

ON THE KOTHE-TOEPLITZ DUALS OF SOME
GENERALIZED SETS OF DIFFERENCE SEQUENCES

Abstract. In this paper we define the sequence sets foo(u,A,p), c(u,A,p) and
co{u,A,p), and give a— and §— duals of these sets and the sequence space foo(ArD)
defined by Mursaleen et al. These sets generalizes some sets defined by Ahmad and Mur-
saleen [1], and Malkowsky [6].

1. Introduction

We shall write w for the set of all sequences z = {zx} with complex
terms and p = {px} will denote a certain sequence of positive real numbers.
The following sets introduced and investigated by various authors.

foo(p) = {z € w : sup |zx|* < o0},
k

c(p) ={z € w: |zx — l|P* — 0, for some complex {},
co(p) = {z € w: [ziP* — 0},

(p)={z€w: )y laxP* <oo} ([3],[4],[5] and [8]).
k=1

Let U be the set of all sequences u = {u}2; such that uy # 0 and
complex for all k=1,2, ... . Throughout the paper we write wy =

luxl”
Given an arbitrary sequence p = {px} of positive real numbers p; and
given u € U we define the sets

Loo(u, A, p) = {z € w: {urAzr} € Loo(p)}
c(u,A,p) = {z € w: {ugAzr} € c(p)}
co(u, A,p) = {z € w: {ukAzi} € co(p)},
where Azy =z — Tp+1, k=1,2,...
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If p = {px} is a fixed bounded sequence of positive real numbers and
u € U , then £ (u, A, p), c(u,A,p) and co(u, A, p) are linear spaces, under
the usual operations

z+y={z,+y,} and az={az,}
where « is any complex number.

THEOREM 1.1. Let p = {pr} be a bounded sequence of strictly positive real
numbers pr and u € U. Then co(u, A, p) is a paranormed space with para-
norm g(z) = supy |urAzg[P*'™ | where M = maz{l,H = sup,px}. If
infg pr > 0 then £oo(u, A, p) and c(u,A,p) are paranormed spaces with the
same norm as above.

The proof of this theorem is easy therefore we omit it.

2. Kothe-Toeplitz duals
In [7] Mursaleen et al. defined and studied the sequence space

boo(Arp) ={z €w:Arz € Ls(p), T >0}

They give a-, - duals of £ (Arp) in Theorem 2.1 in that paper. But they
applied some argument which do not seem to hold : In the proof of Theorem
2.1 (in [7]) it is expressed that ” obviously S pe, k™ "|a] Z;:ll NYPi < o
implies a € £,”. But this is not valid; for example, if we take r = 2, pr = 1,

ap = % (k=1,2,...) and N > 1, then as easily seen the series

o0 k—1 oo E—1
Skl v = v 3
k=1 j=1 k=1 k

is convergent, but the series > po, [ax| = Y pe; 1 is divergent.
In this paper we also determine the a- and 3-duals of the sequence space
25 (Arp) in Corollary 2.3(i) and Corollary 2.5.

For any subset X of w, the sets

X°‘={aEw:I;l|akxkl<ooforallmeX}

XP = {a Ew: Zakmk converges for all z € X}
k=1
are called o- and G-dual of X. We shall write X** = (X*)* and XPP =
(XP)P.

THEOREM 2.1. For every sequence p = {px} of strictly positive real numbers
Dk, and for every u € U, we have
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(1) [oo(u, A, p)]* = Ma(p),
(ii) [CO(U” A’p)]a = Da(p)y
(iii) [c(w, A, p)]* = D(p),

where
oo oo k—1
M, (p) = ﬂ {a Ew: Z lak| ZNl/pfwj < oo},
N=2 k=1 j=1
oo 00 k—1
D,(p) = U {aEw: ]ak|ZN_1/”"wj<oo}
N=2 k=1 =1
and

=) k—1
D(p) = Du(p) N {a Ew: Z |ak]| ij < oo}.
k=1  j=1

Proof. (i) Let a € M,(p) and z € foo(u,A,p). For any N > max{l,
supy, |ukAzk[P+}, obviously > po; |ak|2f;1l NYPiy; < oo implies
Sty lak| < 0o and hence we have

o] o0 k=1 oo
(1) D lakzi <3 lakll D Ayl + Jea] Y lax|
k=1 k=1 j=1 k=1

oo k—1 oo
<Y lak] Y NYPiw; 4 ] Y Jak| < oo,
k=1 j=1 k=1

so we have a € [y (u, A, p)]*. Therefore M,(p) C [loo(u, A, p)]°.

Conversely let a & My (p). Then Y oo, |ak]| 25;11 NYPiy; = oo for some
integer N > 1. If we take z = Zf;ll NYPiy,; (k = 1,2,...), then z €
loo(u,A,p) and Y 3o, lakzk| = oo. This implies that a € [foo(u, A,p)]*.
Therefore [£oo(u, A, p)]* C My(p) and hence My (p) = [foo(u, A, p)]©.

(ii) Let a € Do(p) and z € co(u, A, p). Then there is an integer ko such
that supg,, [urAzk[P* < N™1, where N is the number in Dq4(p). We put
M = maxi<k<ko |ukA:1:k|p’°, m = minlskgko Dk, L= (M+ l)N and define
the sequence y by yx := z,L~Y/™ (k = 1,2,...) . Then it is easy to see
that supy, |urAyx|P* < N71, and as in (1) with N replaced by N~!, we have

00 00
Z lakzr| = LYm Z lakyr| < oo.
k=1 k=1
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Conversely let a ¢ D,(p). Then we may choose a sequence {k(s)} of
integers such that k(1) = 1, k(1) < k(2) < ... < k(s) <k(s+1)<...and

k(s+1)-1 k~1

Mp,s)= > lalY (s+1)7YPiw; >1 (s=1,2,...).

k=k(s) Jj=1
If we take
s—1  k{l+1)-1 k-1
xk—Z Z (iI+1) l/pfw + Z s+1) 1/”Jw
J=k(l) J=k(s)

(k(s) <k<k(s+1)—-1;s=1,2,...)

then |urAzg|P* = s—-ll-_l (k(s) < k < k(s+1)—-1;s =1,2,...) and so
z € co(u, A, p). Then we can easily see that Y oo |akzi| = Y oo, 1= 00.
This implies that a & [co(u, A, p)]*.

(iii) Let a € D(p) and z € c(u, A, p). Then |urAz, — U|P* — 0 (k — o0)
for some complex number !. We define the sequence y = {yx} by

yk:a:k—!—lZuj_l (k=1,2,...).

Then y = {yx} € co(u, A, p). Since a € D(p), then by (ii), we have

o] 00 k-1 o) o] k—1
> lazel < " larll Y Ayil 4 lyil > lakl + 11D lak] D S wj < 00
k=1 k=1 j=1 k=1 k=1 ij=1

and hence a € [c(u, A, p)]*.
Now let a € [c(u, A, p)]*. Since

[c(u,A,p)]a - [CO('U"A7p)]a and [CO(U”Avp)]a = Da(p)
y (ii), then a € D,(p). If we put z = Z’?__ll w; for k = 1,2,..., then
z € c(u, A, p) and therefore Y -, |ax] ZJ L wj < 0o. Thus a € D(p).

THEOREM 2.2. For every sequence p = {px} of strictly positive real numbers
Pk, and for every u € U, we have:

(i) [loo(u, A, p)]** = Maa(p),
(ii) [CO(U, Aap)]aa = Daa(p)a

where -
— > . - /Piq,. -
Moo (p) 1\[L=J2{a€w.i1£|akl(JZ=;N pwj) <oo}

and
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Dyol(p) = ﬁ {a Ew: il;[; |ak|<§N—l/pjwj>—1 - oo}.

N=2
Proof. (i) Let a € Mao(p) and z € [foo(u, A, p)}* = My(p). Then we have

oo oo k-1 _1 k-1
D lawer] = 3 loxl (30 N*/750;) el 3 NP
k=2 k=2 j=1 j=1

< [sglon (3 7)o Sy <

for some N > 1, by Theorem 2.1(i). Hence a € [£(u, A, p)]*©.
Conversely let a € My (p). Then for every N > 1 we have

k—1
sup|ak|(ZN i)~ = oo.
k> e
Therefore we may choose a strictly increasing sequence {k(¢)} of integers

such that
k(i) —1

-1
Iak(i)l< Z Nl/”fw,-) >4i2 (1=2,3,...).
=1

Put zx = |ag)| ™ (k = k(5)), zx = 0 (k # k(i)). Then

00 k—1 o) k(i)—-1 00

S ol SNy = S laag | S Ny € 3067 < o

k=1 j=1 i=1 7j=1 i=1
for every integer N > 1. This yields that z € [l (u, A, p)]* and 3 po ; larz|
=Y 2, 1=o0candsoa & [fo(u, A, p)]** Hence [fos(u, A, p)]|** = Muo(p)-

(ii) Let us define

oo k—1
Bx(p) = {acw: 3 lasl 3 N"Pu, < oo}
k=1 j=1

and
k—

Fn(p) = {aew s1ip|ak|(z l/pﬂw) 1<oo}

where N =2,3,...
By Lemma 4(iv) in [3], Fn(p) = [En(p)]* for each integer N > 1.
Let us define
X(Arp) = {z = (zx) : Arz € X(p), T >0},
where X = £, co or c and A,z = {k"Azg}2,.
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If we put ur = k" then we have o (u, A,p) = Lo (Arp), colu,A,p) =
co(Arp) and c(u, A, p) = c¢(Arp).

Now if we take ux = k", (r > 0) in Theorem 2.1 (i), (ii), (iii) then we
have the following results.

COROLLARY 2.3. For every strictly positive sequence of reals p = {px} and
r > 0, we have

(i) (oo (Arp))* = NR_afa € w s 72, larl 521 57" NP5 < oo},
(i) [co(Arp))* = UR=afa € w s T2y lax| 521 5" NP5 < oo},
(iil) [c(Arp)]* = [co(Arp)]*N{a € w: > pey |ak] E?;llj‘r converges}.

THEOREM 2.4. Let p = {pi} be a sequence of strictly positive real numbers.
Then [€oo(u, A, p))? = Do (p) where

DOO(p) =
[o] k-1 0o
ﬂ {a Cw: Zak ZNl/”jwj converges and ZNl/p*wkIRkl < oo}
N>2 k=1 j=1 k=1
and

Rk,= i ay (k=].,2,...).

v=k+41
Proof. Let a € D (p) and z € £y (u, A, p). We may write

n n—1 n—1 n
(2) Zak.’rk=—ZA:L‘kRk+RnZA:Ek+IE1Zak (n=1,2,...).
k=1 k=1 k=1 k=1

Obviously a € Do (p) implies the convergence of the series 3 - | ak. Since
z € Lo (u, A, p) we may choose an integer N > max{1,supy |uxAzk|P*} so
that

o0 [o o]

> |Azg||Re| <> NYPrawg| Ry < oo.

k=1 k=1
Therefore Y 7o | Azy Ry, is absolutely convergent. From Corollary 2 in 2], the
convergence of >y ; Gk Zf;ll NY/Piw; implies that Rg Y i—y NY/Piw; — 0
(k — o0), and hence (2) yields that Y p., axzk is convergent. Therefore

a € [foo(u, A, p)]P.

Conversely let a € [foo(u,A,p)]?. Since e = {1,1,...} € £oo(u,A,p)
then we have that the series ) ., ax is convergent. Define z = {zx} by
Ty = Ef;ll NYPiw;, then = € foo(u,A,p) and I po, ax Z;:ll NY/Piq;
is convergent. Again by Corollary 2 in [2] we have R, Z;:ll N/Pi; —0
(n — o0). By (2) we have the series Y pv, Azi R converges for all a €
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Loo(u, A, p). Since z € £ (u, A, p) if and only if {yx} = {urAzr} € Loo(p),
then {u~! Ry} € [£oo(p)]?. By Theorem 2 in [4] we have

Z Nl/p"wkIRk| < o0
k=1
for all integer N > 1. Hence a € Do (p).
This completes the proof of the theorem.

If we take up = k", 7 > 0 in Theorem 2.4, then we have the following
result.

COROLLARY 2.5. For every strictly positive sequence of reals p = {pr} and
r > 0, we have

[ZOO(ATP)]ﬁ =
oo 00 k—1 oo
m {a Ew: Zak Zj"er/pJ’ converges and Zk"Nl/’”‘|Rk| < oo}.
N=2 k=1 j=1 k=1
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